Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Enhancing seed shelf life through modified atmospheric packaging: A review

DOI
https://doi.org/10.14719/pst.7224
Submitted
14 January 2025
Published
07-05-2025 — Updated on 24-07-2025
Versions

Abstract

Efficient seed storage is crucial for maintaining seed quality, viability, and germination potential, which directly impact agricultural productivity and food security. However, prolonged storage leads to seed deterioration due to both biotic and abiotic factors, resulting in significant post-harvest losses. Modified atmospheric packaging (MAP) is a sustainable non-chemical technology that enhances seed storability by altering the gaseous environment around seeds. MAP operates through active packaging, which injects desired gases and passive packaging, where the product’s respiration modifies the atmosphere. By reducing oxygen (O2) levels, minimizing moisture absorption, and inhibiting microbial and insect activity, MAP extends seed shelf life. Typically, O2 is replaced with nitrogen (N2) or carbon dioxide (CO2), limiting oxidative reactions and metabolic activity. MAP benefits multiple seed types, including cereals, legumes, oilseeds, and horticultural crops. Physically, it reduces seed moisture, delaying deterioration and preserving seed coat color. Physiologically, it prolongs seed longevity by reducing the accumulation of reactive oxygen species (ROS) and conserving seed reserves. Biochemically, it minimizes lipid peroxidation, maintains enzyme activities like alpha-amylase and catalase and reduces electrolyte leakage. Additionally, MAP controls storage pests and pathogens; elevated CO2 inhibits insect proliferation and fungal contamination, mitigating mycotoxin risks. This review examines the strategic role of MAP in seed conservation for sustainable agriculture by comparing MAP with traditional storage methods and assessing its impact on seed viability and longevity.

References

  1. 1. Magray MM, Wani K, Chatto M, Ummyiah H. Synthetic seed technology. Int J Curr Microbiol Appl Sci. 2017;6(11):662–74. https://doi.org/10.20546/ijcmas.2017.611.079
  2. 2. Gebeyehu B. Review on: Effect of seed storage period and storage environment on seed quality. Intern J Appli Agric Sci. 2020;6(6):185–90. https://doi.org/10.11648/j.ijaas.20200606.14
  3. 3. Kiruba S, Das MS, Papadopoulou S. Prospects of traditional seed storage strategies against insect infestation adopted by two ethnic communities of Tamil Nadu, southern peninsular India. Bull Insectol. 2006;59(2):129.
  4. 4. Li D-Z, Pritchard HW. The science and economics of ex situ plant conservation. Trends Plant Sci. 2009;14(11):614–21. https://doi.org/10.1016/j.tplants.2009.09.005
  5. 5. Chala M, Bekana G. Review on seed process and storage condition in relation to seed moisture and ecological factor. J Nat Sci Res. 2017;7(9):84–90.
  6. 6. Choudhury A, Bordolui SK. Concept of seed deterioration: Reason, factors, changes during deterioration and preventive measures to overcome seed degradation. Am Int J Agric Stud. 2023;7(1):41–56. https://doi.org/10.46545/aijas.v7i1.291
  7. 7. Ebone LA, Caverzan A, Chavarria G. Physiologic alterations in orthodox seeds due to deterioration processes. Plant Physiol Biochem. 2019;145:34–42. https://doi.org/10.1016/j.plaphy.2019.10.028
  8. 8. Jyoti J, Malik CP. Seed deterioration: a review. Intern J Life Sci Biotechnol and Pharma Res. 2013;2(3):374‒85.
  9. 9. Sujatha M, Uppar DS, Biradaeatil NK, Mummigatti UV, Olekar NS. Biochemical changes in storage of groundnut seeds under different locations, storage containers and storage conditions. Int J Curr Microbiol Appl Sci. 2018;7:297–305. https://doi.org/10.20546/ijcmas.2018.707.036
  10. 10. Goftishu M, Belete K. Susceptibility of sorghum varieties to the maize weevil Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Afr J Agric Res. 2014;9(31):2419–26. https://doi.org/10.5897/AJAR2014.8634
  11. 11. Vasudevan S, Shakuntala N, Teli S, Goud S, Gowda B. Studies on effect of modified atmospheric storage condition on storability of groundnut (Arachis hypogaea L.) seed kernels. Int J Res Stud Biosci. 2014;2(2):25–36.
