Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Senna spectabilis (DC.) H. S. Irwin & Barneby invasion in India: Impacts, challenges and management - A review

DOI
https://doi.org/10.14719/pst.7138
Submitted
8 January 2025
Published
20-08-2025 — Updated on 16-09-2025
Versions

Abstract

Invasive species present significant risks to the local ecosystems, disrupting their biodiversity and functioning. Senna spectabilis, initially introduced for decorative purposes, has emerged as a widespread invader, particularly in regions such as India. This review delves into the ecological and biological dimensions of Senna spectabilis invasion, its effects on native plant and animal life, and approaches for managing and eradicating it. Rapid growth, abundant seed production, and allelopathic characteristics enhance its invasiveness, allowing it to outcompete indigenous species and modify ecosystem dynamics. Senna spectabilis invasion results in habitat alteration, displacement of local flora and fauna, and changes in trophic interactions, impacting ecosystem stability. Various methods, including mechanical, chemical, biological, and cultural controls, are utilized to combat Senna spectabilis infestations, albeit with varying degrees of success. Eradication endeavors encompass techniques like complete uprooting, girdling, and debarking, complemented by efforts to restore and rehabilitate affected areas through native vegetation reinstatement, habitat enhancement, and soil restoration. Community involvement and international cooperation are crucial for addressing the cross-border spread of Senna spectabilis and mitigating its adverse effects on biodiversity conservation. This review underscores the necessity for cohesive action, encompassing assessment, surveillance, strategy formulation, and global collaboration, to effectively counter the proliferation of Senna spectabilis and safeguard indigenous ecosystems.

Keywords: Distribution; Invasive Alien Species; Senna spectabilis; Restoration and Rehabilitation

References

  1. 1. IUCN. Groom A. Senna spectabilis: The IUCN red list of threatened species 2012: E.T19892105A20141165. IUCN Red List of Threatened Species. IUCN; 2010 https://doi.org/10.2305/IUCN.UK.2012.RLTS.T19892105A20141165.en
  2. 2. Kumar A, Prasad S. Threats of invasive alien plant species. Int Res J Manag Sci Technol. 2014;4:605–24.
  3. 3. Hobbs HA. Invasive species in a changing world. Island press; 2000
  4. 4. Raizada P, Raghubanshi AS, Singh JS. Impact of invasive alien plant species on soil processes: A review. Proc Natl Acad Sci India Sect B Biol Sci. 2008;78(PART 4):288–98.
  5. 5. Vitousek PM, D'antonio CM, Loope LL, Rejmanek M, Westbrooks R. Introduced species: a significant component of human-caused global change. N Z J Ecol. 1997;1–6.
  6. 6. Rejmánek M, Richardson DM. Trees and shrubs as invasive alien species–2013 update of the global database. Divers Distrib. 2013;19(8):1093–94. https://doi.org/10.1111/ddi.12075
  7. 7. Rejmánek M, Richardson DM, Pyšek P. Plant invasions and invasibility of plant communities. In: van der Maarel E, Franklin J, editors. Vegetation ecology. John Wiley and Sons, Ltd; 2013. p. 387–424. https://doi.org/10.1002/97811184
  8. 52592.ch13
  9. 8. Gaertner M, Breeyen DA, Hui C, Richardson DM. Impacts of alien plant invasions on species richness in Mediterranean-type ecosystems: A meta-analysis. Prog Phys Geogr. 2009;33(3):319–38. https://doi.org/10.1177/0309
  10. 133309341607
