This is an outdated version published on 24-04-2025. Read the
most recent version.
Research Articles
Early Access
Influence of seasonal variability and meteorological factors on airborne bioaerosols in a high-altitude environment of Ooty, Western Ghats: Insights into bacterial dynamics
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Remote Sensing and GIS in Soil and Water Conservation Engineering, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Agro Climate Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Department of Remote Sensing and GIS, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
Abstract
Bioaerosols, comprising viable and non-viable biological particles, significantly influence atmospheric processes, climate modulation and human health. This study investigates the impact of climatic and atmospheric conditions on bioaerosol composition and microbial dynamics at high altitudes of Western Ghats, specifically at the ISRO ARFI Environmental Observatory in Ooty, Tamil Nadu, situated at 2520 meters above sea level. Bioaerosol samples were collected using a high-volume respirable dust sampler with a flow rate of 1.4 m³/min over an 8-hour sampling period. Microbial enumeration was conducted through culture-based methods, including spread plate, streak plate and slant culture techniques on nutrient agar, Rose Bengal agar and Ken Knights agar media.
Results revealed seasonal variations in bacterial colony-forming units (CFU), with peak concentrations recorded during the post-monsoon and winter months (October–January). CFU counts ranged from 50 to 169 CFU/m³, with the highest values observed in the central portion of the filter (169 ± 24.64 CFU/m³) and lower values in the peripheral region (134 ± 14.03 CFU/m³). Morphological characterisation and Gram staining of bacterial colonies indicated a diverse microbial population, with a predominance of Gram-positive rod-shaped bacteria. The study further highlighted that bacterial density was highest during February–May (134 ± 14.03 CFU/m³) and lowest between June–September (50 ± 10.72 CFU/m³), suggesting strong correlations with temperature, humidity and UV radiation.
The findings underscore the sensitivity of bioaerosol populations to altitude-related environmental stressors, aligning with previous studies that report reduced microbial diversity at higher elevations. This study enhances the understanding of airborne microbial ecology and provides a basis for future research employing molecular techniques, such as 16S rRNA sequencing, to elucidate microbial community dynamics. These insights are crucial for assessing bioaerosol contributions to atmospheric chemistry, air quality and potential public health implications.
References
- Garcia-Alcega S, Nasir ZA, Cipullo S, Ferguson R, Yan C, Whitby C, et al. Fingerprinting ambient air to understand bioaerosol profiles in three different environments in the Southeast of England. Sci Total Environ. 2020;719:137542. https://doi.org/10.1016/j.scitotenv.2020.137542
- Georgakopoulos DG, Després V, Fröhlich-Nowoisky J, Psenner R, Ariya PA, Pósfai M, et al. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles. Biogeosciences. 2009;6(4):721–37. https://doi.org/10.5194/bg-6-721-2009
- Viegas C, Coggins AM, Faria T, Caetano LA, Gomes AQ, Sabino R, et al. Fungal burden exposure assessment in podiatry clinics from Ireland. Int J Environ Health Res. 2018;28(2):167–77. https://doi.org/10.1080/09603123.2018.1447550
- Mandal J, Brandl H. Bioaerosols in indoor environment—a review with special reference to residential and occupational locations. Open Environ Biol Monit J. 2011;4(1):83–96. https://doi.org/10.2174/1875040001104010083
- Fahlgren C, Hagström Å, Nilsson D, Zweifel UL. Annual variations in the diversity, viability and origin of airborne bacteria. Appl Environ Microbiol. 2010;76(9):3015–25. https://doi.org/10.1128/AEM.02092-09
- Acosta-Martinez V, Van Pelt S, Moore-Kucera J, Baddock MC, Zobeck TM. Microbiology of wind-eroded sediments: Current knowledge and future research directions. Aeolian Res. 2015;18:99–113. https://doi.org/10.1016/j.aeolia.2015.06.001