  12. 12. Ziegler V, Paraginski RT, Ferreira CD. Grain storage systems and effects of moisture, temperature and time on grain quality- A review. J Stored Prod Res. 2021;91:101770. https://doi.org/10.1016/j.jspr.2021.101770
  13. 13. Hintlian C, Hotchkiss J. The safety of modified atmosphere packaging: a review. Food Technol. 1986;40.
  14. 14. Bailly C. Active oxygen species and antioxidants in seed biology. Seed Sci Res. 2004;14(2):93–107. https://doi.org/10.1079/SSR2004159
  15. 15. Rao ND, Sachindra N. Modified atmosphere and vacuum packaging of meat and poultry products. Food Rev Intern. 2002;18(4):263‒93. https://doi.org/10.1081/FRI-120016206
  16. 16. Thippareddi H, Phebus RK. Modified atmosphere packaging (MAP): Microbial control and quality. FACTS National Pork Board. 2002;4667:1‒8.
  17. 17. Falagán N, Terry LA. Recent advances in controlled and modified atmosphere of fresh produce. Johnson Matthey Technol Rev. 2018;62(1):107‒17. https://doi.org/10.1595/205651318X696684
  18. 18. Farber J. Microbiological aspects of modified-atmosphere packaging technology-a review. J Food Protection. 1991;54(1):58‒70. https://doi.org/10.4315/0362-028X-54.1.58
  19. 19. Zhou W, Chen F, Luo X, Dai Y, Yang Y, Zheng C, et al. A matter of life and death: Molecular, physiological and environmental regulation of seed longevity. Plant, Cell and Environ. 2020;43(2):293‒302. https://doi.org/10.1111/pce.13666
  20. 20. Sivasakthi S, Renugadevi J. Appraisal of storage potential of onion cv. CO (On) 5 seeds under carbon dioxide and ambient storage condition. J Pharmacogn Phytochem. 2020;9(5):925‒32. https://doi.org/10.22271/phyto.2020.v9.i5m.12351
  21. 21. Kavichakravarthi T, Parameswari K, Umarani R, Kalaiyarasi R, Balakrishnan M, Vijayageetha V, Kavitha S. Unveils the metabolic changes in groundnut CO 7 kernels stored under modified atmospheric conditions. Plant Sci Today. 2024;11(4):1467‒74. https://doi.org/10.14719/pst.4997
  22. 22. Zagory D, Kader AA. Modified atmosphere packaging of fresh produce. Food Technol (Chicago). 1988;42(9):70‒77.
  23. 23. Ghidelli C, Perez-Gago MB. Recent advances in modified atmosphere packaging and edible coatings to maintain quality of fresh-cut fruits and vegetables. Critical Rev in Food Sci and Nutri. 2018;58(4):662‒79. https://doi.org/10.1080/10408398.2016.1211087
  24. 24. Robertson G. Modified atmosphere packaging. Food packaging: principles and practice; 2006. 313‒29 https://doi.org/10.1201/9781420056150
  25. 25. Abdelgawad G, Khater E, Bahnasawy AH, Mosa MM. Potato tubers quality as affected by modified atmospheric conditions and package type during storage. Misr J Agric Engineer. 2023;40(3):227‒42. https://doi.org/10.21608/mjae.2023.213945.1101
  26. 26. Zhang M, Meng X, Bhandari B, Fang Z, Chen H. Recent application of modified atmosphere packaging (MAP) in fresh and fresh-cut foods. Food Rev Intern. 2015;31(2):172‒93. https://doi.org/10.1080/87559129.2014.981826
  27. 27. Irtwange S. Application of modified atmosphere packaging and related technology in postharvest handling of fresh fruits and vegetables. Agric Engineer Intern: CIGR J. 2006
  28. 28. Dermiki M, Ntzimani A, Badeka A, Savvaidis IN, Kontominas MG. Shelf-life extension and quality attributes of the whey cheese “Myzithra Kalathaki” using modified atmosphere packaging. LWT-Food Sci and Technol. 2008;41(2):284‒94. https://doi.org/10.1016/j.lwt.2007.02.014
