This is an outdated version published on 12-08-2025. Read the
most recent version.
Review Articles
Early Access
The utilization of alum sludge as constructed wetlands’ media to reduce nutrient in communal wastewater treatment plant effluent
Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
Abstract
Communal wastewater treatment plants (WWTPs) typically used Anaerobic Baffled Reactors (ABRs) due to their low operational costs and ease of maintenance. However, studies indicated that nutrients such as ammonia and phosphate in ABR effluents often failed to meet quality standards. This issue became increasingly urgent as untreated nutrients significantly contributed to environmental degradation, including eutrophication in water bodies, which posed a severe threat to aquatic ecosystems and public health. The pressing need to explore efficient nutrient removal techniques highlighted the importance of investigating innovative approaches such as constructed wetlands using alum sludge. On the other hand, drinking water treatment processes usually required the addition of aluminum sulfate for coagulation, which generated sludge containing aluminum. This alum sludge was often disposed of without proper treatment, leading to environmental degradation. For the first time, this research connected two separate fields-wastewater treatment and alum sludge management-revealing an interdisciplinary approach that transformed alum sludge into a sustainable material for nutrient removal. This innovation addressed dual environmental challenges: mitigating nutrient pollution and repurposing waste materials. Research suggested that dried alum sludge from drinking water treatment plants had the potential to be used as media in constructed wetlands to reduce nutrient levels. A comprehensive literature review was conducted to explore methods of dewatering alum sludge before its use as constructed wetland media, various designs of constructed wetlands using alum sludge and the mechanisms of nutrient removal. This work unveiled promising business opportunities, particularly for industries focusing on sustainable waste reuse technologies and eco-friendly infrastructure development. Prospective directions for further research included optimizing the longevity and efficiency of alum sludge as constructed wetlands media under different wastewater conditions. Future challenges included addressing potential aluminum leaching, maintaining media performance over time and exploring scalability for industrial applications. The results indicated that alum sludge was typically air-dried and then oven-dried before being used as an alternative media in constructed wetlands. Key mechanisms for nutrient removal in constructed wetlands with alum sludge included adsorption through ligand exchange, nitrification-denitrification, microbial activity and plant uptake. Single-stage constructed wetland designs demonstrated higher removal efficiency compared to multi-stage designs, suggesting pathways for cost-effective implementation in decentralized wastewater treatment systems.
References
- 1. Wirawan SMS. Kajian kualitatif pengolahan air limbah di Jakarta. J Riset Jakarta. 2019;12(2):57–68.
- 2. Hastuti E, Nuraeni R, Darwati S, Litbang P, Dan P, Badan P, et al. Pengembangan proses pada sistem anaerobic baffled reactor untuk memenuhi bakumutu air limbah domestik. J Permukiman. 2017;12(2):70–79. https://doi.org/10.31815/JP.2017.12.70-79
- 3. Karva FP, Yulianto A, Rachmawati S. Uji toksisitas IPAL komunal di dusun Mendiro terhadap Daphnia magna dengan Menggunakan metode Whole Effluent Toxicity. 2018;1–20.
- 4. Wijayaningrat A. Evaluasi kinerja IPAL komunal di Kecamatan Banguntapan dan Bantul, Kabupaten Bantul, DIY ditinjau dari parameter fisik kimia. 2018.
- 5. Ibnu F, Laila F. Efektivitas pengolahan lumpur tinja di IPAL Duri Kosambi. Vol. 0330017101. 2016. p. 95
- 6. Peng F, Gao Y, Zhu X, Pang Q, Wang L, Xu W, et al. Removal of high-strength ammonia nitrogen in biofilters: nitrifying bacterial community compositions and their effects on nitrogen transformation. Water. 2020;12(3):1–16. https://doi.org/10.3390/w12030712
- 7. Partuti T, Dwiyanti Y. Penentuan kondisi optimum pengendapan limbah tailing hasil penambangan emas di daerah Cibalung. J Ind Serv. 2017;3(1):93–97.
