Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Integrating nanotechnology into seed production and management for future ready agriculture

DOI
https://doi.org/10.14719/pst.7116
Submitted
7 January 2025
Published
19-06-2025 — Updated on 01-07-2025
Versions

Abstract

Food and agriculture are directly related to human life. Traditional farming methods restrict the utilization of available farmlands up to their potential. Nanotechnology has emerged as one of the most promising solutions for overcoming the shortcomings of traditional agricultural practices. At every stage of agriculture (starting from seed germination until the resultant seed quality), nanotechnology promises to improve crop productivity and quality. The application of nanoparticles with unique physicochemical and biological properties in agriculture to improve seed germination is the initial step in increasing crop yield. Recently, nanotechnology has been recognized as a promising and emerging approach for enhancing crop productivity through seed treatment for improved germination and seedling vigour, foliar application for improved nutrient uptake by plants and nanofertilizers for balanced crop nutrition with reduced chemical inputs and environmental impacts. Additionally, nanoherbicides and nanoinsecticides facilitates targeted and efficient pest and weed control that reduces chemical residues in the ecosystem and improves crop health. Further, applying various nanosensors in the early detection of plant diseases and nutrient deficiencies helps in timely intervention for improved crop management practices. Thus, the aim of this review article is to provide a comprehensive overview of the role of nanotechnology in seed quality enhancement of different crops, highlighting its potential to address the food security issues in an eco-friendly and sustainable manner.

References

  1. 1. Miron IJ, Linares C, Diaz J. The influence of climate change on food production and food safety. Environ Res. 2023;216:114674. https://doi.org/10.1016/j.envres.2022.114674
  2. 2. Food and Agriculture Organization of the United Nations [Internet]. Food and Agriculture data (FAOSTAT); 2025 [cited 2025 Jan 6]. Available from: https://www.fao.org/faostat/en/#home
  3. 3. Weissmann EA, Raja K, Gupta A, Patel M, Buehler A. Seed quality enhancement. In: Dadlani M, editor. Malavika Dadlani; 2023. p. 391. https://doi.org/10.1007/978-981-19-5888-5_16
  4. 4. Khangura R, Ferris D, Wagg C, Bowyer J. Regenerative agriculture- A literature review on the practices and mechanisms used to improve soil health. Sustain. 2023;15(3):2338. https://doi.org/10.3390/su15032338
  5. 5. Srivastava S, Bhargava A. Green nanoparticles: the future of nanobiotechnology. Singapore: Springer. 2022;1–13. https://doi.org/10.1007/978-981-16-7106-7_1
  6. 6. Joudeh N, Linke D. Nanoparticle classification, physicochemical properties, characterization and applications: A comprehensive review for biologists. J Nanobiotech. 2022;20(1):262. https://doi.org/10.1186/s12951-022-01477-8
  7. 7. Humbal A, Pathak B. Application of nanotechnology in plant growth and diseases management: Tool for sustainable agriculture. In: Agricultural and environmental nanotechnology: Novel technologies and their ecological impact. Singapore: Springer Nature Singapore; 2023. p. 145–68. https://doi.org/10.1007/978-981-19-5454-2_6
  8. 8. Zain M, Ma H, Rahman SU, Nuruzzaman M, Chaudhary S, Azeem I, et al. Nanotechnology in precision agriculture: Advancing towards sustainable crop production. Plant Physiol Biochem. 2024;206:108244. https://doi.org/10.1016/j.plaphy.2023.108244
  9. 9. Babu HK, Devarumath RM, Thorat AS, Nerkar G, Purankar M, Penna S. Plant genetic engineering: Nanomaterials-based delivery of genetic material. In: Innovative methods in horticultural crop improvement: Molecular tools, nanotechnology and artificial intelligence. Cham: Springer International Publishing; 2024. p. 153–84. https://doi.org/10.1007/978-3-031-61081-3_6
