This is an outdated version published on 09-10-2025. Read the
most recent version.
Review Articles
Early Access
Frankincense: A potential phytotherapeutic agent in cancer treatment
Biodiversity Unit, Dhofar University, Salalah 211, Oman
Biodiversity Unit, Dhofar University, Salalah 211, Oman
Biodiversity Unit, Dhofar University, Salalah 211, Oman
Biodiversity Unit, Dhofar University, Salalah 211, Oman
Abstract
Plant-isolated compounds are the roadmap for the modern pharmaceutical industry due to the anticancer activities of their bioactive constituents and metabolites. Boswellia sacra (Burseraceae) oleo gum resin has cytotoxic potential for the cure of various ailments, including infectious, inflammatory and arthritic diseases. Cancer is a complex health condition characterized by gene mutation and increased cell number. Worldwide, cancer is regarded as the most critical reason for morbidity and mortality. Traditional Chinese medicine, Ayurveda and Arab folk medicine all utilized it as an anticoagulant, antimicrobial, immunomodulatory and antidiabetic agent. Boswellic acids (BA), an active component of frankincense isolated from the dried gum resin of B. sacra has been utilized for the cure of several ailments, including inflammatory diseases, cancer, cerebral edema, asthma, chronic pain syndrome, arthritis, memory disorders and chronic bowel diseases since years. This study was designed to summarize the recent scientific knowledge regarding the anti-cancer properties of Frankincense (Olibanum), which is obtained from the B. sacra. However, further studies are required to elucidate its exact underlying molecular mechanisms in cancer treatment. Frankincense's ability to reduce inflammation is mediated by inhibition of several pathways like LOX, COX-2 pathway and downregulation of CXCR4, VEGF, NF-κB and matrix metalloproteinases MMPs. BA also displayed an anti-proliferative effect and induced apoptosis in several cancer cells, such as HCT-116 and MCF-7 cells. AKBA (3-O-acetyl-11-keto-β-boswellic acid) has been shown to activate extrinsic apoptotic pathways by causing the cleavage of procaspases and PARP and to inhibit the Wnt/β-catenin, PI3K/AKT and EGFR pathways, while activating the ATM/P53 signaling pathway. The therapeutic potential and anticancer properties of frankincense are still in the early stages of investigation. This review summarizes the efficacy of BA in various types of cancer and provides a wide scope of study on the anti-cancer properties of BA in terms of the development of novel drugs that would be more helpful both physically and economically.
References
- 1. Afsharypour S, Rahmani M. Essential oil constituents of two African olibanums available in Isfahan commercial market. Iran J Pharmacol Sci. 2005;1(3):167–70. https://doi.org/10.22037/ijps.v1.39508
- 2. Safayhi H, Rall B, Sailer ER, Ammon HP. Inhibition by boswellic acids of human leukocyte elastase. J Pharmacol Exp Ther. 1997;280(1):460–63. https://doi.org/10.1016/S0022-3565(24)36628-5
- 3. Yousef JM. Identifying Frankincense impact by biochemical analysis and histological examination on rats. Saudi J Biol Sci. 2011;18(2):189–94. https://doi.org/10.1016/j.sjbs.2010.10.005
- 4. Michie CA, Cooper E. Frankincense and Myrrh as remedies in children. J R Soc Med. 1991;84(10):602–05. https://doi.org/10.1177/014107689108401011
- 5. Siddiqul MZ. Boswellia serrata, a potential anti-inflammatory agent: An overview. Indian J Pharm Sci. 2011;73(3):255–61. https://doi.org/10.4103/0250-474X.93507