  29. 29. Garcı́a-Esteban M, Ansorena D, Astiasarán I. Comparison of modified atmosphere packaging and vacuum packaging for long period storage of dry-cured ham: effects on colour, texture and microbiological quality. Meat Sci. 2004;67(1):57‒63. https://doi.org/10.1016/j.meatsci.2003.09.005
  30. 30. Capilheira AF, Cavalcante JA, Gadotti GI, Bezerra BR, Hornke NF, Villela FA. Storage of soybean seeds: Packaging and modified atmosphere technology. Revista Brasileira de Engenharia Agrícola e Ambiental. 2019;23(11):876‒82. https://doi.org/10.1590/1807-1929/agriambi.v23n11p876-882
  31. 31. Manjunatha B, Vasudevan S, Umesha U, Sravani C. Studies on influence of modified atmospheric storage conditions on biochemical parameters in pigeonpea seeds. J Appli and Nat Sci. 2016;8(3):1249‒52. https://doi.org/10.31018/jans.v8i3.949
  32. 32. Bass L. Seed viability during long-term storage. In book: Horticultural reviews; 2011. pp.117‒41 https://doi.org/10.1002/9781118060759.ch2
  33. 33. Roberts E, Abdalla F. The influence of temperature, moisture, and oxygen on period of seed viability in barley, broad beans and peas. Ann Bot. 1968;32(1):97‒117. https://doi.org/10.1093/oxfordjournals.aob.a084202
  34. 34. Davies A. Modified atmospheres and vacuum packaging. Food Preservatives: Springer; 2003. p. 218‒39 https://doi.org/10.1007/978-0-387-30042-9_11
  35. 35. Daniels JA, Krishnamurthi R, Rizvi SS. A review of effects of carbon dioxide on microbial growth and food quality. J Food Protection. 1985;48(6):532‒37. https://doi.org/10.4315/0362-028X-48.6.532
  36. 36. Beaudry R, Luckanatinvong V, Solomos T, editors. Maintaining quality with CA and MAP. IV International Conference on Managing Quality in Chains-The Integrated View on Fruits and Vegetables Quality; 2006. 712. https://doi.org/10.17660/ActaHortic.2006.712.26
  37. 37. Gorris LG, Peppelenbos HW. Modified-atmosphere packaging of produce. Handbook of food preservation: CRC Press; 2020. p. 349‒62 https://doi.org/10.1201/9780429091483-26
  38. 38. Mangaraj S, Goswami T, Panda D. Modeling of gas transmission properties of polymeric films used for MA packaging of fruits. J Food Sci and Technol. 2015;52:5456‒69. https://doi.org/10.1007/s13197-014-1682-2
  39. 39. Mangaraj S, Goswami T, Mahajan P. Applications of plastic films for modified atmosphere packaging of fruits and vegetables: a review. Food Engineer Rev. 2009;1:133‒58. https://doi.org/10.1007/s12393-009-9007-3
  40. 40. Sharma C, Dhiman R, Rokana N, Panwar H. Nanotechnology: an untapped resource for food packaging. Frontiers in Microbiol. 2017;8:1735. https://doi.org/10.3389/fmicb.2017.01735
  41. 41. Meena MK, Chetti MB, Naik MC. Vacuum packaging as novel approach to extend storability and quality of various crop seeds. Pharma Innov. 2022;11(9):1143‒48.
  42. 42. Shinde P, Hunje R. Seed viability and seed health as influenced by modified atmospheric gases condition on Kabuli chickpea (Cicer arietinum L.) varieties. J Entomol and Zool Stud. 2019;7(1):713‒19.
  43. 43. Raghupathi B, Padmasri A, Narayanamma VL, Ramya V. Effect of modified atmosphere with elevated levels of CO2 on seed quality parameters of greengram during storage. The Pharma Innov J. 2021;10(11):53‒59.