  10. 10. Vega-Fernandez L, Quesada-Grosso R, Vinas M, Irias-Mata A, Montes de Oca-Vasquez G, Vega-Baudrit J, et al. Current applications and future perspectives of nanotechnology for the preservation and enhancement of grain and seed traits. Nanomaterials for Environmental and Agricultural Sectors. 2023. 191–220. https://doi.org/10.1007/978-981-99-2874-3_10
  11. 11. Bora S, Pooja D, Kulhari H. Introduction of nanoscience and nanotechnology. In: Nanotechnology-based delivery of phytoconstituents and cosmeceuticals. Singapore: Springer Nature Singapore; 2024. p. 1–38. https://doi.org/10.1007/978-981-99-5314-1_1
  12. 12. Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev. 2020;13(3):223–45. https://doi.org/10.1080/17518253.2020.1802517
  13. 13. Hachem K, Ansari MJ, Saleh RO, Kzar HH, Al-Gazally ME, Altimari US, et al. Methods of chemical synthesis in the synthesis of nanomaterial and nanoparticles by the chemical deposition method: a review. BioNanoSci. 2022;12(3):1032–57. https://doi.org/10.1007/s12668-022-00996-w
  14. 14. Bhardwaj P, Singh B, Behera SP. Green approaches for nanoparticle synthesis: emerging trends. Nanomater. 2021;167–93. https://doi.org/10.1016/B978-0-12-822401-4.00015-5
  15. 15. Devi L, Kushwaha P, Ansari TM, Kumar A, Rao A. Recent trends in biologically synthesized metal nanoparticles and their biomedical applications: A review. Biol Trace Elem Res. 2024;202(7):3383–99. https://doi.org/10.1007/s12011-023-03920-9
  16. 16. Jiang Z, Li L, Huang H, He W, Ming W. Progress in laser ablation and biological synthesis processes: “Top-Down” and “Bottom-Up” approaches for the green synthesis of Au/Ag nanoparticles. Int J Mol Sci. 2022;23(23):14658. https://doi.org/10.3390/ijms232314658
  17. 17. Muhammad M, Ahmad J, Basit A, Khan A, Mohamed HI, Ullah I, et al. Biogenic synthesis of nanoparticles mediated by microorganisms is a novel approach for creating antimicrobial agents. In: Nanofungicides. Elsevier. 2024. p. 23–50. https://doi.org/10.1016/B978-0-323-95305-4.00002-9
  18. 18. Rai M, Bonde S, Golinska P, Trzcinska-Wencel J, Gade A, Abd-Elsalam KA, et al. Fusarium as a novel fungus for the synthesis of nanoparticles: mechanism and applications. J Fungi. 2021;7(2):139. https://doi.org/10.3390/jof7020139
  19. 19. Jagadeesh P, Rangappa SM, Siengchin S. Advanced characterization techniques for nanostructured materials in biomedical applications. Adv Ind Eng Polym Res. 2024;7(1):122–43. https://doi.org/10.1016/j.aiepr.2023.03.002
  20. 20. Hartmann M, Six J. Soil structure and microbiome functions in agroecosystems. Nat Rev Earth Environ. 2023;4(1):4–18. https://doi.org/10.1038/s43017-022-00366-w
  21. 21. Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, et al. Soil and mineral nutrients in plant health: A prospective study of iron and phosphorus in the growth and development of plants. Curr Issues Mol Biol. 2024;46(6):5194–222. https://doi.org/10.3390/cimb46060312
  22. 22. Grigorieva E, Livenets A, Stelmakh E. Adaptation of agriculture to climate change: A scoping review. Climate. 2023;11(10):202. https://doi.org/10.3390/cli11100202
  23. 23. Eker F, Duman H, Akdasci E, Bolat E, Sarıtas S, Karav S, et al. A comprehensive review of nanoparticles: from classification to application and toxicity. Molecules. 2024;29(15):3482. https://doi.org/10.3390/molecules29153482
  24. 24. Haydar MS, Ghosh D, Roy S. Slow and controlled release nanofertilizers as an efficient tool for sustainable agriculture: recent understanding and concerns. Plant Nano Biol. 2024;100058. https://doi.org/10.1016/j.plana.2024.100058
