Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Stem rot (Sclerotium rolfsii) suppression and yield enhancement potential of native PGPR of peanut (Arachis hypogaea)

DOI
https://doi.org/10.14719/pst.7263
Submitted
17 January 2025
Published
08-05-2025
Versions

Abstract

Stem rot of peanut, caused by the fungus S. rolfsii, is a significant disease occurring worldwide and leads to considerable yield losses. Due to the adverse effects of chemical fungicides, biological control methods have gained importance in recent years. The efficacy of biocontrol can be enhanced by applying indigenous strains that effectively suppress and compete with in situ pathogenic microorganisms. In this study, native PGPR isolates from the genera Bacillus and Pseudomonas were isolated and tested for their antagonistic activity against S. rolfsii, growth-promoting ability and yield enhancement in peanuts under both in vitro and in vivo conditions. The potential PGPR isolates were subjected for partial sequencing of the 16S rRNA gene and identified as B. subtilis PB(20d), B. amyloliquefaciens PB(40d), B. subtilis PB(50d), Paenibacillus campinasensis PB(60d) and Pseudomonas aeruginosa PP(30d). The phylogenetic tree organized these strains into their clades alongside reference strains from the NCBI database. Results from pot culture and field experiments revealed that the treatment with the combination of identified PGPR strains exhibited a lower incidence of stem rot and a higher yield of peanuts compared to individual applications and control treatment. Therefore, the combined application of native PGPR strains has proven to be more effective in addressing the variability in the performance of individual biocontrol agents and improving overall efficacy.

