Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 7 No. 3 (2020)

Efficient micropropagation of Dendrobium aurantiacum from shoot explant

DOI
https://doi.org/10.14719/pst.2020.7.3.724
Submitted
5 January 2020
Published
09-08-2020

Abstract

Embryogenic tissue culture (seed tissue culture) is a common practice in plant industry to speed up and mass production. However, the culture method is not widely adopted in most of the orchid species. Micro-size orchid seeds are difficult to obtain and collect due to ambiguous seed maturation period. Most of orchid seeds have no endosperm and highly dependent on the specific fungi for germination and survival. Micropropagation from shoot culture with meristem tissue is potentially be another alternative for mass propagation of orchid. Therefore, this study examine the potential of micropropagation technique by shoot culture in orchid, Dendrobium aurantiacum (F. Muell.) F. Muell. This study reported an effective aseptic technique to develop sterilized D. aurantiacum tissue in vitro. The callus induction and regeneration from shoot explant by utilization of different plant growth regulator had been examined in this study. Among the treatments, 20% sodium hypochlorite with 15 mins sterilization period showed the highest sterilization efficiency on explants with only 16.7±5.8% of contamination occurred after two weeks and obtained highest survival rate 73.3±5.8% after one month. Callus formed in all combinations of plant hormone treatments. Media treated with 10 mg/L 2,4-D showed the highest callus induction rate but browning condition occur after 3 months of culture. Cell count on callus proliferation showed a significant difference (p < 0.05) between control and treatments. In conclusion, micropropagation of D. aurantiacum had been shortened almost 9-12 months required for nature germination.