  25. 25. Mustafa M, Azam M, Bhatti HN, Khan A, Zafar L, Abbasi AMR. Green fabrication of copper nano-fertilizer for enhanced crop yield in cowpea cultivar: A sustainable approach. Biocatal Agric Biotechnol. 2024;56:102994. https://doi.org/10.1016/https://doi.org/10.1016/j.bcab.2023.102994
  26. 26. Helal MI, El-Mogy MM, Khater HA, Fathy MA, Ibrahim FE, Li YC, et al. A controlled release nanofertilizer improves tomato growth and minimizes nitrogen consumption. Plants. 2023;12(10):1978. https://doi.org/10.3390/plants12101978
  27. 27. Subramani T, Velmurugan A, Bommayasamy N, Swarnam TP, Ramakrishna Y, Jaisankar I, et al. Effect of nano urea on growth, yield and nutrient use efficiency of okra under tropical island ecosystem. Int J Agric Sci. 2023;19:134–39. https://doi.org/10.15740/HAS/IJAS/19.RAAAHSTSE-2023/134-139
  28. 28. Li M, Zhang P, Guo Z, Cao W, Gao L, Li Y, et al. Molybdenum nanofertilizer boosts biological nitrogen fixation and yield of soybean through delaying nodule senescence and nutrition enhancement. ACS Nano. 2023;17(15):14761–74. https://doi.org/10.1021/acsnano.3c02783
  29. 29. Beig B, Niazi MB, Jahan Z, Haider G, Zia M, Shah GA, et al. Development and testing of zinc sulfate and zinc oxide nanoparticle-coated urea fertilizer to improve N and Zn use efficiency. Front Plant Sci. 2023;13:1058219. https://doi.org/10.3389/fpls.2022.1058219
  30. 30. Li S, Fei Y, Wang C, Sun J, Liang J, Feng Y, et al. Fe oxides simultaneously improve stability of Cd and carbon in paddy soil: The underlying influence at aggregate level. J Hazard Mater. 2024;477:135392. https://doi.org/10.1016/j.jhazmat.2024.135392
  31. 31. Agri U, Chaudhary P, Sharma A, Kukreti B. Physiological response of maize plants and its rhizospheric microbiome under the influence of potential bioinoculants and nanochitosan. Plant Soil. 2022;474:451–68. https://doi.org/10.1007/s11104-022-05351-2
  32. 32. Eevera T, Kumaran S, Djanaguiraman M, Thirumaran T, Le QH, Pugazhendhi A. Unleashing the potential of nanoparticles on seed treatment and enhancement for sustainable farming. Environ Res. 2023;236:116849. https://doi.org/10.1016/j.envres.2023.116849
  33. 33. Sembada AA, Maki S, Faizal A, Fukuhara T, Suzuki T, Lenggoro IW. The role of silica nanoparticles in promoting the germination of tomato (Solanum lycopersicum) seeds. Nanomater. 2023;13(14):2110. https://doi.org/10.3390/nano13142110
  34. 34. Mishra D, Chitara MK, Negi S, Singh PJ, Kumar R, Chaturvedi P. Biosynthesis of zinc oxide nanoparticles via leaf extracts of Catharanthus roseus (L.) G. Don and their application in improving seed germination potential and seedling vigor of Eleusine coracana (L.) Gaertn. Adv Agric. 2023;2023(1):7412714. https://doi.org/10.1155/2023/7412714
  35. 35. Feng Y, Kreslavski VD, Shmarev AN, Ivanov AA, Zharmukhamedov SK, Kosobryukhov A, et al. Effects of iron oxide nanoparticles (Fe3O4) on growth, photosynthesis, antioxidant activity and distribution of mineral elements in wheat (Triticum aestivum) plants. Plants. 2022;11(14):1894. https://doi.org/10.3390/plants11141894
  36. 36. Acharya P, Jayaprakasha GK, Crosby KM, Jifon JL, Patil BS. Nanoparticle-mediated seed priming improves germination, growth, yield and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Sci Rep. 2020;10(1):5037. https://doi.org/10.1038/s41598-020-61696-7
  37. 37. Mazhar WM, Ishtiaq M, Maqbool M, Mahmoud EA, Ullah F, Elansary HO. Optimizing bitter gourd (Momordica charantia L.) performance: exploring the impact of varied seed priming durations and zinc oxide nanoparticle concentrations on germination, growth, phytochemical attributes and agronomic outcomes. Cogent Food Agric. 2024;10(1):2313052. https://doi.org/10.1080/23311932.2024.2313052
  38. 38. Tamilarasan C, Raja K. Influence of nano formulation on augmenting the seed quality in groundnut (Arachis hypogaea L.). Legume Res. 2024;47(1):14–19.