- Després VR, Nowoisky JF, Klose M, Conrad R, Andreae MO, Pöschl U. Characterization of primary biogenic aerosol particles in urban, rural and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences. 2007;4(6):1127–41. https://doi.org/10.5194/bg-4-1127-2007
- Després VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, et al. Primary biological aerosol particles in the atmosphere: a review. Tellus B Chem Phys Meteorol. 2012;64(1):15598. https://doi.org/10.3402/tellusb.v64i0.15598
- Koch D, Schulz M, Kinne S, McNaughton C, Spackman JR, Balkanski Y, et al. Evaluation of black carbon estimations in global aerosol models. Atmos Chem Phys. 2009;9(22):9001–26. https://doi.org/10.5194/acp-9-9001-2009
- Duquenne P. On the identification of culturable microorganisms for the assessment of biodiversity in bioaerosols. Ann Work Expo Health. 2018;62(2):139–46. https://doi.org/10.1093/annweh/wxx095
- Burrows SM, Elbert W, Lawrence MG, Pöschl U. Bacteria in the global atmosphere–Part 1: Review and synthesis of literature data for different ecosystems. Atmos Chem Phys. 2009;9(23):9263–80. https://doi.org/10.5194/acp-9-9263-2009
- Fröhlich-Nowoisky J, Kampf CJ, Weber B, Huffman JA, Pöhlker C, Andreae MO, et al. Bioaerosols in the Earth system: Climate, health and ecosystem interactions. Atmos Res. 2016;182:346–76. https://doi.org/10.1016/j.atmosres.2016.07.018
- Escalante G, León CG, Giacomozzi B, Guzmán V, Mondaca MA, Urrutia R, et al. Unusual pathogenic bacterium isolated from microbial communities of bioaerosols at Chilean Patagonian lakes. Aerobiologia. 2014;30:323–31. https://doi.org/10.1007/s10453-014-9333-0
- Shree SN, Jayabalakrishnan RM, Maheswari M, Kumaraperumal R. Comparative analysis of aerosol optical properties over high altitude region of western ghats in southern India. Int J Environ Clim Chang. 2022;12(10):1060–66. https://doi.org/10.9734/ijecc/2022/v12i1030930
- Macher JM, First MW. Reuter centrifugal air sampler: measurement of effective airflow rate and collection efficiency. Appl Environ Microbiol. 1983;45(6):1960–62. https://doi.org/10.1128/aem.45.6.1960-1962.1983
- Xu Z, Yao M. Monitoring of bioaerosol inhalation risks in different environments using a six-stage Andersen sampler and the PCR-DGGE method. Environ Monit Assess. 2013;185:3993–4003. https://doi.org/10.1007/s10661-012-2847-5
- Madsen AM, Zervas A, Tendal K, Nielsen JL. Microbial diversity in bioaerosol samples causing ODTS compared to reference bioaerosol samples as measured using Illumina sequencing and MALDI-TOF. Environ Res. 2015;140:255–67. https://doi.org/10.1016/j.envres.2015.04.015
- Mat Hussin NH, Sann LM, Nor Shamsudin M, Hashim Z. Characterization of bacteria and fungi bioaerosol in the indoor air of selected primary schools in Malaysia. Indoor Built Environ. 2011;20(6):607–17. https://doi.org/10.1177/1420326X11415191
- Montazeri A, Zandi H, Teymouri F, Soltanianzadeh Z, Jambarsang S, Mokhtari M. Microbiological analysis of bacterial and fungal bioaerosols from burn hospital of Yazd (Iran) in 2019. J Environ Health Sci Eng. 2020;18(2):1121–30. https://doi.org/10.1007/s40201-020-00531-7
- Humbal C, Joshi SK, Trivedi U, Gautam S. Evaluating the colonization and distribution of fungal and bacterial bio-aerosol in Rajkot, western India using multi-proxy approach. Air Qual Atmos Health. 2019;12(3):315–26. https://doi.org/10.1007/s11869-019-00689-6
- Ma?ecka-Adamowicz M, Kubera ?, Jankowiak E, Dembowska E. Microbial diversity of bioaerosol inside sports facilities and antibiotic resistance of isolated Staphylococcus spp. Aerobiologia. 2019;35:731–42. https://doi.org/10.1007/s10453-019-09608-7
- Yan D, Zhang T, Bai JL, Su J, Zhao LL, Wang H, et al. Isolation, characterization and antimicrobial activity of bacterial and fungal representatives associated with particulate matter during haze and non-haze days. Front Microbiol. 2022;12:793037. https://doi.org/10.3389/fmicb.2021.793037
- Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D, et al. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Prot. 2011;30(8):1070–78. https://doi.org/10.1016/j.cropro.2011.02.013
- Buttner MP. Sampling and analysis of airborne microorganisms. Man Environ Microbiol. 1997:629–40.