- 8. Godoy LGG de, Rohden AB, Garcez MR, Costa EB da, Da Dalt S, Andrade JJ de O. Valorization of water treatment sludge waste by application as supplementary cementitious material. Constr Build Mater. 2019;223:939–50. https://doi.org/10.1016/J.CONBUILDMAT.2019.07.333
- 9. Chaudhuri S, Roy M. Global ambient air quality monitoring: can mosses help? A systematic meta-analysis of literature about passive moss biomonitoring. Environ Dev Sustain. 2024;26(3):5735–73. https://doi.org/10.1007/S10668-023-03043-0
- 10. Barakwan RA, Trihadiningrum Y, Bagastyo AY. Characterization of alum sludge from Surabaya water treatment plant, Indonesia. J Ecol Eng. 2019;20(5):7–13. https://doi.org/10.12911/22998993/104619
- 11. Rahayu SR, Pribadi A, Sulistiya N, Setyowati DN. Perencanaan unit pengolahan lumpur di instalasi pengolahan air minum X kota Surabaya. J Teknol Technoscientia. 2020;13(1):76–82.
- 12. Umeobi EC, Azuka CV, Ofem KI, John K, Nemecek K, Jidere CM, et al. Evaluation of potentially toxic elements in soils developed on limestone and lead-zinc mine sites in parts of southeastern Nigeria. Heliyon. 2024;10(7): e27503. https://doi.org/10.1016/j.heliyon.2024.e27503
- 13. Moukadiri H, Noukrati H, Ben Youcef H, Iraola I, Trabadelo V, et al. Impact and toxicity of heavy metals on human health and latest trends in removal process from aquatic media. Int J Environ Sci Technol. 2024;21(3):3407–44. https://doi.org/10.1007/s13762-023-05275-z
- 14. Zhao, Xie H, Li J, Zhang L, Zhao Y. Application of alum sludge in wastewater treatment processes: “Science” of reuse and reclamation pathways. Process. 2021;9(4):1–12. https://doi.org/10.3390/pr9040612
- 15. Iklima R, Diansyah G, Agussalim A, Mulia C. Analisis kandungan N-Nitrogen (Amonia, Nitrit, Nitrat) dan Fosfat di Perairan Teluk Pandan Provinsi Lampung. J Lahan Suboptimal. 2019;8(1):57–66. https://doi.org/10.33230/jlso.8.1.2019.377
- 16. Bahri S. Identifikasi sumber pencemar Nitrogen (n) dan Fosfor (p) pada pertumbuhan melimpah tumbuhan air di Danau Tempe, Sulawesi Selatan. Jurnal Sumber Daya Air. 2016;12(2):159–74. https://doi.org/10.32679/jsda.v12i2.63
- 17. Tilley E, Ulrich L, Luthi C, Reymond P, Zurbrugg C. Compendium of Sanitation Systems and Technologies. 2nd revised ed. 2014. p. 180.
- 18. Qrenawi LI, Rabah FKJ. Sludge management in water treatment plants: literature review. Int J Environ Waste Manag. 2021;27(1):93–125. https://doi.org/10.1504/IJEWM.2021.111909
- 19. Zhao, Zhao Y, Wang W, Yang Y, Babatunde A, Hu Y, et al. Key issues to consider when using alum sludge as substrate in constructed wetland. Water Sci Technol. 2015;71(12):1775–82. https://doi.org/10.2166/wst.2015.138
- 20. Dassanayake KB, Jayasinghe GY, Surapaneni A, Hetherington C. A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Manag. 2015;38(1):321–35. https://doi.org/10.1016/J.WASMAN.2014.11.025
- 21. Zakaria MS, Hassan S, Faizairi M. Moisture content of the sewage sludge dried using thermal dryer. J End Appl Sci. 2016;11(24):14230–32.