  11. 9. Vilà M, Hulme PE, editors. Impact of biological invasions on ecosystem services. Cham: Springer; 2017. https://doi.org/10.1007/978-3-319-45121-3
  12. 10. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In: Díaz S, Settele J, Brondizio ES, Ngo HT, Guèze M,
  13. Agard J, editors. IPBES secretariat, Bonn, Germany; 2019 https://zenodo.org/records/3553579
  14. 11. Hejda M, Pyšek P, Jarošík V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J Ecol. 2009;97(3):393–403. https://doi.org/10.1111/j.1365-2745.2009.01480.x
  15. 12. Irwin HS, Barneby RC, editors. The American Cassiinae: A synoptical revision of Leguminosae tribe Cassieae subtribe Cassiinae in the new world. Volume 35, Issue 1. New York: Botanical Garden; 1982
  16. 13. Satyanarayana P, Gnanasekaran G. An exotic tree Species S. spectabilis (DC.) Irwin & Barneby (Caesalpiniaceae) naturalized in Tamil Nadu and Kerala. Indian J For. 2013 Sep 18;36(2):243–46. https://doi.org/10.54207/bsmps1000-
  17. 2013-fbbsv3
  18. 14. Garden MB. Tropicos database. St. Louis, Missouri, USA: Missouri Botanical Garden [Internet]; 2016
  19. 15. Harilal K. Impact of invasive alien plants on understorey vegetation in Tholpetty range of Wayanad Wildlife Sanctuary (Doctoral dissertation, Department of Natural Resource Management, College of Forestry, Vellanikkara); 2019
  20. 16. Anoop NR, Sen S, Vinayan PA, Ganesh T. Native mammals disperse the highly invasive Senna spectabilis in the Western Ghats, India. Biotropica. 2022;54(6):1310–14. https://doi.org/10.1111/btp.12996
  21. 17. Lukosi N. < News> A brief note on possible control of S. spectabilis, an invasive exotic tree at Mahale. Pan Africa News. 1997;4(2):18.
  22. 18. Vinayan PA, Anjankumar BN, Vishnu NM, Vaishnav K, Unais P, Ajayan PA, et al. Mapping the distribution and abundance of the exotic invasive species, Senna spectabilis in the Wayanad Wildlife Sanctuary, Kerala. Ferns-A society for nature conservation and Kerala Forests and Wildlife Department; 2020
  23. 19. Guariguata MR, Ostertag R. Neotropical secondary forest succession: Changes in structural and functional characteristics. For Ecol Manage. 2001;148(1-3):185–206. https://doi.org/10.1016/S0378-1127(00)00535-1
  24. 20. Harvey CA, Villanueva C, Esquivel H, Gómez R, Ibrahim M, Lopez M, et al. Conservation value of dispersed tree cover threatened by pasture management. For Ecol Manage. 2011;261(10):1664–74. https://doi.org/10.1016/j.foreco.
  25. 2010.11.004
  26. 21. Hartel T, Réti KO, Craioveanu C. Valuing scattered trees from wood-pastures by farmers in a traditional rural region of Eastern Europe. Agric Ecosyst Environ. 2017;236:304–11. https://doi.org/10.1016/j.agee.2016.11.019
  27. 22. Garba Y, Muhammad IR, Adnan AA. Common fodder fed by small ruminants of the agro-pastoral production system in semi-arid, Nigeria. Proceedings of the 1st International Conference on Drylands. pp. 72-76.
  28. 23. Duarte-Vargas JH, Melo O, Mora-Delgado J, Castañeda-Serrano R, Váquiro H. Pod production and dasometric variables, of the tree S. spectabilis (Fabaceae) in a tropical dry forest. Rev Biol Trop. 2021;69(1):218–30. https://doi.org/10.15517/rbt.v69i1.42792
  29. 24. McConkey KR, Prasad S, Corlett RT, Campos-Arceiz A, Brodie JF, Rogers H, et al. Seed dispersal in changing landscapes. Biol Conserv. 2012;146(1):1–13. https://doi.org/10.1016/j.biocon.2011.09.018
  30. 25. da Silva JS, de Araújo LO, de Paula MF, Fernandes GW. Invasion of S. spectabilis (Fabaceae) in neotropical seasonally dry forests: A review. Acta Bot Bras. 2019;33(2):320–28.