  44. 44. Lamani K, Deshpande V, Patil N, Shashidhar T. Effect of modified atmospheric packaging on seed longevity of onion (Allium cepa L.) cv. Arka Kalyan. Intern J Curr Microbiol and Appli Sci. 2020;9(3):198‒209. https://doi.org/10.20546/ijcmas.2020.903.024
  45. 45. Punithavathi R, Parameswari K, Umarani R, Eevera T, Anand T, Gomathi V. Exploring the storage potential of groundnut Var. TMV (Gn) 13 under modified atmospheric storage conditions. Intern J Environ and Climate Change. 2023;13(10):3982‒89. https://doi.org/10.9734/ijecc/2023/v13i103072
  46. 46. Enaru B, Dretcanu G, Pop TD, Stanila A, Diaconeasa Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants. 2021;10(12):1967. https://doi.org/10.3390/antiox1012196
  47. 47. Gil M, Artes F, Tomas‐Barberan F. Minimal processing and modified atmosphere packaging effects on pigmentation of pomegranate seeds. J Food Sci. 1996;61(1):161‒64. https://doi.org/10.1111/j.1365-2621.1996.tb14749.x
  48. 48. Daravingas G, Cain R. Thermal degradation of black raspberry anthocyanin pigments in model systems. J Food Sci. 1968;33(2):138‒42. https://doi.org/10.1111/j.1365-2621.1968.tb01338.x
  49. 49. Bhattarai B, Walker CK, Wallace AJ, Nuttall JG, Hepworth G, Panozzo JF, et al. Modified storage atmosphere prevents the degradation of key grain quality traits in lentil. Agron. 2023;13(8):2160. https://doi.org/10.3390/agronomy13082160
  50. 50. Nasar-Abbas S, Plummer J, Siddique K, White P, Harris D, Dods K. Nitrogen retards and oxygen accelerates colour darkening in faba bean (Vicia faba L.) during storage. Postharvest Biol and Technol. 2008;47(1):113‒18. https://doi.org/10.1016/j.postharvbio.2007.06.007
  51. 51. Bailly C, El-Maarouf-Bouteau H, Corbineau F. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies. 2008;331(10):806‒14. https://doi.org/10.1016/j.crvi.2008.07.022
  52. 52. Groot SP, de Groot L, Kodde J, van Treuren R. Prolonging the longevity of ex situ conserved seeds by storage under anoxia. Plant Genetic Resourc. 2015;13(1):18‒26. https://doi.org/10.1017/S1479262114000586
  53. 53. Vakeswaran V. Assessment of the pattern of loss of viability and vigour of ground nut seeds stored as pod and kernel in ambient and modified atmospheric storage. Intern J Agric Sci. 2017;0975‒3710.
  54. 54. Gayathri M, Jerlin R, Eevera T, Amuthaselvi G. D-5793 [1-8] Storage behaviour of groundnut (Arachis hypogaea L.) seeds under different storage condition. Agric Sci Digest. 2024;44(1):156‒63. https://doi.org/10.18805/ag.D-5793
  55. 55. Doijode S. Seed germplasm conservation with modified atmosphere storage in Amaranth (Amaranthus spp.). Ind J Plant Genetic Resourc. 2001;14(2):288‒89.
  56. 56. Divya P, Durga KK, Sunil N, Rajasri M, Keshavulu K, Udayababu P. Modified atmosphere storage technique for the management of pulse beetle, Callosobruchus chinensis in Horse gram. Legume Res- An Intern J. 2016;39(3):474‒78. https://doi.org/10.18805/lr.v0iof.9610
  57. 57. Chauhan D, Deswal D, Dahiya O, Punia R. Change in storage enzymes activities in natural and accelerated aged seed of wheat (Triticum aestivum). Ind J Agric Sci. 2011;81(11)
  58. 58. Sheidaei S, Hamidi A, Sadeghi H, Oskouei B. Evaluation of initial seed quality and storage conditions on biochemical and physiological changes of soybean seeds. Iranian J Seed Sci and Technol. 2020;9(2):101‒18.
  59. 59. Brar NS, Kaushik P, Dudi BS. Assessment of natural ageing related physio-biochemical changes in onion seed. Agric. 2019;9(8):163. https://doi.org/10.3390/agriculture9080163
  60. 60. Begum MAJ, Balamurugan P, Vanagamudi K, Prabakar K, Ramakrishnan R. Enzyme changes during seed storage in groundnut (Arachis hypogaea L.). J Appli and Nat Sci. 2014;6(2):748‒50. https://doi.org/10.31018/jans.v6i2.530
  61. 61. Guglielminetti L, Yamaguchi J, Perata P, Alpi A. Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol. 1995;109(3):1069‒76. https://doi.org/10.1104/pp.109.3.1069
  62. 62. Goel A, Sheoran I. Lipid peroxidation and peroxide-scavenging enzymes in cotton seeds under natural ageing. Biologia Plantarum. 2003;46:429‒34. https://doi.org/10.1023/A:1024398724076
  63. 63. Kamaei R, Kafi M, Afshari RT, Shafaroudi SM, Nabati J. Physiological and molecular changes of onion (Allium cepa L.) seeds under different aging conditions. BMC Plant Biol. 2024;24(1):85. https://doi.org/10.1186/s12870-024-04773-7
  64. 64. Fagundes C, Moraes K, Perez-Gago MB, Palou L, Maraschin M, Monteiro A. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biol and Technol. 2015;109:73‒81. https://doi.org/10.1016/j.postharvbio.2015.05.017
  65. 65. Duke SH, Kakefuda G, Harvey TM. Differential leakage of intracellular substances from imbibing soybean seeds. Plant Physiol. 1983;72(4):919‒24. https://doi.org/10.1104/pp.72.4.919
  66. 66. Panobianco M, Vieira RD, Perecin D. Electrical conductivity as an indicator of pea seed aging of stored at different temperatures. Scientia Agricola. 2007;64:119‒24. https://doi.org/10.1590/S0103-90162007000200003
  67. 67. Gangadhara T, Vasudevan S, Manjunatha B. Effect of modified atmospheric storage conditions on biochemical parameters of rabi sorghum seeds. Adv. 2016;2912.