- 6. Lardos A, Prieto-Garcia J, Heinrich M. Resins and gums in historical iatrosophia texts from Cyprus– A botanical and medico pharmacological approach. Front Pharmacol. 2011;2:32. https://doi.org/10.3389/fphar.2011.00032
- 7. Ammon HP. Boswellic acids in chronic inflammatory diseases. Planta Med. 2006;72(12): 1100–16. https://doi.org/10.1055/s-2006-947227
- 8. Nusier MK, Bataineh HN, Bataineh ZM, Daradka HM. Effect of frankincense (Boswellia thurifera) on reproductive system in adult male rat. J Health Sci. 2007;53(3):365–70. https://doi.org/10.1248/jhs.53.365
- 9. Siemoneit U, Pergola C, Jazzar B, Northoff H, Skarke C, Jaunch J, et al. On the interference of boswellic acids with 5-lipoxygenase: mechanistic studies in vitro and pharmacological relevance. Eur J pharmacol. 2009;606(1-3):246–54. https://doi.org/10.1016/j.ejphar.2009.01.044
- 10. Roy NK, Deka A, Bordoloi D, Mishra S, Kumar AP, Sethi G, et al. The potential role of boswellic acids in cancer prevention and treatment. Cancer Lett. 2016;377(1):74–86. https://doi.org/10.1016/j.canlet.2016.04.017
- 11. Akihisa T, Tabata K, Banno N, Tokuda H, Nishihara R, Nakamura Y, et al. Cancer chemopreventive effects and cytotoxic activities of the triterpene acids from the resin of Boswellia carteri. Biol Pharm Bull. 2006;29(9):1976–79. https://doi.org/10.1248/bpb.29.1976
- 12. Calabrese V, Osakabe N, Khan F, Wenzel U, Modafferi S, Nicolasi L, et al. Frankincense: A neuronutrient to approach Parkinson’s disease treatment. Open Med. 2024;19(1):20240988. https://doi.org/10.1515/med-2024-0988
- 13. Chashoo G, Singh SK, Sharma PR, Mondhe DM, Hamid A, Saxena A, et al. A propionyloxy derivative of 11-keto-β-boswellic acid induces apoptosis in HL-60 cells mediated through topoisomerase I & II inhibition. Chem Biol Interact. 2011;189(1-2):60–71. https://doi.org/10.1016/j.cbi.2010.10.017
- 14. Calabro S, Alzoubi K, Faggio C, Laufer S, Lang F. Triggering of suicidal erythrocyte death following boswellic acid exposure. Cell Physio Biochem. 2015;37(1):131–42. https://doi.org/10.1159/000430339
- 15. Ahmed HH, Abd-Rabou AA, Hassan AZ, Kotob SE. Phytochemical analysis and anti-cancer investigation of Boswellia serrata bioactive constituents In vitro. Asian Pac J Cancer Prev. 2015;16(16):7179–88. https://doi.org/10.7314/APJCP.2015.16.16.7179
- 16. Kim HR, Kim MS, Kwon DY, Chae SW, Chae HJ. Boswellia serrata-induced apoptosis is related with ER stress and calcium release. Genes Nutr. 2008;2:371–74. https://doi.org/10.1007/s12263-007-0072-z
- 17. 1Safayhi H, Boden SE, Schweizer S, Ammon HP. Concentration-dependent potentiating and inhibitory effects of Boswellia extracts on 5-lipoxygenase product formation instimulated PMNL. Planta med. 2000;66(02):110–13. https://doi.org/10.1055/s-2000-11136
- 18. Zhang Y, Ning Z, Lu C, Zhao S, Wang J, Liu B, et al. Triterpenoid resinous metabolites from the genus Boswellia: pharmacological activities and potential species-identifying properties. Chem Cent J. 2013;7(1):1–16. https://doi.org/10.1186/1752-153X-7-153
- 19. Liu JJ, Nilsson A, Oredsson S, Badmaev V, Zhao WZ, Duan RD. Boswellic acids trigger apoptosis via a pathway dependent on caspase-8 activation but independent of Fas/Fas ligand interaction in colon cancer HT-29 cells. Carcinog. 2002;23(12):2087–93. https://doi.org/10.1093/carcin/23.12.2087
- 20. Lu M, Xia L, Hua H, Jing Y. Acetyl-keto-β-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res. 2008;68(4):1180–86. https://doi.org/10.1158/0008-5472.CAN-07-2978
- 21. Liu JJ, Duan RD. LY294002 enhances boswellic acid-induced apoptosis in colon cancer cells. Anticancer Res. 2009;29(8):2987–91.
