Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Validation of SSR markers linked to heat tolerance in bread wheat genotypes

DOI
https://doi.org/10.14719/pst.7054
Submitted
3 January 2025
Published
07-07-2025 — Updated on 14-07-2025
Versions

Abstract

Parental selection and breeding rely on the existence of genetic diversity and relationships present in germplasms. The objective of this study was to assess the molecular divergence for terminal heat stress tolerance in twenty wheat genotypes, utilizing 25 SSR markers associated with heat tolerance, which are linked to the trait of interest across various chromosomes. For molecular diversity assessment, fourteen polymorphic SSR markers, out of the twenty-five, amplified a total of 33 alleles, which were distributed across nine chromosomes. The number of alleles per locus ranged from 2 to 3, with an average of 2.36 alleles per locus. Polymorphism information content (PIC), resolving power (Rp), effective multiplex ratio (EMR) and marker index (MI) values were high for markers viz., Xwmc603, Xwmc161 and Xgwm577, indicating that they had the most discriminatory power. Based on Jaccard's similarity coefficient, the genetic similarity among the 20 wheat genotypes ranged from 0.36 to 0.88. The dendrogram generated from UPGMA cluster analysis revealed two primary clusters: cluster I, which comprised three genotypes and cluster II, which included seventeen genotypes. Genotypes GS/2019- 20/6046, HPYT-2019-20/416 and GS/2019 20/5042 fall in cluster I and the remaining seventeen genotypes are included in cluster II, with similarity coefficient values ranging from 0.70 to 0.79 and 0.36 to 0.88, respectively. The current study demonstrated that there is enough
variation present among the genotypes at the molecular level and the findings would help to make use of diverse genotypes as parents in future hybridizing programs to improve terminal heat tolerance.