References

  1. United States Department of Agriculture (USDA), PS & D Online updated 12/2024. Available from: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2221000.
  2. Bouchenak M, Lamri-Senhadji M. Nutritional quality of legumes and their role in cardiometabolic risk prevention (Review). J Med Food. 2013;16(3):185–98. https://doi.org/10.1089/jmf.2011.0238
  3. Bowen KL, Hagan AK, Weeks JR. Soil-borne pests of peanut in growers' fields with different cropping histories in Alabama. Peanut Sci. 1996;23:36–42. https://doi.org/10.3146/i0095-3679-23-1-7
  4. Akgul DS, Ozgonen H, Erk?l?c A. The effects of seed treatments with fungicides on stem rot caused by Sclerotium rolfsii Sacc. in peanut. Pak J Bot. 2011;43: 2991–6.
  5. Yu S, Wang T, Meng Y, Yao S, Wang L, Zheng H, et al. Leguminous cover crops and soya increased soil fungal diversity and suppressed pathotrophs caused by continuous cereal cropping. Front Microbiol. 2022;13: 993214. https://doi.org/10.3389/fmicb.2022.993214
  6. Paredes JA, Guzzo MC, Bernardi Lima N, Pérez A, González NR, Monguillot JH, et al. Trichoderma atroviride LR28 as a potential biocontrol agent against Thecaphora frezzii and inductor of biochemical responses in peanut. Crop
  7. Prot. 2025;191:107140. https://doi.org/10.1016/j.cropro.2025.107140
  8. Mohanty P, Singh PK, Chakraborty D, Mishra S, Pattnaik R. Insight into the PGPR in sustainable agriculture and environment. Front Sustain Food Syst. 2021;5:667150. https://doi.org/10.3389/fsufs.2021.667150
  9. Trinh LL, Nguyen AML, Nguyen HH. Root-associated bacteria Bacillus albus and Bacillus proteolyticus promote the growth of peanut seedlings and protect them from the aflatoxigenic Aspergillus flavus CDP2. Biocatal Agric Biotechnol. 2023;47:102582. https://doi.org/10.1016/j.bcab.2022.102582
  10. Hariprasad P, Chandrashekar S, Brijesh Singh S, Niranjana SR. Mechanisms of plant growth promotion and disease suppression by Pseudomonas aeruginosa strain 2apa. J Basic Microbiol. 2014:54(8):792-–801. https://doi.org/10.1002/jobm.201200491
  11. Li Y, Zhang X, He K, Song X, Yu J, Guo Z, et al. Isolation and identification of Bacillus subtilis LY-1 and its antifungal and growth-promoting effects. Plants (Basel). 2023;12(24): 4158. https://doi.org/10.3390/plants12244158
  12. Pradhan M, Sahoo RK, Pradhan C, Tuteja N, Mohanty S. Contribution of native phosphorous-solubilizing bacteria of acid soils on phosphorous acquisition in peanut (Arachis hypogaea L.). Protoplasma. 2017;254(6):2225–36. https://doi.org/10.1007/s00709-017-1112-1
  13. Xue H, Tu Y, Ma T, Jiang N, Piao C, Li Y. Taxonomic study of three novel Paenibacillus species with cold-adapted plant growth-promoting capacities isolated from root of Larix gmelinii. Microorganisms. 2023;11(1):130. https://doi.org/10.3390/microorganisms11010130
  14. Ma MC, Jiang X, Cao MF, Li J. Risk analysis and management measure on microorganism in microbial organic fertilizers. Qual Assur Saf Crops and Foods. 2019;6:57–61.
  15. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol. 2018;20(6):2142–59. https://doi.org/10.1111/1462-2920.14130
  16. Gupta V, Naresh KG, Buch A. Colonization by multi-potential Pseudomonas aeruginosa P4 stimulates peanut (Arachis hypogaea L.) growth, defence physiology and root system functioning to benefit the root-rhizobacterial interface. J Plant Physiol. 2020;248:153144. https://doi.org/10.1016/j.jplph.2020.153144
  17. Buch A, Gupta V. Bioinoculation with Pseudomonas aeruginosa P4 enhances the peanut root nodulation and nutrient status while enriching the plant-beneficial bacteria in rhizosphere. Rhizosphere.2024;30:100910. https://doi.org/10.1016/j.rhisph.2024.100910
  18. Kumar A, Munder A, Aravind R, Eapen SJ, Tümmler B, Raaijmakers JM. Friend or foe: Genetic and functional characterization of plant endophytic Pseudomonas aeruginosa. Environ Microbiol. 2013;15:764–79. https://doi.org/10.1111/1462-2920.12031
  19. Khan MS, Gao J, Zhang M, Xue J, Zhang X. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. PLoS One. 2022;17(6):e0269640. https://doi.org/10.1371/journal.
  20. pone.0269640
  21. Wu T, Xu J, Xie W, Yao Z, Yang H, Sun C, et al. Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front Microbiol. 2018;9:1087. https://doi.org/10.3389/fmicb.2018.01087
  22. Devi KA, Pandey G, Rawat AKS, Sharma GD, Pandey P. The endophytic symbiont Pseudomonas aeruginosa stimulates the antioxidant activity and growth of Achyranthes aspera L. Front. Microbiol. 2017;8:1897. https://doi.org/10.3389/fmicb.2017.01897
  23. Li HP, Han QQ, Liu QM, Gan YN, Rensing C, Rivera WL, et al. Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability, Microbiol Res. 2023;272:127375.
  24. Rangaswami G. Diseases of crop plants in India. New Delhi: Prentice Hall of India Pvt. Ltd. 1972; 520.
  25. Thilagavathi R, Rajendran L, Nakkeeran S, Raguchander T, Balakrishnan A, Samiyappan R. Vermicompost-based bioformulation for the management of sugar beet root rot caused by Sclerotium rolfsii. Arch Phytopathol Plant Prot. 2012;45(18):2243–50. https://doi.org/10.1080/03235408.2012.724974
  26. Weaver RW, Angle S, Bottomley P, Benzdick D. Methods of soil analysis. Part 2. Microbiological and biochemical properties. Soil Science Society of America Book Series; 1994. https://doi.org/10.2136/sssabookser5.2