  39. 39. Zhang MX, Zhao LY, He YY, Hu JP, Hu GW, Zhu Y, et al. Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.). Bioresour Technol. 2024;391:129987. https://doi.org/10.1016/j.biortech.2023.129987
  40. 40. Mazhar MW, Ishtiaq M, Maqbool M, Ajaib M, Hussain I, Hussain T, et al. Synergistic application of calcium oxide nanoparticles and farmyard manure induces cadmium tolerance in mung bean (Vigna radiata L.) by influencing physiological and biochemical parameters. PLoS One. 2023;18(3):0282531. https://doi.org/10.1371/journal.pone.0282531
  41. 41. Sarkhosh S, Kahrizi D, Darvishi E, Tourang M, Haghighi-Mood S, Vahedi P, et al. Effect of zinc oxide nanoparticles (ZnO-NPs) on seed germination characteristics in two Brassicaceae family species: Camelina sativa and Brassica napus L. J Nanomater. 2022;2022(1):1892759. https://doi.org/10.1155/2022/1892759
  42. 42. Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiol Biochem. 2021;160:257–68. https://doi.org/10.1016/j.plaphy.2021.01.028
  43. 43. Gandhi N, Shruthi Y, Sirisha G, Anusha CR. Facile and eco-friendly method for synthesis of calcium oxide (CaO) nanoparticles and its potential application in agriculture. Saudi J Life Sci. 2021;6:89–103. 10.36348/sjls.2021.v06i05.003
  44. 44. Itroutwar PD, Govindaraju K, Tamilselvan S, Kannan M, Raja K, Subramanian KS. Seaweed-based biogenic ZnO nanoparticles for improving agro-morphological characteristics of rice (Oryza sativa L.). J Plant Growth Regul. 2020;39:717–28. https://doi.org/10.1007/s00344-019-10012-3
  45. 45. Abinaya K, Raja K, Raja K, Moorthy SP, Senthil A, Chandrakumar K. Impact of green carbon dot nanoparticles on seedling emergence, crop growth and seed yield in black gram (Vigna mungo L. Hepper). Sci Rep. 2024;14(1):23783. https://doi.org/10.1038/s41598-024-75366-5
  46. 46. Liang L, Wong SC, Lisak G. Effects of plastic-derived carbon dots on germination and growth of pea (Pisum sativum) via seed nano-priming. Chemosphere. 2023;316:137868. https://doi.org/10.1016/j.chemosphere.2023.137868
  47. 47. Garcia-Locascio E, Valenzuela EI, Cervantes-Aviles P. Selenium nanoparticles and maize: understanding the impact on seed germination, growth and nutrient interactions. Plant Nano Biol. 2025;100144. https://doi.org/10.1016/j.plana.2025.100144
  48. 48. Joy SJ, Kumar TP, Kalaivanan NS, Poonguzhali S, Vidya R, Babu DR. Antibacterial, cytotoxicity and seed germination studies of strontium hexaferrite nanoparticles. Inorg Chem Commun. 2025;174:113895. https://doi.org/10.1016/j.inoche.2025.113895
  49. 49. Ngwenya SC, Sithole NJ, Mthiyane DM, Jobe MC, Babalola OO, Ayangbenro AS, et al. Effects of green-synthesised copper oxide–zinc oxide hybrid nanoparticles on antifungal activity and phytotoxicity of aflatoxin B1 in maize (Zea mays L.) seed germination. Agron. 2025;15(2):313. https://doi.org/10.3390/agronomy15020313
  50. 50. Zandalinas SI, Sengupta S, Fritschi FB, Azad RK, Nechushtai R, Mittler R. The impact of multifactorial stress combination on plant growth and survival. New Phytol. 2021;230(3):1034–48. https://doi.org/10.1111/nph.17232
  51. 51. Appu M, Ramalingam P, Sathiyanarayanan A, Huang J. An overview of plant defense-related enzymes responses to biotic stresses. Plant Gene. 2021;27:100302. https://doi.org/10.1016/j.plgene.2021.100302
  52. 52. Mazumder M, Roy S, Parvin S, Das B, Sarkar AK. Nanotechnological approaches against fungal pathogens of economically important crop plants. In: Modern nanotechnology: Volume 1: Environmental sustainability and remediation. Cham: Springer International Publishing; 2023. p. 559–84 https://doi.org/10.1007/978-3-031-31111-6_22