- 22. Park B, Sung B, Yadav VR, Cho SG, Liu M, Aggarwal BB. Acetyl-11-keto-β-boswellic acid suppresses the invasion of pancreatic cancer cells through the downregulation of CXCR4 chemokine receptor expression. Int J Cancer. 2011;129(1):23–33. https://doi.org/10.1002/ijc.25966
- 23. Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, et al. Acetyl-11-keto-β-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2–mediated angiogenesis. Cancer Res. 2009;69(14):5893–900. https://doi.org/10.1158/0008-5472.CAN-09-0755
- 24. Park B, Prasad S, Yadav V, Sung B, Aggarwal BB. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PlosOne. 2011;6(12):e26943. https://doi.org/10.1371/journal.pone.0026943
- 25. Yuan Y, Cui SX, Wang Y, Ke HN, Wang RQ, Lou HX, et al. RETRACTED: Acetyl-11-keto-beta-boswellic acid (AKBA) prevents human colonic adenocarcinoma growth through the modulation of multiple signaling pathways. Biochem Biophys Acta. 2013;1830(10):4907–16. https://doi.org/10.1016/j.bbagen.2013.06.039
- 26. Syrovets T, Buchele B, Gedig E, Slupsky JR, Simmet T. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIα. Mol Pharmacol. 2000;58(1):71–81. https://doi.org/10.1124/mol.58.1.71
- 27. Jamshidi-Adegani F, Ghaemi S, Al-Hashmi S, Vakilian S, Al-Kindi J, Rehman NU, et al. Comparative study of the cytotoxicity, apoptotic and epigenetic effects of Boswellic acid derivatives on breast cancer. Sci Rep. 2022;12(1):19979. https://doi.org/10.1038/s41598-022-24229-y
- 28. Al-Harrasi A, Al-Saidi S. Phytochemical analysis of the essential oil from botanically certified Oleogum resin of Boswellia sacra (Omni Luban). Mol. 2008;13(9):2181–89. https://doi.org/10.3390/molecules13092181
- 29. Rijkers T, Ogbazghi W, Wessel M, Bongers F. The effect of tapping for frankincense on sexual reproduction in Boswellia papyrifera. J Appl Ecol. 2006;43(6):1188–95. https://doi.org/10.1111/j.1365-2664.2006.01215.x
- 30. Schmiech M, Ulrich J, Lang SJ, Buchele B, Paetz C, St-Gelais A, et al. 11-keto-α-boswellic acid, a novel triterpenoid from Boswellia spp. with chemotaxonomic potential and antitumor activity against triple-negative breast cancer cells. Mol. 2021;26(2):366. https://doi.org/10.3390/molecules26020366
- 31. Goyal S, Sharma P, Ramchandani U, Shrivastava SK, Dubey PK. Novel anti-inflammatory topical herbal gels containing Withania somnifera and Boswellia serrata. Int J Pharm Biol Arch. 2011;2: 1087–94.
- 32. Tschirch A, Halbey. Untersuchungen uber die sekrete. Ueber das olibanum. Arch Pharm (Weinheim). 1898;236(5–8):487–503. https://doi.org/10.1002/ardp.18982360517
- 33. Snatzke G, Vertesy L. Uber die neutralen sesqui-und triterpene des Weihrauchs. Monatsh Chem. 1967;98:121–32. https://doi.org/10.1007/BF00901106
- 34. Allan GG. The stereochemistry of the boswellic acids. Phytochem. 1968;7(6):963–73. https://doi.org/10.1016/S0031-9422(00)82183-4
- 35. Niebler J, Buettner, A. Identification of odorants in frankincense (Boswellia sacra Flueck.) by aroma extract dilution analysis and two-dimensional gas chromatography–mass spectrometry/olfactometry. Phytochem. 2015;109:66–75. https://doi.org/10.1016/j.phytochem.2014.10.030
- 36. Elnawasany S, Haggag YA, Shalaby SM. Anti-cancer effect of nano-encapsulated boswellic acids, curcumin and naringenin against HepG-2 cell line. Complement Med Ther. 2023;23(1):270. https://doi.org/10.1186/s12906-023-04096-4