  31. 26. Guimarães JL, Santiago GS, Santos JS. Allelopathic effect of S. spectabilis (DC) Irwin & Barneby on the germination and initial development of Lactuca sativa. Braz J Biol. 2008;68(2):345–49.
  32. 27. Pontual ADS, Silva PRA, Paiva LAF, Napoleão TH, Coelho LCBB, Navarro DMDAF. Phytotoxic and insecticidal activities of S. spectabilis (Fabaceae) against weeds and agricultural pests. Rev Bras Farmacogn. 2011;21(4):635–40. https://doi.org/10.1590/S0102-695X2011005000107
  33. 28. Plaza PI, Speziale KL, Lambertucci SA. Rubbish dumps as invasive plant epicentres. Biol Invasions. 2018;20:2277–83. https://doi.org/10.1007/s10530-018-1708-1
  34. 29. Blumenthal DM. Interactions between resource availability and enemy release in plant invasion. Ecol Lett. 2006;9(7):887–95. https://doi.org/10.1111/j.1461-0248.2006.00934.x
  35. 30. Rai PK. Paradigm of plant invasion: Multifaceted review on sustainable management. Environ Monit Assess. 2015;187(759):1–30. https://doi.org/10.1007/s10661-015-4934-3
  36. 31. Zuppinger‐Dingley D, Flynn DF, De Deyn GB, Petermann JS, Schmid B. Plant selection and soil legacy enhance long‐term biodiversity effects. Ecol. 2016;97(4):918–28. https://doi.org/10.1890/15-0599.1
  37. 32. Chen BM, Li S, Liao HX, Peng SL. Do forest soil microbes have the potential to resist plant invasion? A case study in Dinghushan Biosphere Reserve (South China). Acta Oecol. 2017;81:1–9. https://doi.org/10.1016/j.actao.2017.04.003
  38. 33. Cheng F, Cheng Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front Plant Sci. 2015;6:1020. https://doi.org/10.3389/fpls.2015.01020
  39. 34. Latif S, Chiapusio G, Weston LA. Allelopathy and the role of allelochemicals in plant defence. In: Becard G, editors. How plants communicate with their biotic environment. Adv in Bot Res. Elsevier; 2017. p. 19–54. https://doi.org/10.
  40. 1016/bs.abr.2016.12.001
  41. 35. Weir TL, Park SW, Vivanco JM. Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol. 2004;7(4):472–79. https://doi.org/10.1016/j.pbi.2004.05.007
  42. 36. Rahal A, Kumar A, Singh V, Yadav B, Tiwari R, Chakraborty S, et al. Oxidative stress, prooxidants and antioxidants: the interplay. BioMed Res Int. 2014;2014(1):761264. https://doi.org/10.1155/2014/761264
  43. 37. Slingsby JA, Merow C, Aiello-Lammens M, Allsopp N, Hall S, Kilroy MH, et al. Intensifying postfire weather and biological invasion drive species loss in a Mediterranean-type biodiversity hotspot. Proc Natl Acad Sci USA.
  44. 2017;114(18):4697–702. https://doi.org/10.1073/pnas.1619014114
  45. 38. Vieira DL, Scariot A. Principles of natural regeneration of tropical dry forests for restoration. Restor Ecol. 2006;14(1):11–20. https://doi.org/10.1111/j.1526-100x.2006.00100.x
  46. 39. Burkle LA, Marlin JC, Knight TM. Plant-pollinator interactions over 120 years: Loss of species, co-occurrence and function. Sci. 2013;339(6127):1611–15. https://doi.org/10.1126/science.1232728
  47. 40. Theoharides KA, Dukes JS. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New phytol. 2007;176:256‒73. https://doi.org/10.1111/j.1469-8137.2007.02207.x
  48. 41. Hulme PE, Bremner ET. Assessing the impact of Impatiens glandulifera on riparian habitats: Partitioning diversity components following species removal. J Appl Ecol. 2006;43(1):43–50. https://doi.org/10.1111/j.1365-2664.2005.