  68. 68. Donahaye E, Navarro S. Comparisons of energy reserves among strains of Tribolium castaneum selected for resistance to hypoxia and hypercarbia and the unselected strain. J Stored Prod Res. 2000;36(3):223‒34. https://doi.org/10.1016/S0022-474X(99)00044-2
  69. 69. Jayas DS, Jeyamkondan S. PH—postharvest technology: Modified atmosphere storage of grains meats fruits and vegetables. Biosystems Engineer. 2002;82(3):235‒51. https://doi.org/10.1006/bioe.2002.0080
  70. 70. Moncini L, Simone G, Romi M, Cai G, Guerriero G, Whittaker A, et al. Controlled nitrogen atmosphere for the preservation of functional molecules during silos storage: A case study using old Italian wheat cultivars. J Stored Prod Res. 2020;88:101638. https://doi.org/10.1016/j.jspr.2020.101638
  71. 71. Durga KK, Sowmya T, Venkateshwaran K, Keshavulu K. Management of pulse beetle in green gram seed using modified atmosphere. Intern J Bio-resourc and Stress Manage. 2022;13(11):1176‒85. https://doi.org/10.23910/1.2022.2835
  72. 72. Bera A, Sinha S, Singhal N, Pal R, Srivastava C. Studies on carbon dioxide as wheat seed protectant against storage insects and its effect on seed quality stored under ambient conditions. Seed Sci and Technol. 2004;32(1):159‒69. https://doi.org/10.15258/sst.2004.32.1.16
  73. 73. Cao Y, Xu K, Zhu X, Bai Y, Yang W, Li C. Role of modified atmosphere in pest control and mechanism of its effect on insects. Front in Physiol. 2019;10:206. https://doi.org/10.3389/fphys.2019.00206
  74. 74. El-Said A, Goder E. Effect of moisture contents on the biodiversity of fungi contaminating Cuminum cyminum and Pimpinella anisum seeds under storage periods and amylolytic activity of fungal isolates. Intern J Curr Microbiol and Appli Sci. 2014;3(3):969‒91.
  75. 75. Cindea M, Ivascu A. Evaluation of biochemical changes induced by specific mycoflora in the wheat stored. Lucrari Stiintifice-Universitatea de Stiințe Agronomice si Medicina Veterinara Bucuresti Seria B, Horticultura. 2009;53:725‒28.
  76. 76. Riudavets J, Pons MJ, Messeguer J, Gabarra R. Effect of CO2 modified atmosphere packaging on aflatoxin production in maize infested with Sitophilus zeamais. J Stored Prod Res. 2018;77:89‒91. https://doi.org/10.1016/j.jspr.2018.03.005
  77. 77. Opio P, Photchanachai S. Modified atmosphere influences aflatoxin B1 contamination and quality of peanut (Arachis hypogaea L.) kernels cv. Khon Kaen 84-8. JStored Prod Res. 2018;78:67‒73. https://doi.org/10.1016/j.jspr.2018.06.005
  78. 78. Kim EG, Ryu JH, Kim H. Effect of chlorine dioxide treatment and storage in a modified atmosphere on the inactivation of Cronobacter spp. on radish seeds. J Food Safety. 2013;33(2):172‒78. https://doi.org/10.1111/jfs.12037

Downloads

Download data is not yet available.