- 37. Mashhadi FF, Salimi S, Forouzandeh F, Naghsh N. Comparison of anticancer activity of hydroalcoholic extracts of Curcuma longa L., Peganum harmala L. and Boswellia serrata on HeLa cells. Jundishapur J Nat Pharm Prod. 2017;12(2):e37336 https://doi.org/10.5812/jjnpp.37336
- 38. Shah SA, Rathod IS, Suhagina BN, Pandya SS, Parmar VK. A simple High-perhormance liquid chromatographic method for estimation of boswellic acids from the market formulation containing Boswellia serrata extract. J Chromatogr Sci. 2008;46:735–38. https://doi.org/10.1093/chromsci/46.8.735
- 39. Sharma T, Jana S. Boswellic acids as natural anticancer medicine: precious gift to humankind. J Herb Med. 2019;20:100313. https://doi.org/10.1016/j.hermed.2019.100313
- 40. Yazdanpanahi N, Behbahani M, Yektaeian A. Effect of Boswellia thurifera gum methanol extract on cytotoxicity and P53 gene expression in human breast cancer cell line. Iran J Pharm Res. 2014;13:719–24. https://doi.org/10.22037/ijpr.2014.1507
- 41. Bhushan S, Kumar A, Malik F, Andotra SS, Sethi VK, Kaur IP, et al. A triterpenediol from Boswellia serrata induces apoptosis through both the intrinsic and extrinsic apoptotic pathways in human leukemia HL-60 cells. Apoptosis. 2007;12:1911–26. https://doi.org/10.1007/s10495-007-0105-5
- 42. Suhail MM, Wu W, Cao A, Mondalek FG, Fung KM, Shih PT, et al. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells. Complement Altern Med. 2011;11:1–14. https://doi.org/10.1186/1472-6882-11-129
- 43. Frank MB, Yang Q, Osban J, Azzarello JT, Saban MR, Saban R, et al. Frankincense oil derived from Boswellia carteri induces tumor cell specific cytotoxicity. Complement Altern Med. 2009;9:6. https://doi.org/10.1186/1472-6882-9-6
- 44. Hussain H, Wang D, El-Seedi HR, Rashan L, Ahmed I, Abbas M, et al. Therapeutic potential of boswellic acids: An updated patent review (2016–2023). Expert Opi Ther Pat. 2024;34(8):723–32. https://doi.org/10.1080/13543776.2024.2369626
- 45. Al Serwi RH, Darwish SF, Mahran YF. Growth hormone modulates the inflammatory and apoptotic pathways incorporated in fuorouracil-induced oral mucositis in rats. Egypt Dent J. 2020;66:327–36. https://doi.org/10.21608/edj.2020.77550
- 46. Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, et al. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res. 2019;144:192–209. https://doi.org/10.1016/j.phrs.2019.04.004
- 47. Kunnumakkara AB, Bordoloi D, Sailo BL, Roy NK, Thakur KK, Banik K, et al. Cancer drug development: The missing links. Exp Biol Med. 2019;244(8):663–89. https://doi.org/10.1177/1535370219839163
- 48. Shanmugam MK, Warrier S, Kumar AP, Sethi G, Arfuso F. Potential role of natural compounds as anti-angiogenic agents in cancer. Curr Vasc Pharmacol. 2017;15(6):532–52. https://doi.org/10.2174/1570161115666170713094319
- 49. Eferth T, Oesch F. Anti-inflammatory and anti-cancer activities of frankincense: targets, treatments and toxicities. Semin Cancer Biol. 2022;80:39–57. https://doi.org/10.1016/j.semcancer.2020.01.015
- 50. Estrada AC, Syrovets T, Pitterle K, Lunov O, Buchele B, Schimana-Pfeifer J, et al. Tirucallic acids are novel pleckstrin homology domain-dependent Akt Inhibitors inducing apoptosis in prostate cancer cells. Mol Pharmacol. 2010;77(3):378–87. https://doi.org/10.1124/mol.109.060475
- 51. Alam M, Khan H, Samiullah L, Siddique KM. A review on phytochemical and pharmacological studies of Kundur (Boswellia serrata Roxb Ex Colebr.)- A Unani Drug. J Appl Pharm Sci. 2012;2:148–56.