- 22. Chen Z, Afzal M, Adam A, Salema. Microwave drying of wastewater sewage sludge. J Clean Energy Technol. 2014;4(2)282–86. https://doi.org/10.7763/JOCET.2014.V2.140
- 23. Chaedir BA, Kurnia JC, Sasmito AP, Mujumdar AS. Advances in dewatering and drying in mineral processing. Drying Technol. 2021;39(11):1667–84. https://doi.org/10.1080/07373937.2021.1907754
- 24. Muisa N, Nhapi I, Ruziwa W, Manyuchi MM. Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: A review. J Water Process Eng. 2020;35:101187. https://doi.org/10.1016/j.jwpe.2020.101187
- 25. Chen, Chen Y, Pei H, Hou Q. Biofilm development dynamics and pollutant removal performance of ceramsite made from drinking-water treatment sludge. Water Environ Res. 2019;91(7):616–27. https://doi.org/10.1002/WER.1089
- 26. Wu H fang, Wang J ping, Duan E gao, Hu W hua, Dong Y bo, Zhang G qing. Phosphorus removal by adsorbent based on poly-aluminum chloride sludge. Water Sci Eng. 2020;13(3):193–201. https://doi.org/10.1016/J.WSE.2020.09.006
- 27. Liao J, Zhang Y. Effective removal of uranium from aqueous solution by using novel sustainable porous Al2O3 materials derived from different precursors of aluminum. Inorg Chem Front. 2020;7(3):765–76. https://doi.org/10.1039/C9QI01426H
- 28. Zha Z, Ren Y, Wang S, Qian Z, Yang L, Cheng P, et al. Phosphate adsorption onto thermally dehydrated aluminate cement granules. Adv. 2018;8(34):19326–34. https://doi.org/10.1039/c8ra02474j
- 29. Houndedjihou D, Kodom T, Wolff DB, Marchioro LG, Formentini TA, Bawa LM, et al. Pollutants removal in sewage wastewater efficiency and kinetic of ammonia nitrogen removal through subsurface vertical flow constructed wetlands (SSVFCW). Int Res J Pure Appl Chem. 2021;22(1):22–37. https://doi.org/10.9734/irjpac/2021/v22i130365
- 30. Li Z, Liu X, Wang Y. Modification of sludge-based biochar and its application to phosphorus adsorption from aqueous solution. J Mater Cycles Waste Manag. 2020;22(1):123–32. https://doi.org/10.1007/s10163-019-00921-6
- 31. Hao H, Wang Y, Shi B. NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: synthesis and adsorption mechanistic study. Water Res. 2019;155:1–11. https://doi.org/10.1016/J.WATRES.2019.01.049
- 32. Eduah JO, Nartey EK, Abekoe MK, Henriksen SW, Andersen MN. Mechanism of orthophosphate (PO4-P) adsorption onto different biochars. Environ Technol Innov. 2020;17:100572. https://doi.org/10.1016/j.eti.2019.100572
- 33. Wang X, Phillips BL, Boily JF, Hu Y, Hu Z, Yang P, et al. Phosphate sorption speciation and precipitation mechanisms on amorphous aluminum hydroxide. Soil Syst. 2019;3(1):1–17. https://doi.org/10.3390/soilsystems3010020
- 34. Perassi I, Borgnino L. Adsorption and surface precipitation of phosphate onto CaCO3-montmorillonite: effect of pH, ionic strength and competition with humic acid. Geoderma. 2014;232–234:600–08. https://doi.org/10.1016/j.geoderma.2014.06.017
- 35. Lee LY, Wang B, Guo H, Hu JY, Ong SL. Aluminum-based water treatment residue reuse for phosphorus removal. Water. 2015;7(4):1480–96. https://doi.org/10.3390/W7041480
- 36. Echebiri FO, Abayomi AA, Oladosu NO, Ayeni AO, Adesalu TA, Olayinka KO, et al. Effects of physicochemical and sediment–mineral dynamics on phosphorus concentration and biological productivity in Lagos coastal waters. Aquat Sci. 2023;85(3):67. https://doi.org/10.1007/S00027-023-00965-9