  53. 53. Shanmugam H, Narayanasamy S, Uthandi S. Plant growth-promoting microorganisms as phytoprotectants and suitable nano delivery systems. In: Microbial biocontrol: Molecular perspective in plant disease management. Singapore: Springer Nature Singapore; 2023. p. 157–85. https://doi.org/10.1007/978-981-99-3947-3_8
  54. 54. Tripathi D, Singh M, Pandey-Rai S. Crosstalk of nanoparticles and phytohormones regulate plant growth and metabolism under abiotic and biotic stress. Plant Stress. 2022;6:100107. https://doi.org/10.1016/j.stress.2022.100107
  55. 55. Nargund VB, Vinay JU, Basavesha KN, Chikkanna S, Jahagirdar S, Patil RR. Green nanotechnology and its application in plant disease management. Emerg Trends Plant Pathol. 2021;591–609. https://doi.org/10.1007/978-981-15-6275-4_26
  56. 56. Singh RP, Handa R, Manchanda G. Nanoparticles in sustainable agriculture: An emerging opportunity. J Control Release. 2021;329:1234–48. https://doi.org/10.1016/j.jconrel.2020.10.051
  57. 57. Immanuel SJ, Iswareya LV. Nanoparticles: Plant protective agents against pathogenic microbes and pests. In: Nanotechnology for sustainable agriculture. Apple Academic Press; 2023. p. 129–62 https://doi.org/10.1201/9781003333128-9
  58. 58. Jasrotia P, Nagpal M, Mishra CN, Sharma AK, Kumar S, Kamble U, et al. Nanomaterials for postharvest management of insect pests: Current state and future perspectives. Front Nanotechnol. 2022;3:811056. https://doi.org/10.3389/fnano.2021.811056
  59. 59. Singh A, Rajput VD, Varshney A, Sharma R, Ghazaryan K, Minkina T, et al. Revolutionizing crop production: Nanoscale wonders-current applications, advances and future frontiers. Egypt J Soil Sci. 2024;64(1):221‒58. https://doi.org/10.21608/ejss.2023.246354.1684
  60. 60. Elmer WH, Zuverza-Mena N, Triplett LR, Roberts EL, Silady RA, White JC. Foliar application of copper oxide nanoparticles suppresses Fusarium wilt development on chrysanthemum. Environ Sci Technol. 2021;55(15):10805–10. https://doi.org/10.1021/acs.est.1c02323
  61. 61. Vijayan S, Divya K, Varghese S, Jisha MS. Antifungal efficacy of chitosan-stabilized biogenic silver nanoparticles against pathogenic Candida spp. isolated from human. BioNanoSci. 2020;10:974–82. https://doi.org/10.1007/s12668-020-00781-7
  62. 62. Darwesh OM, Elshahawy IE. Silver nanoparticles inactivate sclerotial formation in controlling white rot disease in onion and garlic caused by the soil borne fungus Stromatinia cepivora. Eur J Plant Pathol. 2021;160(4):917–34. https://doi.org/10.1007/s10658-021-02296-7
  63. 63. Peng F, Wang X, Zhang W, Shi X, Cheng C, Hou W, et al. Nanopesticide formulation from pyraclostrobin and graphene oxide as a nanocarrier and application in controlling plant fungal pathogens. Nanomater. 2022;12(7):1112. https://doi.org/10.3390/nano12071112
  64. 64. El-Gazzar N, Ismail AM. The potential use of titanium, silver and selenium nanoparticles in controlling leaf blight of tomato caused by Alternaria alternata. Biocatal Agric Biotechnol. 2020;27:101708. https://doi.org/10.1016/j.bcab.2020.101708
  65. 65. Lashin I, Hasanin M, Hassan SA, Hashem AH. Green biosynthesis of zinc and selenium oxide nanoparticles using callus extract of Ziziphus spina-christi: characterization, antimicrobial and antioxidant activity. Biomass Convers Biorefin. 2023;13(11):10133–46. https://doi.org/10.1007/s13399-021-01873-4
  66. 66. Riseh RS, Hassanisaadi M, Vatankhah M, Soroush F, Varma RS. Nano/microencapsulation of plant biocontrol agents by chitosan, alginate and other important biopolymers as a novel strategy for alleviating plant biotic stresses. Int J Biol Macromol. 2022;222:1589–604. https://doi.org/10.1016/j.ijbiomac.2022.09.278