- 52. Xia L, Chen D, Han R. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells. Mol Cancer Ther. 2005;4(3):381–88. https://doi.org/10.1158/1535-7163.MCT-03-0266
- 53. Raja AF, Ali F, Khan IA, Shawl AS, Arora DS. Acetyl-11-keto-β-boswellic acid (AKBA); targeting oral cavity pathogens. Res Notes. 2011;4(1):1–8. https://doi.org/10.1186/1756-0500-4-406
- 54. Mazzio EA, Lewis CA, Soliman KF. Transcriptomic profiling of MDA-MB-231 cells exposed to Boswellia serrata and 3-O-Acetyl-B-boswellic acid; ER/UPR mediated programmed cell death. Cancer Genom Proteom. 2017;14(6):409–25. https://doi.org/10.21873/cgp.20051
- 55. Thummuri D, Jeengar MK, Shrivastava S, Areti A, Yerra VG, Yamjala S, et al. Boswellia ovalifoliolata abrogates ROS mediated NF-κB activation and causes apoptosis and chemosensitization in triple- negative breast cancer cells. Environ Toxicol Pharmacol. 2014;38(1):58–70. https://doi.org/10.1016/j.etap.2014.05.002
- 56. Bonucci M, Fioranelli M, Roccia MG, Nardo V, Carolina JA, Lotti T. Use of boswellia-based cream for prevention of adjuvant radiotherapy skin damage in mammary carcinoma. Dermatol Ther. 2016;29(6):393. https://doi.org/10.1111/dth.12351
- 57. Ni X, Suhail MM, Yang Q, Cao A, Fung KM, Postier RG, et al. Frankincense essential oil prepared from hydrodistillation of Boswellia sacra gum resins induces human pancreatic cancer cell death in cultures and in a xenograft murine model. Complement Altern Med. 2012;12(1):1–14. https://doi.org/10.1186/1472-6882-12-253
- 58. Becer E, Kabadayı H, Baser KH, Vatansever HS. Boswellia sacra essential oil manages colon cancer stem cells' proliferation and apoptosis: A new perspective for cure. J Essent Oil Res. 2021;33(1):53–62. https://doi.org/10.1080/10412905.2020.1839586
- 59. Schmiech M, Lang SJ, Ulrich J, Werner K, Rashan LJ, Syrovets T, et al. Comparative investigation of frankincense nutraceuticals: correlation of boswellic and lupeolic acid contents with cytokine release inhibition and toxicity against triple-negative breast cancer cells. Nutr. 2019;11(10):2341. https://doi.org/10.3390/nu11102341
- 60. Yosseff AR, Nafea H, El-Tahtawy OM, Rashan L, El-Shazly M, Youness RA. Refining triple negative breast cancer targeted therapy: special focus on tyrosine kinase receptors. Breast Cancer. 2022. p. 24-46
- 61. Khwairakpam AD, Monisha J, Banik K, Choudhary H, Sharma A, Bordoloi D, et al. Chemoresistance in brain cancer and different chemosensitization approaches. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific; 2018. p. 107–27. https://doi.org/10.1142/9789813208575_0005
- 62. Gautam R, Jachak SM. Recent developments in anti-inflammatory natural products. Med Res Rev. 2009;29(5):767–820. https://doi.org/10.1002/med.20156
- 63. Raghupathi W, Raghupathi V. An empirical study of chronic diseases in the United States: A visual analytics approach. Int J Environ Res Public Health. 2018;15(3):431. https://doi.org/10.3390/ijerph15030431
- 64. Li W, Liu J, Fu W, Zeng X, Ren L, Liu S, et al. 3-O-acetyl-11-keto-beta-boswellic acid exerts anti-tumor effects in glioblastoma by arresting the cell cycle at the G2/M phase. J Exp Clin Cancer Res. 2018;37:1-15. https://doi.org/10.1186/s13046-018-0805-4
- 65. Glaser T, Winter S, Groscurth P, Safayhi H, Sailer ER, Ammon HP, et al. Boswellic acids and malignant glioma: Induction of apoptosis but no modulation of drug sensitivity. Br J Cancer. 1999;80(5):756–65. https://doi.org/10.1038/sj.bjc.6690419
- 66. Conti S, Vexler A, Edry-Botzer L, Kalich-Philosoph L, Corn BW, Shtraus N, et al. Combined acetyl-11-keto-beta-boswellic acid and radiation treatment inhibited glioblastoma tumor cells. PLoSOne. 2018;13(7):e0198627. https://doi.org/10.1371/journal.pone.0198627
- 67. Ravanan P, Singh SK, Rao GS. Growth inhibitory, apoptotic and anti-inflammatory activities displayed by a novel modified triterpenoid, cyano enone of methyl boswellates. J Biosci. 2011;36:297–307. https://doi.org/10.1007/s12038-011-9056-7
- 68. Bone K. Boswellia: A new herbal breakthrough for osteoarthritis.
