Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Leaf proteome analysis of maize inbred lines B73 and Mo17 infected by Fusarium verticillioides (Sacc.) Nirenberg

DOI
https://doi.org/10.14719/pst.7204
Submitted
13 January 2025
Published
25-07-2025 — Updated on 01-08-2025
Versions

Abstract

The maize plant (Zea mays L.), one of the world's most important cereals, produced 1444 million tons globally in 2022. Fusarium crown rot, caused by Fusarium spp., particularly Fusarium verticillioides, significantly impacts maize yield and quality. This study aimed to investigate the proteomic response of two maize inbred lines, B73 and MO17, to F. verticillioides infection using two-dimensional electrophoresis. Leaf proteins were extracted using the TCA-acetone method and identified based on their isoelectric points (pI) and molecular weights. A total of 99 reproducible protein spots were detected, with significant expression changes assessed using the T21 spot test. Eight spots in B73 and six in MO17 exhibited increased expression. Defence-related proteins showed the most important proportion of changes (33 %), including the BAG family molecular chaperone regulator six protein, which is involved in programmed cell death and stress response. Proteins related to energy production, photosynthesis, ion channels and signalling showed decreased expression, indicating a possible reduction in plant vigour and efforts to limit pathogen spread. Structural and defence-related proteins demonstrated increased expression, suggesting an adaptive response to fungal infection. The proteomic comparison revealed that B73 exhibited greater resistance to F. verticillioides than MO17, as evidenced by the distinct protein expression profiles. This study highlights the role of specific proteins in maize defence mechanisms and provides insights into potential targets for enhancing resistance to F. verticillioides infection.