- de Carvalho Ferreira HC, Weesendorp E, Quak S, Stegeman JA, Loeffen WLA. Quantification of airborne African swine fever virus after experimental infection. Vet Microbiol. 2013;165(3–4):243–51. https://doi.org/10.1016/j.vetmic.2013.03.007
- Adams RI, Tian Y, Taylor JW, Bruns TD, Hyvärinen A, Täubel M. Passive dust collectors for assessing airborne microbial material. Microbiome. 2015;3(1):1–11. https://doi.org/10.1186/s40168-015-0112-7
- Smith DJ, Jaffe DA, Birmele MN, Griffin DW, Schuerger AC, Hee J, et al. Free tropospheric transport of microorganisms from Asia to North America. Microb Ecol. 2012;64:973–85. https://doi.org/10.1007/s00248-012-0088-9
- Yoo K, Lee TK, Choi EJ, Yang J, Shukla SK, Hwang S, et al. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. J Environ Sci. 2017;51:234–47. https://doi.org/10.1016/j.jes.2016.07.013
- Maki T, Susuki S, Kobayashi F, Kakikawa M, Tobo Y, Yamada M, et al. Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City. Sci Total Environ. 2010;408(20):4556–62. https://doi.org/10.1016/j.scitotenv.2010.06.046.
- Abdelrahman HL, Abu-Rub H, Al Mana Y, Alhorr A, Al Thani, H Qotba, et al. Assessment of indoor air quality of four primary health care centers in Qatar. Microorganisms. 2022;10:2055.
- Bryan NC, Christner BC, Guzik TG, Granger DJ, Stewart MF. Abundance and survival of microbial aerosols in the troposphere and stratosphere. ISME J. 2019;13(11):2789–99. https://doi.org/10.1038/s41396-019-0477-1
- Uetake J, Tobo Y, Uji Y, Hill TCJ, DeMott PJ, Kreidenweis SM, et al. Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Front Microbiol. 2019;10:1572. https://doi.org/10.3389/fmicb.2019.01572
- Zhang Y, Jin Z, Sikand M. The top-of-atmosphere, surface and atmospheric cloud radiative kernels based on ISCCP-H datasets: method and evaluation. J Geophys Res Atmos. 2021;126(24):e2021JD035053. https://doi.org/10.1029/2021JD035053
- Priyanga S, Boomiraj K, Jothimani P, Kannan B, Dheebakaran G, Maheswari M. A decadal, temporal and seasonal variation of black carbon aerosol at high altitude region of Ooty, Tamil Nadu, India. Int J Environ Clim Chang. 2023;13(9):3414–25. https://doi.org/10.9734/ijecc/2023/v13i91197
- Tanaka D, Terada Y, Nakashima T, Sakatoku A, Nakamura S. Seasonal variations in airborne bacterial community structures at a suburban site of central Japan over a 1-year time period using PCR-DGGE method. Aerobiologia. 2015;31:143–57. https://doi.org/10.1007/s10453-014-9357-0
- Lymperopoulou DS, Adams RI, Lindow SE. Contribution of vegetation to the microbial composition of nearby outdoor air. Appl Environ Microbiol. 2016;82(13):3822–33. https://doi.org/10.1128/AEM.00610-16
- Huffman JA, Prenni AJ, DeMott PJ, Pöhlker C, Mason RH, Robinson NH, et al. High concentrations of biological aerosol particles and ice nuclei during and after rain. Atmos Chem Phys. 2013;13(13):6151–64. https://doi.org/10.5194/acp-13-6151-2013
Downloads
Download data is not yet available.