- 69. Suleiman M, Rashan L. Case report of patient with gliosarcoma treated with surgery, radiochemotherapy and Boswellia sacra preparation. Phytother. 2022;43(S01):P52.
- 70. Liu JJ, Nilsson A, Oredsson S, Badmaev V, Duan RD. Keto- and acetyl-keto-boswellic acids inhibit proliferation and induce apoptosis in HepG2 cells via a caspase-8-dependent pathway. Int J Mol Med. 2002;10(4):501–05. https://doi.org/10.3892/ijmm.10.4.501
- 71. Liu JJ, Huang B, Hooi SC. Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol. 2006;148(8):1099–107. https://doi.org/10.1038/sj.bjp.0706817
- 72. Wang R, Wang Y, Gao Z, Qu X. The comparative study of acetyl-11-keto-beta-boswellic acid (AKBA) and aspirin in the prevention of intestinal adenomatous polyposis in APC(Min/+) mice. Drug Discov Ther. 2014;8(1):25–32. https://doi.org/10.5582/ddt.8.25
- 73. Yadav VR, Prasad S, Sung B, Gelovani JG, Guha S, Krishnan S, et al. Boswellic acid inhibits growth and metastasis of human colorectal cancer in the orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. Int J Cancer. 2012;130(9):2176–84. https://doi.org/10.1002/ijc.26251
- 74. Liu JJ, Huang B, Hooi SC. Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol. 2006;148(8):1099–107. https://doi.org/10.1038/sj.bjp.0706817
- 75. Wang D, Ge S, Bai J, Song Y. Boswellic acid exerts potent anticancer effects in HCT-116 human colon cancer cells mediated via induction of apoptosis, cell cycle arrest, cell migration inhibition and inhibition of PI3K/AKT signalling pathway. J BUON. 2018;23(2):340–45.
- 76. Shen Y, Takahashi M, Byun HM, Link A, Sharma N, Balaguer F, et al. Boswellic acid induces epigenetic alterations by modulating DNA methylation in colorectal cancer cells. Cancer Biol Ther. 2012;13(7):542–52. https://doi.org/10.4161/cbt.19604
- 77. Takahashi M, Sung B, Shen Y, Hur K, Link A, Boland CR, et al. Boswellic acid exerts antitumor effects in colorectal cancer cells by modulating expression of the let-7 and miR-200 microRNA family. Carcinogenesis. 2012;33(12):2441–49. https://doi.org/10.1093/carcin/bgs286
- 78. Toden S, Okugawa Y, Buhrmann C, Nattamai D, Anguiano E, Baldwin N, et al. Novel evidence for curcumin and boswellic acid-induced chemoprevention through regulation of miR-34a and miR-27a in colorectal cancer. Cancer Prev Res. 2015;8(5):431–43. https://doi.org/10.1158/1940-6207.CAPR-14-0354
- 79. Ranjbarnejad T, Saidijam M, Moradkhani S, Najafi R. Methanolic extract of Boswellia serrata exhibits anti-cancer activities by targeting microsomal prostaglandin E synthase-1 in human colon cancer cells. Prostaglandins Other Lipid Mediat. 2017;131:1–8. https://doi.org/10.1016/j.prostaglandins.2017.05.003
- 80. Khan S, Kaur R, Shah BA, Malik F, Kumar A, Bhushan S, et al. A novel cyano derivative of 11-keto-beta-boswellic acid causes apoptotic death by disrupting PI3K/AKT/Hsp-90 cascade mitochondrial integrity and other cell survival signaling events in HL-60 cells. Mol Carcinog. 2012;51(9):679–95. https://doi.org/10.1002/mc.20821
- 81. Shao Y, Ho CT, Chin CK, Badmaev V, Ma W, Huang MT. Inhibitory activity of boswellic acids from Boswellia serrata against human leukemia HL-60 cells in culture. Planta Med. 1998;64 (4):328–31. https://doi.org/10.1055/s-2006-957444
- 82. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. A Global cancer statistics, 2012. CA: A Cancer J Clin. 2015;65(2):87–108. https://doi.org/10.3322/caac.21262