  67. 67. Griesche C, Baeumner AJ. Biosensors to support sustainable agriculture and food safety. TrAC Trends Anal Chem. 2020;128:115906. https://doi.org/10.1016/j.trac.2020.115906
  68. 68. Kulabhusan PK, Tripathi A, Kant K. Gold nanoparticles and plant pathogens: An overview and prospective for biosensing in forestry. Sensors. 2022;22(3):1259. https://doi.org/10.3390/s22031259
  69. 69. Ali Q, Zheng H, Rao MJ, Ali M, Hussain A, Saleem MH, et al. Advances, limitations and prospects of biosensing technology for detecting phytopathogenic bacteria. Chemosphere. 2022;296:133773. https://doi.org/10.1016/j.chemosphere.2022.133773
  70. 70. Mawale KS, Nandini B, Giridhar P. Copper and silver nanoparticle seed priming and foliar spray modulate plant growth and thrips infestation in Capsicum spp. ACS Omega. 2024;9(3):3430–44. https://doi.org/10.1021/acsomega.3c06961
  71. 71. Fetyan NA, Essa TA, Salem TM, Taha AA, Elgobashy SF, Tharwat NA, et al. Promising eco-friendly nanoparticles for managing bottom rot disease in lettuce (Lactuca sativa var. longifolia). Microbiol Res. 2024;15(1):196–212. https://doi.org/10.3390/microbiolres15010014
  72. 72. Alotaibi MO, Alotaibi NM, Ghoneim AM, ul Ain N, Irshad MA, Nawaz R, et al. Effect of green synthesized cerium oxide nanoparticles on fungal disease of wheat plants: A field study. Chemosphere. 2023;339:139731. https://doi.org/10.1016/j.chemosphere.2023.139731
  73. 73. Lv X, Yuan M, Pei Y, Liu C, Wang X, Wu L, et al. The enhancement of antiviral activity of chloroinconazide by alginate-based nanogel and its plant growth promotion effect. J Agric Food Chem. 2021;69(17):4992–5002. https://doi.org/10.1021/acs.jafc.1c00941
  74. 74. El-Ashry RM, El-Saadony MT, El-Sobki AE, El-Tahan AM, Al-Otaibi S, El-Shehawi AM, et al. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J Biol Sci. 2022;29(2):920–32. https://doi.org/10.1016/j.sjbs.2021.10.013
  75. 75. Jameel M, Shoeb M, Khan MT, Ullah R, Mobin M, Farooqi MK, et al. Enhanced insecticidal activity of thiamethoxam by zinc oxide nanoparticles: A novel nanotechnology approach for pest control. ACS Omega. 2020;5(3):1607–15. https://doi.org/10.1021/acsomega.9b03680
  76. 76. El-Saadony MT, Abd El-Hack ME, Taha AE, Fouda MM, Ajarem JS, Maodaa SN, et al. Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomater. 2020;10(3):587. https://doi.org/10.3390/nano10030587
  77. 77. Abou El-Nasr MK, Nasser MA, Ebrahim M, Samaan MS. Alleviating biotic stress of powdery mildew in mango cv. Keitt by Sulfur nanoparticles and assessing their effect on productivity and disease severity. Sci Rep. 2025;15(1):5537. https://doi.org/10.1038/s41598-025-88282-z
  78. 78. Kamal A, Yang J, Batool M, Ara U, Khattak WA, Touhami D, et al. Green synthesis of zinc oxide nanoparticles, characterization and its applications in inducing disease resistance against spot blotch disease in wheat by enhancing its physiological and biochemical parameters. J Crop Health. 2025;77(1):1–2. https://doi.org/10.1007/s10343-024-01088-3
  79. 79. Guo Z, Zhang T, Chen Z, Niu J, Rasel M, Luo E, et al. Multiple pathways revealing the CeO2 nanoparticle-biostimulant-based “Stress Training” strategy for enhanced Medicago sativa L. antiviral capability. ACS Nano. 2025;19(8):7677‒89. https://doi.org/10.1021/acsnano.4c10637
  80. 80. Ghosh A, Majumdar D, Biswas H, Chowdhury A, Podder S. Nano-biopesticide formulation comprising of silver nanoparticles anchored to Ocimum sanctum: A sustainable approach to pest control in jute farming. Sci Rep. 2025;15(1):3414. https://doi.org/10.1038/s41598-025-87727-9