  49. 01102.x
  50. 42. Hrideek TK. Study on the impact of allelochemicals of Senna spectabilis DC Irwin and barneby invasion in Wayanad, Kerala. [Doctoral dissertation]. Department of Forest Genetics and Tree Breeding, KSCSTE Kerala Forest Research Institute, Peechi. University of Calicut; 2025
  51. 43. Lal R. Soil carbon sequestration impacts on global climate change and food security. Sci. 2004;304(5677):1623–27. https://doi.org/10.1126/science.1097396
  52. 44. Swarbrick JT, Timmins SM. The handbook of Australian weeds. Melbourne: Melbourne University Press; 2003
  53. 45. Maron JL, Vilà M. When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos. 2001;95(3):361–73. https://doi.org/10.1034/j.1600-0706.2001.950301.x
  54. 46. Sheley RL, Petroff JK. Biology and management of noxious rangeland weeds. Oregon State University Press; 1999 https://doi.org/10.1017/s0890037x00042342
  55. 47. Suding KN, Gross KL, Houseman GR. Alternative states and positive feedback in restoration ecology. Trends Ecol Evol. 2004;19(1):46–53. https://doi.org/10.1016/j.tree.2003.10.005
  56. 48. Csákvári E, Sáradi N, Berki B, Csecserits A, Csonka AC, Reis BP, et al. Native species can reduce the establishment of invasive alien species if sown in high density and using competitive species. Restor Ecol. 2023;31(5):e13901. https://doi.org/10.1111/rec.13901
  57. 49. Hobbs RJ, Cramer VA. Restoration ecology: Interventionist approaches for restoring and maintaining ecosystem function in the face of rapid environmental change. Annu Rev Environ Resour. 2008;33(1):39–61. https://doi.org/10.
  58. 1146/annurev.energy.33.020107.113631
  59. 50. Herms DA, McCullough DG. Emerald ash borer invasion of North America: History, biology, ecology, impacts and management. Annu Rev Entomol. 2014;59(1):13–30. https://doi.org/10.1146/annurev-ento-011613-162051
  60. 51. McCullough SA, O’Geen AT, Whiting ML, Sarr DA, Tate KW. Quantifying the consequences of conifer succession in aspen stands: Decline in a biodiversity-supporting community. Environ Monit Assess. 2013;185:5563–76. https://doi.org/10.1007/s10661-012-2967-4
  61. 52. Mendes LW, Tsai SM, Navarrete AA, De Hollander M, van Veen JA, Kuramae EE. Soil-borne microbiome: Linking diversity to function. Microb Ecol. 2015;70:255–65. https://doi.org/10.1007/s00248-014-0559-2
  62. 53. Simberloff D, Martin JL, Genovesi P, Maris V, Wardle DA, Aronson J, et al. Impacts of biological invasions: What's what and the way forward. Trends Ecol Evol. 2013;28(1):58–66. https://doi.org/10.1016/j.tree.2012.07.013
  63. 54. McGeoch MA, Genovesi P, Bellingham PJ, Costello MJ, McGrannachan C, Sheppard A. Prioritizing species, pathways and sites to achieve conservation targets for biological invasion. Biol Invasions. 2016;18:299–314. https://doi.org/10.1007/s10530-015-1013-1
  64. 55. Hobbs RJ, Humphries SE. An integrated approach to the ecology and management of plant invasions. Conserv Biol. 1995;9(4):761–70. https://doi.org/10.1046/j.1523-1739.1995.09040761.x
  65. 56. Poland TM, Juzwik J, Rowley A, Huebner CD, Kilgo JC, Lopez VM, et al. Management of landscapes for established invasive species. In: Poland TM, Patel-Weynand T, Finch DM, Miniat CF, Hayes DC, Lopez VM, editors. Invasive species in forests and rangelands of the United States. Springer, Cham; 2021 https://doi.org/10.1007/978-3-030-45367-1_7