References

  1. 1. Parameshnaik C, Kalyana-Murthy KN, Hanumanthappa DC, Seenappa C, Nanja-Reddy YA, Prakasha HC. Influence of nano fertilizers on growth and yield of maize. Mysore J Agri Sci. 2024;58(1):211–21.
  2. 2. Gong F, Wu X, Zhang H, Chen Y, Wang W. Making better maize plants for sustainable grain production in a changing climate. Front Plant Sci. 2015;6:835. https://doi.org/10.3389/fpls.2015.00835
  3. 3. White CN, Proebsting WM, Hedden P, Rivin CJ. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol. 2000:122(4):1081–88. https://doi.org/10.1104/pp.122.4.1081
  4. 4. Leslie JF. Introductory biology of Fusarium moniliforme. Adv Exp Med Biol.1996;392:153–64. https://doi.org/10.1007/978-1-4899-1379-1_14
  5. 5. Nelson PE. Taxonomy and biology of Fusarium moniliforme. Mycopathol. 1992;117:29–36. https://doi.org/10.1007/BF00436423
  6. 6. Bowles DJ. Defense-related proteins in higher plants. Ann Rev Biochem. 1990;59:873–907. https://doi.org/10.1146/annurev.bi.59.070190.004301
  7. 7. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, et al. The B73 maize genome: complexity, diversity and dynamics. Sci. 2009;326(5956):1112–15. https://doi.org/10.1126/science.1178534
  8. 8. Anderson GR. Inference of phylogeny and taxonomy within the Didymozoidae (Digenea) from the second internal transcribed spacer (ITS2) of ribosomal DNA. Syst Parasitol. 1998;41:87–94. https://doi.org/10.1023/A:1006024128098
  9. 9. Al-Juboory HH, Juber KS. Efficiency of some inoculation methods of Fusarium proliferatum and F. verticilloides on the systemic infection and seed transmission on maize under field conditions. Agric Biol J North America. 2013;4(6):583–89.
  10. 10. Pittet A, Parisod V, Schellenberg M. Occurrence of fumonisins B1 and B2 in corn-based products from the Swiss market. J Agric Food Chem. 1992;40:1445–53. https://doi.org/10.1021/jf00020a006
  11. 11. Pavoković D, Križnik B, Krsnik-Rasol M. Evaluation of protein extraction methods for proteomic analysis of non-model recalcitrant plant tissues. Croat Chem Acta. 2012;85(2):177–83. https://doi.org/10.5562/cca1804
  12. 12. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248–54. https://doi.org/10.1016/0003-2697(76)90527-3
  13. 13. Broser M, Gabdulkhakov A, Kern J, Guskov A, Müh F, Saenger W, Zouni A. Crystal structure of monomeric photosystem II from Thermosynechococcus elongatus at 3.6-Å resolution. J Biol Chem. 2010;285:26255–62. https://doi.org/10.1002/rcm.3533
  14. 14. Maytalman D, Zafer MZ, Baykal AT, Inan C, Günel A, Hasançebi S. Proteomic analysis of early responsive resistance proteins of wheat (Triticum aestivum) to yellow rust (Puccinia striiformisf. sp. tritici) using ProteomeLab PF2D. Plant Omics. 2013;6:24–35.
  15. 15. Kramer R, Vieira JW, Khoury HJ, Lima FRA, Fuelle D. All about MAX: a male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Phys Med Biol. 2003;48(10):1239. https://doi.org/10.1088/0031-9155/48/10/301
  16. 16. Rivoal J, Dunford R, Plaxton WC, Turpin DH. Purification and properties of four phosphoenolpyruvate carboxylase isoforms from the green alga Selenastrum minutum: evidence that association of the 102-kDa catalytic subunit with unrelated polypeptides may modify the physical and kinetic properties of the enzyme. Arch Biochem Biophy. 1996;332(1):47–57. https://doi.org/10.1006/abbi.1996.0315
  17. 17. Wientjes E, van Amerongen H, Croce R. LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta Bioenerg. 2013;1827(3):420–26. https://doi.org/10.1016/j.bbabio.2012.12.009
  18. 18. Jansson S. A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci. 1999;4(6):236–40. https://doi.org/10.1016/S1360-1385(99)01419-3
  19. 19. Bassi F, Rebay S. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J Comput Phys. 1997;131:267–79. https://doi.org/10.1006/jcph.1996.5572
  20. 20. Rhee SG, Chae HZ, Kim K. Peroxiredoxins: a historical overview and speculative preview of novel mechanisms and emerging concepts in cell signaling. Free Radical Biol Med. 2005;38(12):1543–52. https://doi.org/10.1016/j.freeradbiomed.2005.02.026
  21. 21. Baier M, Dietz KJ. Protective function of chloroplast 2-cysteine peroxiredoxin in photosynthesis: Evidence from transgenic Arabidopsis. Plant Physiol. 1999;119:1407–14.‏ https://doi.org/10.1104/pp.119.4.1407
  22. 22. Wilkie SE, Roper JM, Smith AG, Warren MJ. Isolation, characterization and expression of a cDNA clone encoding plastid aspartate aminotransferase from Arabidopsis thaliana. Plant Mol Biol. 1995;27(6):1227–33. https://doi.org/10.1007/BF00020897
  23. 23. Mason MG, Botella JR. Completing the heterotrimer: isolation and characterization of an Arabidopsis thaliana G protein γ-subunit cDNA. Proceed Nat Acad Sci. 2000;97(26):14784–88. https://doi.org/10.1073/pnas.97.26.14784
  24. 24. Yang Yu, Hu C, Abu-Omar MM. Conversion of glucose into furans in the presence of AlCl 3 in an ethanol–water solvent system. Biores Technol. 2012;116:190–94. https://doi.org/10.1016/j.biortech.2012.03.126
  25. 25. Galon Y, Finkler A, Fromm H. Calcium-regulated transcription in plants. Mol Plant. 2000;3(4):653–69. https://doi.org/10.1093/mp/ssq019
  26. 26. Lehmann P, Nöthen J, Schmidt von BS, Bohnsack MT, Mirus O, Schleiff E. Transitions of gene expression induced by short-term blue light. Plant Biol. 2011;13(2):349–61. https://doi.org/10.1111/j.1438-8677.2010.00377.x
  27. 27. Xu SL, Rahman A, Baskin TI, Kieber JJ. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. J Plant Cell. 2008;20(11):065–79. https://doi.org/10.1105/tpc.108.063354