- 83. Zhang J, Sikka S, Siveen KS, Lee JH, Um JY, Kumar AP, et al. Cardamonin represses proliferation, invasion and causes apoptosis through the modulation of signal transducer and activator of transcription 3 pathway in prostate cancer. Apoptosis. 2017;22:158–68. https://doi.org/10.1007/s10495-016-1313-7
- 84. Padmavathi G, Monisha J, Banik K, Thakur KK, Choudhary H, Bordoloi D, et al. Different chemosensitization approaches to overcome chemoresistance in prostate cancer. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific; 2018. p. 583–613. https://doi.org/10.3390/molecules25102278
- 85. Liu YQ, Wang SK, Xu QQ, Yuan HQ, Guo YX, Wang Q, et al. Acetyl-11-keto-beta-boswellic acid suppresses docetaxel-resistant prostate cancer cells In vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties. Acta Pharmacol Sin. 2019;40(5):689–98. https://doi.org/10.1038/s41401-018-0157-9
- 86. Syrovets T, Gschwend JE, Buchele B, Laumonnier Y, Zugmaier W, Genze F, et al. Inhibition of IκB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells In vitro and in vivo. J Biol Chem. 2005;280(7):6170–80. https://doi.org/10.1074/jbc.M409477200
- 87. Yuan HQ, Kong F, Wang XL, Young CY, Hu XY, Lou HX. Inhibitory effect of acetyl-11-keto-beta-boswellic acid on androgen receptor by interference of Sp1 binding activity in prostate cancer cells. Biochem Pharmacol. 2008;75(11):2112–21. https://doi.org/10.1016/j.bcp.2008.03.005
- 88. Manu KA, Shanmugam MK, Ong TH, Subramaniam A, Siveen KS, Perumal E, et al. Emodin suppresses migration and invasion through the modulation of CXCR4 expression in an orthotopic model of human hepatocellular carcinoma. PLoS One. 2013;8(3):e57015. https://doi.org/10.1371/journal.pone.0057015
- 89. Mohan CD, Bharathkumar H, Bulusu KC, Pandey V, Rangappa S, Fuchs JE, et al. Development of a novel azaspirane that targets the Janus kinase-signal transducer and activator of transcription (STAT) pathway in hepatocellular carcinoma in vitro and in vivo. J Biol Chem. 2014;289(49):34296–307. https://doi.org/10.1074/jbc.M114.601104
- 90. Dai X, Wang L, Deivasigamni A, Looi CY, Karthikeyan C, Trivedi P, et al. A novel benzimidazole derivative, MBIC inhibits tumor growth and promotes apoptosis via activation of ROS-dependent JNK signaling pathway in hepatocellular carcinoma. Oncotarget. 2017;8(8):12831–42. https://doi.org/10.18632/oncotarget.14606
- 91. Singh AK, Roy NK, Anip A, Banik K, Monisha J, Bordoloi D, et al. Different methods to inhibit chemoresistance in hepatocellular carcinoma. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific; 2018. p. 373–98. https://doi.org/10.1142/9789813208575_0013
- 92. Wang S, Wang H, Sun B, Li D, Wu J, Li J, et al. Acetyl-11-keto-β-boswellic acid triggers premature senescence via the induction of DNA damage accompanied by impairment of DNA repair genes in hepatocellular carcinoma cells in vitro and in vivo. Fundam Clin Pharmacol. 2020;34(1):65–76. https://doi.org/10.1111/fcp.12488
- 93. Zheng P, Huang Z, Tong DC, Zhou Q, Tian S, Chen BW, et al. Frankincense and myrrh attenuate hepatocellular carcinoma by regulating tumor blood vessel development through multiple epidermal growth factor receptor-mediated signaling pathways. World J Gastrointest Oncol. 2022;14(2):450. https://doi.org/10.4251/wjgo.v14.i2.450
- 94. Sailo BL, Monisha J, Jaiswal A, Prakash J, Roy NK, Thakur KK, et al. Molecular alterations involved in pancreatic cancer chemoresistance and chemosensitization strategies. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific; 2018. p. 557–81. https://doi.org/10.1142/9789813208575_0018