  66. 57. CBD Secretariat. Global biodiversity outlook 4. Convention on biological diversity; 2014
  67. 58. Pyšek P, Hulme PE, Meyerson LA, Smith GF, Boatwright JS, Crouch NR, et al. Hitting the right target: taxonomic challenges for and of, plant invasions. AoB Plants. 2013;5:plt042. https://doi.org/10.1093/aobpla/plt042
  68. 59. Pyšek P, Manceur AM, Alba C, McGregor KF, Pergl J, Štajerová K, et al. Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecol. 2015;96(3):762–74. https://doi.org/
  69. 10.1890/14-1005.1
  70. 60. ILDIS. International Legume Database and Information Service. Reading, UK: School of Plant Sciences, University of Reading; 2014. https://www.ildis.org/
  71. 61. Witt A, Luke Q. Guide to the naturalized and invasive plants of eastern Africa. 2017 Jun 14. https://doi.org/10.1079
  72. /9781786392145.0000
  73. 62. van Noordwijk M, Cadisch G, Ong CK, editors. Below-ground interactions in tropical agroecosystems: Concepts and models with multiple plant components. CABI (Centre for Agriculture and Bioscience International); 2004. https://doi.org/10.1079/9780851996738.0000
  74. 63. Wakibara JV. Observations on the pilot control of Senna spectabilis, an invasive exotic tree in the Mahale Mountains National Park, Western Tanzania. Pan Africa News. 1998;5(1):4–6. https://doi.org/10.5134/143365
  75. 64. Mungatana ED, Ahimbisibwe PB. Quantitative impacts of invasive Senna spectabilis on distribution of welfare: a household survey of dependent communities in Budongo forest reserve, Uganda.
  76. 65. PIER. Pacific islands ecosystems at risk. Honolulu, Hawaii, USA: HEAR, University of Hawaii; 2013. https://www.hear.org/pier/index.html
  77. 66. Chong KY. A checklist of the total vascular plant flora of Singapore: native, naturalised and cultivated species. Raffles Museum of Biodivers Res and Dept Biol Sci; 2009
  78. 67. Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, et al. No saturation in the accumulation of alien species worldwide. Nat Commun. 2017;8(1):14435. https://doi.org/10.1038/ncomms14435
  79. 68. Broome R, Sabir K, Carrington S. Plants of the Eastern Caribbean. Online database. Plants of the Eastern Caribbean. Online database, Barbados: University of the West Indies; 2007
  80. 69. Missouri Botanical Garden. Tropicos database. St. Louis, Missouri, USA: Missouri Botanical Garden; 2015. https://www.tropicos.org/
  81. 70. Gillman EF, Watson DG. Senna spectabilis: Cassia., USA: Institute of Food and Agricultural Sciences (IFAS), University of Florida [Internet]; 2011
  82. 71. USDA, ARS, National Genetic Resources Program. Germplasm resources information network (GRIN).
  83. 72. Funk V, Hollowell T, Berry P, Kelloff C, Alexander SN. Checklist of the plants of the Guiana Shield (Venezuela:
  84. Amazonas, Bolivar, Delta Amacuro; Guyana, Surinam, French Guiana) Smithsonian Institution. 2007;Volume 55:1–584.
  85. 73. Lista de Espécies da Flora do Brasil. Lista de Espécies da Flora do Brasil.
  86. 74. AVH. Australia's virtual herbarium. Council of Heads of Australasian Herbaria; 2016
  87. 75. Wagner WL, Clark JR, Lorence DH. Revision of endemic Marquesas Islands Bidens (Asteraceae, coreopsideae). PhytoKeys. 2014(38):37–67. https://doi.org/10.3897/phytokeys.38.7609

Downloads

Download data is not yet available.