  27. Schwyn B, Neilands JB. Universal CAS assay for the detection and determination of siderophores. Anal biochem. 1987;160:47–56. https://doi.org/10.1016/0003-2697(87)90612-9
  28. Pande VS, Chaube HS. Efficacy of Pseudomonads isolates on viability of sclerotia of Sclerotium rolfsii. J Mycol Plant Pathol. 2004;34:886–8.
  29. Melody SC. Plant molecular biology - A laboratory manual. Verlag, New York: USA Springer; 1997;529.
  30. Sambrook JF, Russel DW. Molecular cloning: a laboratory manual. 3rd edn. Vols. 1, 2 and 3. Cold Spring Harbor Laboratory Press. 2001;2100.
  31. Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.
  32. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9. https://doi.org/10.1093/molbev/mst197
  33. Vidhyasekaran P, Muthamilan M. Development of formulations of Pseudomonas fluorescens for control of chickpea wilt. Plant Dis. 1995;79:782–86. https://doi.org/10.1094/PD-79-0782
  34. Agres. Statistical Software Version 3.01. USA: Pascal International Software Solutions; 1994.
  35. Vahidinasab M, Adiek I, Hosseini B, Akintayo SO, Abrishamchi B, Pfannstiel J, et al. Characterisation of Bacillus
  36. velezensis UTB96, demonstrating improved lipopeptide production compared to the strain B. velezensis FZB42. Microorganisms. 2022;10:2225. https://doi.org/10.3390/microorganisms10112225
  37. Ajuna HB, Lim HI, Moon JH, Won SJ, Choub V, Choi SI, et al. The prospect of hydrolytic enzymes from Bacillus species in the biological control of pests and diseases in forest and fruit tree production. Int J Mol Sci. 2023;24:16889. https://doi.org/10.3390/ijms242316889
  38. Jia S, Song C, Dong H, Yang XJ, Li XH, Ji MS, et al. Evaluation of efficacy and mechanism of Bacillus velezensis CB13 for controlling peanut stem rot caused by Sclerotium rolfsii. Front Microbiol. 2023;14:1111965. https://doi.org/10.3389/fmicb.2023.1111965
  39. Liu B, Qiao H, Huang L, Buchenauer H, Han Q, Kang Z, et al. Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action, Biol Control 2009;49(3):277–85. https://doi.org/10.1016/j.biocontrol.2009.02.007.
  40. Andreolli M, Zapparoli G, Angelini E, Lucchetta G, Lampis S, Vallini G. Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens. Microbiol Res. 2019: 123–31.
  41. Poveda J, González-Andrés F. Bacillus as a source of phytohormones for use in agriculture. Appl Microbiol Biotechnol. 2021;105(23):8629–45. https://doi.org/10.1007/s00253-021-11492-8
  42. Liu L, Medison RG, Zheng T, Meng X, Sun Z, Zhou Y. Biocontrol potential of Bacillus amyloliquefaciens YZU-SG146 from Fraxinus hupehensis against Verticillium wilt of cotton. Biol Control 2023;183:105246. https://doi.org/10.1016/j.biocontrol.2023.105246
  43. Gupta AK, Verma J, Srivastava A, Srivastava S, Prasad V. Pseudomonas aeruginosa isolate PM1 effectively controls virus infection and promotes growth in plants. Arch Microbiol. 2022;204(8):494. https://doi.org/10.1007/s00203-022-03105-3
  44. Wang CJ, Wang YZ, Chu ZH, Wang PS, Liu BY, Li BY, et al. Endophytic Bacillus amyloliquefaciens YTB1407 elicits resistance against two fungal pathogens in sweet potato (Ipomoea batatas (L.) Lam.) J Plant Physiol. 2020;253:153260. https://doi.org/10.1016/j.jplph.2020.153260
  45. Radhakrishnan R, Hashem A, Abd Allah EF. Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse environments. Front Physiol. 2017;8:667. https://doi.org/10.3389/fphys.2017.00667
  46. Ruqiya S, Shivakumara KT, Aditya K, Kandan A, Sivakumar G, Prasannakumar MK, Pramesh D, et al. Paenibacillus lentimorbus induces autophagy for protecting tomato from Sclerotium rolfsii infection, Microbiol Res. 2018;215:164–74. https://doi.org/10.1016/j.micres.2018.07.008.
  47. Ongena M, Jacques P. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 2008;16(3):115–25. https://doi.org/10.1016/j.tim.2007.12.009
  48. Dixit R, Agrawal L, Singh SP, Prateeksha, Singh PC, Vivek Prasad, et al. Paenibacillus lentimorbus induces autophagy for protecting tomato from Sclerotium rolfsii infection, Microbiol Res. 2018;215:164–74. https://doi.org/10.1016/j.micres.2018.07.008
  49. Timmusk S, Grantcharova N, Wagner EG. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol. 2005;71(11):7292–300. https://doi.org/10.1128/AEM.71.11.7292-7300.2005
  50. Syed Ab, Rahman SF, Singh E, Pieterse CMJ, Schenk PM. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 2018;267:102–11. https://doi.org/10.1016/j.plantsci.2017.11.012
  51. Ling L, Zhao Y, Tu Y, Yang C, Ma W, Feng S, et al. The inhibitory effect of volatile organic compounds produced by Bacillus subtilis CL2 on pathogenic fungi of wolfberry. 2021;61(2):110–21. https://doi.org/10.1002/jobm.202000522
  52. Nguyen LTT, Kravchenko AN. Effects of cover crops on soil CO2 and N2O emissions across topographically diverse agricultural landscapes in corn-soybean-wheat organic transition. Eur J Agron. 2021;122:126189. https://doi.org/10.1016/j.eja.2020.126189
  53. Maslennikova VS, Tsvetkova VP, Shelikhova EV, Selyuk MP, Alikina TY, Kabilov MR, et al. Bacillus subtilis and Bacillus amyloliquefaciens mix suppresses Rhizoctonia disease and improves rhizosphere microbiome, growth and yield of potato (Solanum tuberosum L.). J fungi (Basel). 2023;9(12):1142. https://doi.org/10.3390/jof9121142

Downloads

Download data is not yet available.