- 95. Trivedi VL, Soni R, Dhyani P, Sati P, Tejada S, Sureda A, et al. Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent. Front Pharmacol. 2023;14:1187181. https://doi.org/10.3389/fphar.2023.1187181
- 96. Monisha J, Roy NK, Sharma A, Banik K, Padmavathi G, Bordoloi D, et al. Chemoresistance and chemosensitization in melanoma. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific; 2018. p. 479–527. https://doi.org/10.1142/9789813208575_0016
- 97. Hakkim FL, Bakshi HA, Khan S, Nasef M, Farzand R, Sam S, et al. Frankincense essential oil suppresses melanoma cancer through downregulation of Bcl-2/Bax cascade signaling and ameliorates hepatotoxicity via phase I and II drug metabolizing enzymes. Oncotarget. 2019;10(37):3472. https://doi.org/10.18632/oncotarget.26930
- 98. Parmar S, Easwaran H. Genetic and epigenetic dependencies in colorectal cancer development. Gastroenterol Rep. 2022;10:goac035. https://doi.org/10.1093/gastro/goac035
- 99. Huang G, Yang J, Zhang L, Cao L, Zhang M, Niu X, et al. Inhibitory effect of 11-carbonyl-beta-boswellic acid on non-small cell lung cancer H446 cells. Biochem Biophys Res Commun. 2018;503(4):2202–05. https://doi.org/10.1016/j.bbrc.2018.06.137
- 100. Qurishi Y, Hamid A, Sharma PR, Wani ZA, Mondhe DM, Singh SK, et al. PARP cleavage and perturbance in mitochondrial membrane potential by 3-alpha-propionyloxy-beta-boswellic acid results in cancer cell death and tumor regression in murine models. Future Oncol. 2012;8(7):867–81. https://doi.org/10.2217/fon.12.68
- 101. Bhardwaj P, Kumar M, Dhatwalia SK, Garg ML, Dhawan DK. Acetyl-11-keto-β-boswellic acid modulates membrane dynamics in benzo(a)pyrene-induced lung carcinogenesis. Mol Cell Biochem. 2019;460:17–27. https://doi.org/10.1007/s11010-019-03566-z
- 102. Lv M, Zhuang X, Zhang Q, Cheng Y, Wu D, Wang X, et al. Acetyl-11-keto-β-boswellic acid enhances the cisplatin sensitivity of non-small cell lung cancer cells through cell cycle arrest, apoptosis induction and autophagy suppression via p21-dependent signaling pathway. Cell Biol Toxicol. 2021;37(2):209–28. https://doi.org/10.1007/s10565-020-09541-5
- 103. Gong C, Li W, Wu J, Li YY, Ma Y, Tang LW. Acetyl-11-keto-β-boswellic acid AKBA inhibits radiotherapy resistance in lung cancer by inhibiting maspin methylation and regulating the AKT/FOXO1/p21 axis. J Radiat Res. 2022;64(1):33–43. https://doi.org/10.1093/jrr/rrac064
- 104. Roy NK, Sharma A, Singh AK, Bordoloi D, Sailo BL, Monisha J, et al. Bladder cancer: chemoresistance and chemosensitization. In: Cancer cell chemoresistance and chemosensitization. Singapore. World Scientific: 2018. p. 51–80. https://doi.org/10.1142/9789813208575_0003
- 105. Halaseh SA, Halaseh S, Alali Y, Ashour ME, Alharayzah MJ. A review of the etiology and epidemiology of bladder cancer: all you need to know. Cureus. 2022;14(7). https://doi.org/10.7759/cureus.27330
- 106. Mattiuzzi C, Lippi G. Cancer statistics: A comparison between world health organization (WHO) and global burden of disease (GBD). Eur J Public Health. 2020;30(5):1026–27. https://doi.org/10.1093/eurpub/ckz216
- 107. Asthana S, Busa V, Labani S. Oral contraceptives use and risk of cervical cancer- A systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;247:163–75. https://doi.org/10.1016/j.ejogrb.2020.02.014
Downloads
Download data is not yet available.