References

  1. 1. Shahbandeh M. Grain production worldwide 2024/25. Statista; 2025.
  2. 2. Asseng S, Ewert F, Martre P, Rotter RP, Lobell DB, Cammarano D, et al. Rising temperatures reduce global wheat production. Nat Clim Chang. 2015;(5):143–47. https://doi.org/10.1038/nclimate2470
  3. 3. Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T. Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet. 2012;125(2):255–71. https://doi.org/10.1007/s00122-012-1831-9
  4. 4. Yu Q, Li L, Luo Q, Eamus D, Xu S, Chen C, et al. Year patterns of climate impact on wheat yields. Int J Climatol.2014;34:518–28. https://doi.org/10.1002/joc.3704
  5. 5. Gibson LR, Paulsen GM. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci. 1999;39(6):1841–46. https://doi.org/10.2135/cropsci1999.3961841x
  6. 6. Vignjevic M, Wang X, Olesen JE, Wollenweber B. Traits in spring wheat cultivars associated with yield loss caused by a heat stress episode after anthesis. J Agron Crop Sci. 2015;201(1):32–48. https://doi.org/10.1111/jac.12085
  7. 7. Sharma P, Mehta G, Muthusamy SK, Singh SK, Singh GP. Development and validation of heat-responsive candidate gene and miRNA gene based SSR markers to analysis genetic diversity in wheat for heat tolerance breeding. Mol Biol Rep. 2021;48(1):381–93. https://doi.org/10.1007/s11033-020-06059-1
  8. 8. Rafalski JA, Vogel JM, Morgante M, Powell W, Andre C, Tingey SV. Generating and using DNA markers in plants. Nonmammalian genomic analysis. Elsevier; 1996. p.75‒134 https://doi.org/10.1016/B978-012101285-4%2F50005-9
  9. 9. Sharma P, Sareen S, Saini M, Verma A, Tyagi BS, Sharma I. Assessing genetic variation for heat tolerance in synthetic wheat lines using phenotypic data and molecular markers. Aust J Crop Sci. 2014;8(4):515–22.
  10. 10. Molla KA, Debnath AB, Ganie SA, Mondal TK. Identification and analysis of novel salt responsive candidate gene based SSRs (cgSSRs) from rice (Oryza sativa L.). BMC Plant Biol. 2015;15:122–32. https://doi.org/10.1186/s12870-015-0498-1
  11. 11. Bousba R, Baum M, Djekoune A, Labadidi S, Djighly A, Benbelkacem K, et al. Screening for drought tolerance using molecular markers and phenotypic diversity in durum wheat genotypes. World Appl Sci J. 2012;16(9):1219–26.
  12. 12. Dodig D, Zoric M, Kobiljski B, Surlan-Momirovic G, Quarrie SA. Assessing drought tolerance and regional patterns of genetic diversity among spring and winter bread wheat using simple sequence repeats and phenotypic data. Crop Pasture Sci. 2010;61:812–24. https://doi.org/10.1071/CP10001
  13. 13. Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–15.
  14. 14. Fougat R, Purohit A, Kumar S, Parekh MJ, Kumar M. SSR based genetic diversity in Abelmoschus species. Indian J Agric Sci. 2015;85(9):1223–28. https://doi.org/10.56093/ijas.v85i9.51636
  15. 15. Jaccard P. Nouvelles researches sur la distribution florale. Bull Soc Vaudoise Sci Nat. 1908;44:223–70.
  16. 16. Riek J, Calsyn E, Everaert I, Bockstaele E, Loose M. AFLP based alternatives for the assessment of distinctness, uniformity and stability of sugar beet varieties. Theor Appl Genet. 2001;103(8):1254–65. https://doi.org/10.1007/s001220100710
  17. 17. Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet. 1999; 98(1):107–12. https://doi.org/10.1007/s001220051046
  18. 18. Venkatesan J, Ramu V, Sethuraman T, Sivagnanam C, Doss G. Molecular marker for characterization of traditional and hybrid derivatives of Eleusine coracana (L.) using ISSR marker. J Genet Eng Biotechnol. 2021;19:178–89. https://doi.org/10.1186/s43141-021-00277-1
  19. 19. Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Waugh R. Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Mol Breed. 1997;3(2):127–36. https://doi.org/10.1023/A:1009633005390
  20. 20. Salem KFM, El-Zanaty AM, Esmail RM. Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatellite markers. World J Agric Sci. 2008;4:538–44.
  21. 21. Piyusha S, Singh NK. SSR molecular markers are efficient tools for finding genetic diversity in bread wheat. Int J Curr Microbiol Appl Sci. 2018;12:1098–105.
  22. 22. Phougat D, Panwar IS, Punia MS, Sethi SK. Microsatellite markers based characterization in advance breeding lines and cultivars of bread wheat. J Environ Biol. 2018;39:339–46. https://doi.org/10.22438/jeb/39/3/MRN-607
  23. 23. Ramadugu C, Keremane ML, Hu X, Karp D, Federici CT, Kahn T, et al. Genetic analysis of citron (Citrus medica L.) using simple sequence repeats and single nucleotide polymorphisms. Scientia Hortic. 2015;195:124–37. https://doi.org/10.1016/j.scienta.2015.09.004