  81. 81. Jha UC, Priya M, Naik YD, Nayyar H, Thudi M, Punnuri SM, et al. Major abiotic stresses on quality parameters in grain legumes: impacts and various strategies for improving quality traits. Environ Exp Bot. 2024;105978. https://doi.org/10.1016/j.envexpbot.2024.105978
  82. 82. Mishra N, Jiang C, Chen L, Paul A, Chatterjee A, Shen G. Achieving abiotic stress tolerance in plants through antioxidative defense mechanisms. Front Plant Sci. 2023;14:1110622. https://doi.org/10.3389/fpls.2023.111062
  83. 83. Alabdallah NM, Hasan MM. Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi J Biol Sci. 2021;28(10):5631–39. https://doi.org/10.1016/j.sjbs.2021.05.081
  84. 84. Chen Z, Han M, Guo Z, Feng Y, Guo Y, Yan X. An integration of physiology, transcriptomics and proteomics reveals carbon and nitrogen metabolism responses in alfalfa (Medicago sativa L.) exposed to titanium dioxide nanparticles. J Hazard Mater. 2024;134851. https://doi.org/10.1016/j.jhazmat.2024.134851
  85. 85. Rehman A, Khan S, Sun F, Peng Z, Feng K, Wang N, et al. Exploring the nano-wonders: unveiling the role of nanoparticles in enhancing salinity and drought tolerance in plants. Front Plant Sci. 2024;14:1324176. https://doi.org/10.3389/fpls.2023.1324176
  86. 86. Azadi M, Moghaddam SS, Rahimi A, Pourakbar L, Popovic-Djordjevic J. Biosynthesized silver nanoparticles ameliorate yield, leaf photosynthetic pigments and essential oil composition of garden thyme (Thymus vulgaris L.) exposed to UV-B stress. J Environ Chem Eng. 2021;9(5):105919. https://doi.org/10.1016/j.jece.2021.105919
  87. 87. Afrouz M, Ahmadi-Nouraldinvand F, Elias SG, Alebrahim MT, Tseng TM, Zahedian H. Green synthesis of spermine coated iron nanoparticles and its effect on biochemical properties of Rosmarinus officinalis. Sci Rep. 2023;13(1):775. https://doi.org/10.1038/s41598-023-27844-5
  88. 88. Wang A, Li J, Al-Huqail AA, Al-Harbi MS, Ali EF, Wang J, et al. Mechanisms of chitosan nanoparticles in the regulation of cold stress resistance in banana plants. Nanomaterials. 2021;11(10):2670. https://doi.org/10.3390/nano11102670
  89. 89. Gohari G, Farhadi H, Panahirad S, Zareei E, Labib P, Jafari H, et al. Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. Int J Biol Macromol. 2023;224:893–907. https://doi.org/10.1016/j.ijbiomac.2022.10.175
  90. 90. Behl K, Jaiswal P, Pabbi S. Recent advances in microbial and nano-formulations for effective delivery and agriculture sustainability. Biocatal Agric Biotechnol. 2024;103180. https://doi.org/10.1016/j.bcab.2024.103180
  91. 91. Vyas TK, More B, Mehta MP. Improving stress resilience in plants by nanoparticles. In: Improving stress resilience in plants. Academic Press. 2024;73–96. https://doi.org/10.1016/B978-0-443-18927-2.00023-6
  92. 92. Karnwal A, Dohroo A, Malik T. Unveiling the potential of bioinoculants and nanoparticles in sustainable agriculture for enhanced plant growth and food security. Biomed Res Int. 2023;2023(1):6911851. https://doi.org/10.1155/2023/6911851
  93. 93. Noman M, Ahmed T, Shahid M, Niazi MBK, Qasim M, Kouadri F, et al. Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicol Environ Saf. 2021;217:112264. https://doi.org/10.1016/j.ecoenv.2021.112264
  94. 94. Sehrish AK, Ahmad S, Alomrani SO, Ahmad A, Al-Ghanim KA, Alshehri MA, et al. Nutrient strengthening and lead alleviation in Brassica napus L. by foliar ZnO and TiO2-NPs modulating antioxidant system, improving photosynthetic efficiency and reducing lead uptake. Sci Rep. 2024;14(1):19437. https://doi.org/10.1038/s41598-024-70204-0