- 37. Naja GM, Volesky B. Constructed wetlands for water treatment. 3rd ed. Vol. 6, Comprehensive Biotechnology. Elsevier; 2019. p. 307–22. https://doi.org/10.1016/B978-0-444-64046-8.00362-1
- 38. Tao W. Microbial removal and plant uptake of nitrogen in constructed wetlands: mesocosm tests on influencing factors. Environ Sci Pollut Res. 2018;25:36425–37. https://doi.org/10.1007/s11356-018-3543-4
- 39. Elrys AS, Wang J, Metwally MAS, Cheng Y, Zhang JB, Cai ZC, et al. Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen. Glob Chang Biol. 2021;27(24):6512–24. https://doi.org/10.1111/GCB.15883
- 40. Yu L, Li R, Mo P, Fang Y, Li Z, Peng D. Stable partial nitrification at low temperature via selective inactivation of enzymes by intermittent thermal treatment of thickened sludge. Chem Eng J. 2021;418:129471. https://doi.org/10.1016/J.CEJ.2021.129471
- 41. Zhu I. Recent Advances on Nitrification and Denitrification. 2024
- 42. Vidal G, de Los Reyes CP, Saez O. The performance of constructed wetlands for treating swine wastewater under different operating conditions. In: Constructed Wetlands for Industrial Wastewater Treatment. 2018. p. 203–21. https://doi.org/10.1002/9781119268376.CH10
- 43. Rier ST, Kinek KC, Hay SE, Francoeur SN. Polyphosphate plays a vital role in the phosphorus dynamics of stream periphyton. Freshwater Sci. 2016;35(2):490–502. https://doi.org/10.1086/685859
- 44. Yan Q, Feng G, Gao X, Sun C, Guo JS, Zhu Z. Removal of pharmaceutically active compounds (PhACs) and toxicological response of Cyperus alternifolius exposed to PhACs in microcosm constructed wetlands. J Hazard Mater. 2016;301:566–75. https://doi.org/10.1016/j.jhazmat.2015.08.057
- 45. Abou-Elela SI. Constructed wetlands: The green technology for municipal wastewater treatment and reuse in agriculture. Handbook of Environmental Chemistry. 2019;75:189–239. https://doi.org/10.1007/698_2017_69
- 46. Choudhary M, Muduli M, Ray S. A comprehensive review on nitrate pollution and its remediation: conventional and recent approaches. Sustain Water Resour Manag. 2022;8(4):113. https://doi.org/10.1007/S40899-022-00708-Y
- 47. Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S. Management of phosphorus nutrient amid climate change for sustainable agriculture. J Environ Qual. 2021;50(6):1303–24. https://doi.org/10.1002/JEQ2.20292
- 48. Kanu-Oji CO. Nutrient accumulation dynamics in treatment wetland Ppants. Estonian University of Life Sciences; 2023. https://dspace.emu.ee//handle/10492/8433
- 49. Wu, Wang R, Yan P, Wu S, Chen Z, Zhao Y, et al. Constructed wetlands for pollution control. Nat Rev Earth Environ. 2023;4(4):218–34. https://doi.org/10.1038/s43017-023-00395-z
- 50. Dawen G, Nabi M. New constructed wetlands. In: Novel approaches towards waste water treatment: effective strategies and techniques. 2024. p. 241–313. https://doi.org/10.1007/978-3-031-55189-5_4
- 51. Moazzem S, Bhuiyan M, Muthukumaran S, Fagan J, Jegatheesan V. Microbiome wetlands in nutrient and contaminant removal. Curr Pollut Rep. 2023;9(4):694–709. https://doi.org/10.1007/S40726-023-00280-9
- 52. Chittoo BS, Sutherland C. Adsorption of phosphorus using water treatment sludge. J Appl Sci. 2014;14(24):3455–63. https://doi.org/10.3923/JAS.2014.3455.3463
- 53. Bal Krishna KC, Aryal A, Jansen T. Comparative study of ground water treatment plants sludges to remove phosphorous from wastewater. J Environ Manage. 2016;180:17–23. https://doi.org/10.1016/J.JENVMAN.2016.05.006