  24. 24. Sonmezoglu O, Terzi B. Characterization of some bread wheat genotypes using molecular markers for drought tolerance. Physiol Mol Biol. 2017;24:159–66. https://doi.org/10.1007/s12298-017-0492-1
  25. 25. Bhusal N, Sarial AK, Sharma P, Sareen S. Mapping QTLs for grain yield components in wheat under heat stress. PLoS ONE. 2017;12(12):1–14. https://doi.org/10.1371/journal.pone.0189594
  26. 26. Al-Ashkar I, Alotaibi M, Refay Y, Ghazy A, Zakri A, Al-Doss A. Selection criteria for high-yielding and early flowering bread wheat hybrids under heat stress. PLoS ONE. 2020;15:1–20. https://doi.org/10.1371/journal.pone.0236351
  27. 27. Najaphy A, Parchin RA, Farshadfar E. Evaluation of genetic diversity in wheat cultivars and breeding lines using inter simple sequence repeat markers. Biotechnol. 2011;25:2634–38. https://doi.org/10.5504/BBEQ.2011.0093
  28. 28. Faheem M. Mahmood T. Shabbir G. Akhtar N, Kazi AG, Kazi AM. Assessment of D genome based genetic diversity in drought tolerant wheat germplasm. Int J Agric Biol. 2015;17:791–96. https://doi.org/10.17957/IJAB/14.0018
  29. 29. Somers DJ, Isaac P, Edwards K. A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 2004;109:1105–14. https://doi.org/10.1007/s00122-004-1740-7
  30. 30. Nader R, Abdelsalam M. Marker assisted selection of major traits in Egyptian bread wheat (Triticum aestivum) and wild wheat (Aegilops ventricosa Tausch). Plant Cell Biotechnol Mol Biol. 2014;15:79–86.
  31. 31. Smeets HJ, Brunner HG, Ropers HH, Wieringa B. Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy. Hum Genet. 1989;83:245–51. https://doi.org/10.1007/bf00285165
  32. 32. Powell W, Machray GC, Provan J. Polymorphism revealed by simple sequence repeats. Trends Plant Sci. 1996;1(7):215–22. https://doi.org/10.1016/1360-1385(96)86898-1
  33. 33. Pankaj YK, Vasantrao MJ, Prakash N, Jat RK, Kumar R, Kumar V, Kumar P. Characterization of wheat (Triticum aestivum L.) genotypes unraveled by molecular markers considering heat stress. Open Agric. 2019;4(1):41–51. https://doi.org/10.1515/opag-2019-0037
  34. 34. Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai Yu8679. Theor Appl Genet. 2009;18(5):313–25. https://doi.org/10.1007/s00122-008-0901-5
  35. 35. Singroha G, Shefali, Kumar S, Singh SK, Singh G, Singh GP, Sharma P. Validation of molecular markers linked with QTLs for heat and drought stress tolerance in wheat. J Cereal Res. 2021;12(3):309–16. https://doi.org/10.25174/2582-2675/2020/107204
  36. 36. Yang J, Sears RG, Gill BS, Paulsen GM. Quantitative and molecular characterization of heat tolerance in hexaploid wheat. Euphytica. 2002;126:275–82. https://doi.org/10.1023/A:1016350509689
  37. 37. Sharma P, Sareen S, Saini M. Assessing genetic variation for heat stress tolerance in Indian bread wheat genotypes using morpho-physiological traits and molecular markers. Plant Genet Resour. 2017;15(6):539–47. https://doi.org/10.1017/S1479262116000241
  38. 38. Barakat M, Al-Doss AA, Elshafei AA, Moustafa KA. Identification of new microsatellite marker linked to the grain filling rate as indicator for heat tolerance genes in F2 wheat population. Aust J Crop Sci. 2011;5(2):104–10.
  39. 39. Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AM, Dirk BH. QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica. 2010;174:423–36. https://doi.org/10.1007/s10681-010-0151-x
  40. 40. Ciuca M, Banica C, David M, Saulescu NN. SSR markers associated with the capacity for osmotic adjustment in wheat (Triticum aestivum L.). Rom Agric Res. 2010;27(4):1–5. https://www.researchgate.net/publication/266400925
  41. 41. Talukder SK, Babar MA, Vijayalakshmi K, Poland J, Prasad PVV, Bowden R, Fritz A. Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet. 2014; 15(1):97–109. https://doi.org/10.1186/s12863-014-0097-4
  42. 42. Kumar S, Kumari P, Kumar U, Grover M, Singh AK, Singh R, Sengar RS. Molecular approaches for designing heat tolerant wheat. J Plant Biochem Biotechnol. 2013;22:359–71. https://doi.org/10.1007/s13562-013-0229-3
  43. 43. Sinha N, Priyanka V, Ramya KT, Leena T, Bhat JA, Harikrishna, et al. Assessment of marker-trait associations for drought and heat tolerance in bread wheat. Cereal Res Commun. 2018;46(4):639–49. https://doi.org/10.1556/0806.46.2018.049
  44. 44. Mohammadi V, Zali AA, Bihamta MR. Mapping QTLs for heat tolerance in wheat. J Agric Sci Technol. 2018;10:261–67.

Downloads

Download data is not yet available.