  95. 95. Ahmed T, Noman M, Shahid M, Shahid MS, Li B. Antibacterial potential of green magnesium oxide nanoparticles against rice pathogen Acidovorax oryzae. Mater Lett. 2021;282:128839. https://doi.org/10.1016/j.matlet.2020.128839
  96. 96. Huang Q, Ayyaz A, Farooq MA, Zhang K, Chen W, Hannan F, et al. Silicon dioxide nanoparticles enhance plant growth, photosynthetic performance and antioxidants defence machinery through suppressing chromium uptake in Brassica napus L. Environ Pollut. 2024;342:123013. https://doi.org/10.1016/j.envpol.2023.123013
  97. 97. Dinler BS, Cetinkaya H, Koc FN, Gul V, Sefaoglu F. Effects of titanium dioxide nanoparticles against salt and heat stress in safflower cultivars. Acta Bot Bras. 2024;38:20230136. https://doi.org/10.1590/1677-941x-abb-2023-0136
  98. 98. Al-Karaawi MDK, Al-Juthery HWA. Effect of NPK, NPK organic fertilizers and spraying nano-vanadium and nano-selenium on the growth and yield of rice. In: IOP Conf Ser Earth Environ Sci; 2022. 1060(1):012035. https://doi.org/10.1088/1755-1315/1060/1/012035
  99. 99. Afshari M, Pazoki A, Sadeghipour O. Foliar-applied silicon and its nanoparticles stimulate physio-chemical changes to improve growth, yield and active constituents of coriander (Coriandrum sativum L.) essential oil under different irrigation regimes. Silicon. 2021;1‒12. https://doi.org/10.21203/rs.3.rs-176146/v1
  100. 100. Badawy SA, Zayed BA, Bassiouni SM, Mahdi AH, Majrashi A, Ali EF, et al. Influence of nano silicon and nano selenium on root characters, growth, ion selectivity, yield and yield components of rice (Oryza sativa L.) under salinity conditions. Plants. 2021;10(8):1657. https://doi.org/10.3390/plants10081657
  101. 101. Lian J, Zhao L, Wu J, Xiong H, Bao Y, Zeb A, et al. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere. 2020;239:124794. https://doi.org/10.1016/j.chemosphere.2019.124794
  102. 102. Khan I, Raza MA, Awan SA, Shah GA, Rizwan M, Ali B, et al. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiol Biochem. 2020;156:221–32. https://doi.org/10.1016/j.plaphy.2020.09.018
  103. 103. Ren Y, Li X, Cheng B, Yue L, Cao X, Wang C, et al. Carbon dot-embedded hydrogels promote maize germination and growth under drought stress. Environ Sci: Nano. 2024;11(5):2239–48. https://doi.org/10.1039/D4EN00070F
  104. 104. Abdulfatah HF, Abdulrahman MF, Naji EF. Green synthesis of iron nanoparticles to promote seed germination of Zea mays under salinity condition. Heliyon. 2025;11(2):e41823. https://doi.org/10.1016/j.heliyon.2025.e41823
  105. 105. Zhuang D, Li HB, Wang Y, Zhou D, Zhao L. Nanoparticle-elicited eustress intensifies cucumber plant adaptation to water deficit. Environ Sci Tech. 2025;59(7):3613‒23. https://doi.org/10.1021/acs.est.4c13531
  106. 106. Abinaya K, Raja K, Raja K, Moorthy SP, Senthil A, Chandrakumar K. Enhancing drought tolerance in black gram (Vigna mungo L. Hepper) through physiological and biochemical modulation by peanut shell carbon dots. Sci Rep. 2025;15(1):5475. https://doi.org/10.1038/s41598-025-89610-z
  107. 107. Wang ZP, Zhang ZB, Zheng DY, Zhang TT, Li XL, Zhang C, et al. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. J Integr Plant Biol. 2022;64(6):1145–56. https://doi.org/10.1111/jipb.13263
  108. 108. Das G, Dutta P. Effect of nanopriming with zinc oxide and silver nanoparticles on storage of chickpea seeds and management of wilt disease. J Agric Sci Technol. 2022;24(1):213–26.
  109. 109. Singh N, Bhuker A, Pandey V, Punia H, Sourabh, Singh B, et al. nano-enhanced storage of American cotton using metal-oxide nanoparticles for improving seed quality traits. Sci Rep. 2024;14(1):24445. https://doi.org/10.1038/s41598-024-71179-8

Downloads

Download data is not yet available.