References

  1. Hinsley A, de-Boer HJ, Fay MF, Gale SW, Gardiner LM, Gunasekara RS, Kumar P, Masters S, Metusala D, Roberts DL, Veldman S. A review of the trade in orchids and its implications for conservation. Bot J Linn Soc. 2017;186(4):435-55. http://doi.org/10.1093/botlinnean/box083
  2. Vaidya BN. Nepal: a global hotspot for medicinal orchids. In: Joshee N, Dhekney S, Parajuli P (editors). Med. Plant. Springer, Cham.2019. p. 35-80. http://doi.org/10.1007/978-3-030-31269-5_3
  3. Moudi M, Go R, Yien CYS, Saleh MN. A review on molecular systematics of the genus Dendrobium Sw. Acta Biol Malays. 2013;2(2)71-78. http://doi.org/10.7593/abm/2.2.71
  4. Ying L, Jin H, Yan Z, Ye GC. Chemical constituents of Dendrobium aurantiacum var. denneanum. Chem Nat Compd. 2009;45(4):525.
  5. Fang H, Hu X, Wang M, Wan W, Yang Q, Sun X, Chen CYO. Anti-osmotic and antioxidant activities of gigantol from Dendrobium aurantiacum var. denneanum against cataractogenesis in galactosemic rats. J Ethnopharmacol. 2015;172:238-46. http://doi.org/10.1016/j.jep.2015.06.034
  6. Yang L, Wang Y, Zhang G, Zhang F, Zhang Z, Wang Z, Xu L. Simultaneous quantitative and qualitative analysis of bioactive phenols in Dendrobium aurantiacum var. denneanum by high?performance liquid chromatography coupled with mass spectrometry and diode array detection. Biomed Chromatogr. 2017;21(7):687-94. http://doi.org/10.1002/bmc.801
  7. Goh CJ, Arditti J. Orchidaceae. In: Halevy AH (editor). Handbook of Flowering Plants. Boca Raton, Florida: CRC Press. 1985. p. 309–36.
  8. Rasmussen HN. Recent developments in the study of orchid mycorrhiza. Plant Soil. 2002;244(1-2):149-63. http://doi.org/10.1007/978-94-017-1284-2_15
  9. da Silva ALL, Costa JDL, Gollo AL, Dos Santos JD, Forneck HR, Biasi LA, Soccol VT, De Carvalho JC, Soccol CR. Development of a vinasse culture medium for plant tissue culture. Pak J Bot. 2014;46(6):2195.
  10. Hussain A, Qarshi IA, Nazir H, Ullah I. Plant tissue culture: current status and opportunities. Recent Adv Plant In-vitro Cult. 2012;17:1-28. http://doi.org/10.5772/50568
  11. Zhao P, Wu F, Feng FS, Wang WJ. Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall. ex Lindl. In Vitro Cell Dev Biol Plant. 2008;44(3):178. http://doi.org/10.1007/s11627-007-9101-2
  12. National Centre of Biotechnology Information NCBI. Dendrobium denneanum [Dataset]. 2015 Oct 1 [cited by 2019 Jul 3]. Available from: http:/www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?lvl=0&id=181002
  13. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum. 1962;15:473-97. http://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  14. Peiris SE, De Silva ED, Edussuriya M, Attanayake AMU, Peiris BCN. CSUP technique: a low-cost sterilization method using sodium hypochlorite to replace the use of expensive equipment in micropropagation. J Nat Sci Found. 2012;40:1. http://doi.org/10.4038/jnsfsr.v40i1.4168
  15. Estrela C, Estrela CRA, Barbin EL, Marchesan JCMA, Pécora JD. Spanó E. Mechanism of action of Sodium hypochlorite. Braz Dent J. 2002;13(2):113–17. http://doi.org/10.1590/S0103-64402002000200007
  16. Leifert C, Waites WM. Dealing with microbial contaminants in plant tissue and cell culture: hazard analysis and critical control points. In: In Physiology, Growth and Development of Plants in Culture. Springer, Dordrecht. 1994. p. 363-78.
  17. Rahman SME, Khan I, Oh DH. Electrolyzed water as a novel sanitizer in the food industry: current trends and future perspectives. Compr Rev Food Sci Food Saf. 2016;15(3):471-90. http://doi.org/10.1111/1541-4337.12200
  18. Zulkepli AZ, Jaafar H, Rusni AHA. Optimization of sterilization method and callus induction of Salacca glabrescens. Int Proc Chem Biol Environ Eng. 2011;24:106-11.
  19. Kumar KR, Singh KP, Raju DVS, Kumar P, Panwar S, Bhatia R. Circumventing phenolic exudation and poor survival in micropropagation of marigold. Hortic Soc India. 2018;75(2):273-78. http://doi.org/10.5958/0974-0112.2018.00046.4
  20. Peterson GE. The discovery and development of 2, 4-D. Agric Hist. 1967;41(3):243-54.
  21. Song Y. Insight into the mode of action of 2, 4?dichlorophenoxyacetic acid (2, 4?D) as a herbicide. J Integr Plant Biol. 2014;56(2):106-13. http://doi.org/10.1111/jipb.12131
  22. Gaj MD. Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul. 2004;43(1):27-47. http://doi.org/10.1023/B:GROW.0000038275.29262.fb
  23. Chaudhury A, Qu R. Somatic embryogenesis and plant regeneration of turf-type bermudagrass: Effect of 6-benzyladenine in callus induction medium. Plant Cell Tissue Organ Cult. 2000;60(2):113-20. http://doi.org/10.1023/A:1006456005961
  24. Goswami K, Yasmin S, Nasiruddin KM, Khatun F, Akte J. In vitro regeneration of Dendrobium sp. of orchid using leaf tip as explant. J Environ Sci Nat Resourc. 2015;8(2):75-78. http://doi.org/10.3329/jesnr.v8i2.26869
  25. Karimian R, Lahouti M, Davarpanah SJ. Effects of different concentrations of 2, 4-d and kinetin on callogenesis of Taxus brevifolia. Nut J Appl Biotechnol Rep. 2015;(4):167-70.
  26. Cui Y, Zhao P, An H, Lu N, Zhang Z, Pei W, Wang W. Initiation and cytological aspects of somatic embryogenesis in Dendrobium candidum (Wall. ex Lindl). Hort Science. 2017;52(8):1111-16. http://doi.org/10.21273/HORTSCI10525-17
  27. da Silva JAT, Winarto B. Somatic embryogenesis in two orchid genera (Cymbidium, Dendrobium). In: In vitro Embryogenesis in Higher Plants. Humana Press, New York; 2016. p. 371- 86. http://doi.org/10.1007/978-1-4939-3061-6_18
  28. Magray MM, Wani KP, Chatt MA, Ummyiah HM. Synthetic seed technology. Int J Curr Microb Applied Sci. 2017; 6(11):662-74.
  29. Yeung EC. A perspective on orchid seed and protocorm development. Bot Stud. 2017;58(1):33. http://doi.org/10.1186/s40529-017-0188-4
  30. Refish NMR, Wang L, Fu C, Xu X, Jin W, Li M, Yu L. Establishment and optimization of high efficiency embryogenic callus induction system in Dendrobium candidum. African J Plant Sci. 2016;10(4):77-83. http://doi.org/10.5897/AJPS2015.1389 .

Downloads

Download data is not yet available.