- 54. Monea MC, Lohr DK, Meyer C, Preyl V, Xiao J, Steinmetz H, et al. Comparing the leaching behavior of phosphorus, aluminum and iron from post-precipitated tertiary sludge and anaerobically digested sewage sludge aiming at phosphorus recovery. J Clean Prod. 2020;247:119129. https://doi.org/10.1016/J.JCLEPRO.2019.119129
- 55. Kluczka J, Zołotajkin M, Ciba J, Staron M. Assessment of aluminum bioavailability in alum sludge for agricultural utilization. Environ Monit Assess. 2017;189(8). https://doi.org/10.1007/S10661-017-6133-X
- 56. Dassanayake KB, Jayasinghe GY, Surapaneni A, Hetherington C. A review on alum sludge reuse with special reference to agricultural applications and future challenges. Waste Manag. 2015;38(1):321–35. https://doi.org/10.1016/J.WASMAN.2014.11.025
- 57. Lopez D, Sepulveda M, Vidal G. Phragmites australis and Schoenoplectus californicus in constructed wetlands: development and nutrient uptake. J Soil Sci Plant Nutr. 2016;16(3):763–77. https://doi.org/10.4067/s0718-95162016005000055
- 58. Wang, An C, Lee K, Feng Q. Overlooked role of bulk nanobubbles in the alteration and motion of microplastics in the ocean environment. Environ Sci Technol. 2023;57(30):11289–99. https://doi.org/10.1021/ACS.EST.3C03270
- 59. Derikvand P, Sauter B, Stein LY. Development of an aquaponics microbial inoculum for efficient nitrification at acidic pH. Appl Microbiol Biotechnol. 2021;105(18):7009–21. https://doi.org/10.1007/S00253-021-11529-Y
- 60. Shan J, Yang P, Shang X, Rahman MM, Yan X. Anaerobic ammonium oxidation and denitrification in a paddy soil as affected by temperature, pH, organic carbon and substrates. Biol Fertil Soils. 2018;54(3):341–48. https://doi.org/10.1007/S00374-018-1263-Z
- 61. Magenau E, Clifton-Brown J, Awty-Carroll D, Ashman C, Ferrarini A, Kontek M, et al. Site impacts nutrient translocation efficiency in intraspecies and interspecies miscanthus hybrids on marginal lands. Bioenergy. 2022;14(9):1035–54. https://doi.org/10.1111/GCBB.12985
- 62. Magenau E, Clifton-Brown J, Parry C, Ashman C, Awty-Carroll D, Ferrarini A, et al. Spring emergence and canopy development strategies in miscanthus hybrids in Mediterranean, continental and maritime European climates. Bioenergy. 2023;15(5):559–74. https://doi.org/10.1111/GCBB.13035
- 63. Yulistyorini A, Camargo-Valero MA, Sukarni S, Suryoputro N, Mujiyono M, Santoso H, et al. Performance of anaerobic baffled reactor for decentralized waste water treatment in urban Malang, Indonesia. Process. 2019;7(4):1–12. https://doi.org/10.3390/pr7040184
- 64. Mahenge AS, Malabeja MD. Performance analysis of anaerobic baffled reactor and constructed wetland for community-based wastewater in Dar Es Salam, Tanzania. Int J Adv Eng Res Sci. 2018;5(7):231–39. https://doi.org/10.22161/ijaers.5.7.30
- 65. Malinowski P, Dabrowski W. Modeling of organic substances and ammonia nitrogen removal in vertical flow constructed wetlands. J Ecol Eng. 2020;21(1):231–37. https://doi.org/10.12911/22998993/115391
- 66. Hu Y, Zhao Y, Rymszewicz A. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland. Sci Total Environ. 2014;470–471:1197–204. https://doi.org/10.1016/j.scitotenv.2013.10.100
- 67. Wu, Wang JP, Duan EG, Feng YF, Wan ZY, Wu YX, et al. Study on the preparation of granular alum sludge adsorbent for phosphorus removal. Water Sci Technol. 2019;79(12):2378–86. https://doi.org/10.2166/WST.2019.241
Downloads
Download data is not yet available.