  28. 28. Manzo D, Ferriello F, Puopolo G, Zoina A, D’Esposito D, Tardella L, Ferrarini A. Ercolano MR. Fusarium oxysporum f. sp. radicis-lycopersici induces distinct transcriptome reprogramming in resistant and susceptible isogenic tomato lines. BMC Plant Biol. 2016;16(1):53. https://doi.org/10.1186/s12870-016-0740-5
  29. 29. Skalitzky CA, Martin JR, Harwood JH, Beirne JJ, Adamczyk BJ, Heck GR, et al. Plastids contain a second sec translocase system with essential functions. J Plant Physiol. 2011;155:354–69. https://doi.org/10.1104/pp.110.166546
  30. 30. Webb KM, Wintermantel WM, Kaur N, Prenni JE, Broccardo CJ, Wolfe LM, Hladky LL. Differential abundance of proteins in response to beet necrotic yellow vein virus during compatible and incompatible interactions in sugar beet containing Rz1 or Rz2. Physiol Mole Plant Pathol. 2015;91:96–105. https://doi.org/10.1016/j.pmpp.2015.06.006
  31. 31. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Miller W. Human–mouse alignments with BLASTZ. Genome Res. 2003;13(1):103–07.‏ https://doi.org/10.1101/gr.809403
  32. 32. Marín S, Sanchis V, Teixidó A, Sáenz R, Ramos AJ, Vinas I, Magan N. Water and temperature relations and microconidial germination of Fusarium moniliforme and Fusarium proliferatum from maize. Canadian J Microbiol. 1996;42:1045–50. https://doi.org/10.1139/m96-134
  33. 33. Villa ST, Xu Q, Downie AB, Clarke SG. Arabidopsis protein repair L-isoaspartyl methyltransferases: predominant activities at lethal temperatures. J Physiol Plant. 2006;128:581–92. https://doi.org/10.1111/j.1399-3054.2006.00772.x
  34. 34. Fercha A, Capriotti AL, Caruso G, Cavaliere C, Samperi R, Stampachiacchiere S, Lagana A. Comparative analysis of metabolic proteome variation in ascorbate-primed and unprimed wheat seeds during germination under salt stress. J Proteomics. 2014;108:238–57. https://doi.org/10.1016/j.jprot.2014.04.040
  35. 35. Wagner TA, Kohorn BD. Wall-associated kinases are expressed throughout plant development and are required for cell expansion. The Plant Cell. 2001;13(2):303–18. https://doi.org/10.1105/tpc.13.2.303
  36. 36. Lue S, Song T, Kosma DK, Parsons EP, Rowland O, Jenks MA. Arabidopsis CER8 encodes Long-Chain Acyl-Coa Synthetase 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis. Plant J. 2009;59:553–64. https://doi.org/10.1111/j.1365-313X.2009.03892.x
  37. 37. Weng H, Molina I, Shockey J, Browse J. Organ fusion and defective cuticle function in a lacs1 lacs2 double mutant of Arabidopsis. Planta. 2010;231:1089–100. https://doi.org/10.1007/s00425-010-1110-4
  38. 38. Shrestha R, Dixon RA, Chapman KD. Molecular identification of a functional homologue of the mammalian fatty acid amide hydrolase in Arabidopsis thaliana. J Biol Chem. 2003;278:34990–97. https://doi.org/10.1074/jbc.M305613200
  39. 39. Wang YS, Shrestha R, Kilaru A, Wiant W, Venables BJ, Chapman KD, Blancaflor EB. Manipulation of Arabidopsis fatty acid amide hydrolase expression modifies plant growth and sensitivity to N-acylethanolamines. Proceed Nat Acad Sci USA. 2006;103:12197–202. https://doi.org/10.1073/pnas.0603571103
  40. 40. Kang L, Wang YS, Uppalapati SR, Wang K, Tang Y, Vadapalli V, et al. Overexpression of a fatty acid amide hydrolase compromises innate immunity in Arabidopsis. The Plant J. 2008;56(2):336–49. https://doi.org/10.1111/j.1365-313X.2008.03603.x
  41. 41. Cheong YH, Moon BC, Kim JK, Kim CY, Kim MC, Kim IH, et al. BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol. 2003;132(4):1961–72. https://doi.org/10.1104/pp.103.023176
  42. 42. Yang F, Melo-Braga MN, Larsen MR, Jørgensen HJ, Palmisano G. Battle through signaling between wheat and the fungal pathogen Septoria tritici revealed by proteomics and phosphoproteomics. Mol Cell Proteomics. 2013;12(9):2497–508. https://doi.org/10.1074/mcp.M113.027532
  43. 43. Kang CH, Jung WY, Kang YH, Kim JY, Kim DG, Jeong JC, et al. AtBAG6, a novel calmodulin-binding protein, induces programmed cell death in yeast and plants. Cell Death Differ. 2006;13(1): 84–95. https://doi.org/10.1038/sj.cdd.4401712
  44. 44. Li Y, Kabbage M, Liu W, Dickman MB. Aspartyl protease-mediated cleavage of BAG6 is necessary for autophagy and fungal resistance in plants. J Plant Cell. 2016;28:233–47. https://doi.org/10.1105/tpc.15.00626
  45. 45. Nunes C, O'Hara LE, Primavesi LF, Delatte TL, Schluepmann H, Somsen GW, et al. The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol. 2013;162(3):1720–32. https://doi.org/10.1104/pp.113.220657
  46. 46. Zhou X, Hua D, Chen Z, Zhou Z, Gong Z. Elongator mediates ABA responses, oxidative stress resistance and anthocyanin biosynthesis in Arabidopsis. The Plant J. 2009;60(1):79–90. https://doi.org/10.1111/j.1365-313X.2009.03931.x
  47. 47. DeFraia CT, Zhang X, Mou Z. Elongator subunit 2 is an accelerator of immune responses in Arabidopsis thaliana. The Plant J. 2010;64:511–23. https://doi.org/10.1111/j.1365-313X.2010.04345.x
  48. 48. Uniprot. UniProt Knowledgebase [Internet]. 2024 [cited Jun 30 2025]. http://www.uniprot.org
  49. 49. Asakura Y, Galarneau E, Watkins KP, Barkan A, Wijk KJ. Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. J Plant Physiol. 2012;159:961–74. https://doi.org/10.1104/pp.112.197525
  50. 50. Deng GM, Yang OS, He WD, Li CY, Yang J, Zuo CW. Proteomicanalysis of Conidia germination in Fusarium oxysporum f. sp.cubense tropical race 4 reveals new targets in ergosterol biosynthesis pathway for controlling Fusarium wilt of banana. Appl Microbiol Biotechnol. 2015;99:7189–207. https://doi.org/10.1007/s00253-015-6768-x
  51. 51. Ostheimer GJ, Williams-Carrier R, Belcher S, Osborne E, Gierke J, Barkan A. Group II intron splicing factors derived by diversification of an ancient RNA-binding domain. EMBO J. 2003;22:3919–29. https://doi.org/10.1093/emboj/cdg372

Downloads

Download data is not yet available.