Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Exploring the influence of plant extracts on silkworm growth and health: A review

DOI
https://doi.org/10.14719/pst.7300
Submitted
20 January 2025
Published
05-08-2025 — Updated on 16-08-2025
Versions

Abstract

The quality and productivity of cocoon production remain a major concern for the Indian sericulture industry. Enhancing the nutritional quality of mulberry leaves can lead to improved efficiency in cocoon and seed production. Among the various approaches being considered, enhancing the nutritional quality of mulberry leaves by fortifying and improving the economic traits and silk productivity seems to be a promising strategy. In this situation, using plant extracts during silkworm rearing emerged as a viable option to achieve this goal. The bioactive compounds present in plant extract have been shown to have positive effects on silkworms by enhancing food intake, increasing biomass and thereby improving cocoon yield. Although much research has been done in this area, the strategies proposed for its application are often insufficient to address current productivity challenges. This review aims to collect and analyse available data and information on the application of plant extracts to improve the economic characteristics of the silkworm (Bombyx mori L). By integrating these results, this review aims to provide information to help develop more effective strategies to improve cocoon production and quality for commercial silkworm rearing in the future.

References

  1. 1. Fibre2Fashion. The upward journey of South India's silk. Fibre2Fashion [Internet]; 2015 [cited 2024 Dec 26]. Available from: https://www.fibre2fashion.com/industry-article/7503/the-upward-journey-of-south-indias-silk
  2. 2. Jyothi S, Mamatha DM, Raju PJ, Sultana S, Seetharamulu J. A study on the sericulture farm automation system using the Internet of Things (IoT). In: Jyothi S, Mamatha DM, Zhang YD, Raju KS, editors. Proceedings of the 2nd International Conference on Computational and Bio Engineering. Lecture Notes in Networks and Systems. Singapore: Springer 2021;15. https://doi.org/10.1007/978-981-16-1941-0_40
  3. 3. Central Silk Board, Ministry of Textiles. Annual report. Bengaluru: Government of India; 2023 [cited 2024 Dec 26]. Available from: https://csb.gov.in/wp-content/uploads/2024/05/1-AR-2022-23-Final-Low.pdf
  4. 4. Bukhari R, Kour H. Background, current scenario and future challenges of the Indian silk industry. Int J Curr Microbiol Appl Sci. 2019;8(5):2448–63. https://doi.org/10.20546/ijcmas.2019.805.289
  5. 5. Neog K, Unni B, Ahmed G. Studies on the influence of host plants and effect of chemical stimulants on the feeding behaviour in the Muga silkworm, Antheraea assamensis. J Insect Sci. 2011;11(133):1–16. https://doi.org/10.1673/031.011.13301
  6. 6. Gupta SK, Dubey RK. Environmental factors and rearing techniques affecting the rearing of silkworm and cocoon production of Bombyx mori Linn. Acta Entomol Zool. 2021;2(2):62–67. https://doi.org/10.33545/27080013.2021.v2.i2a.46
  7. 7. Gobena WS, Bhaskar RN. Fortification of mulberry leaves with medicinal botanical plant extracts effect on silkworm, Bombyx mori L. (PM× CSR2) (Lepidoptera: Bombycidae) larval growth and cocoon traits. J Biol Sci. 2015;15(4):199–206. https://doi.org/10.3923/jbs.2015.199.206
  8. 8. Devi VP, Bai RM. Antifungal effect of Ocimum sanctum L. against white muscardine disease of silkworm, Bombyx mori L. J Biopest. 2014;7(2):205–09. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84920283663&partnerID=40&md5=3eef2ab24a79f6801701dfd140c289d0
  9. 9. Anantaworasakul P, Hamamoto H, Sekimizu K, Okonogi S. In vitro antibacterial activity and in vivo therapeutic effect of Sesbania grandiflora in bacterial infected silkworms. Pharm Biol. 2017;55(1):1256–62. https://doi.org/10.1080/13880209.2017.1297467
  10. 10. Kumar KPK, Singh GP, Sinha AK, Madhusudha KN, Prasad BC. Antiviral action of certain medicinal plants against AmCPV and their effect on cellular and biochemical changes in Tasar silkworm, Antheraea mylitta D. Res J Med Plant. 2011;6(1):92–99. https://doi.org/10.3923/rjmp.2012.92.99
  11. 11. Shivakumar GR, Raman KVA, Magadum SB, Datta RK, Hussain SS, Banerji A, Chowdhary SK. Effect of phytoecdysteroids on the spinning, cocoon and reeling parameters of the silkworm, Bombyx mori L. Allelopathy J. 1996;3(1):71–76. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-1342313374&partnerID=40&md5=cf7b431b99bb80b529cff85f81a6ba7d
  12. 12. Nair SK, Nair JS, Vijayan VA. Phyto-juvenile hormone for augmentation in cocoon yield in silkworm, Bombyx mori L. J Biopest. 2010;3(1):212–26. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-79951746167&partnerID=40&md5=5e793be9f6f666bb7fa0ddd6cb051fff
  13. 13. Mahanta DK, Komal J, Samal I, Bhoi TK, Dubey VK, Pradhan K, et al. Nutritional aspects and dietary benefits of “Silkworms”: Current scenario and future outlook. Front Nutr. 2023;10:1121508. https://doi.org/10.3389/fnut.2023.1121508
  14. 14. Ruth L, Ghatak S, Subbarayan S, Choudhury BN, Gurusubramanian G, Kumar NS, Bin T. Influence of micronutrients on the food consumption rate and silk production of Bombyx mori (Lepidoptera: Bombycidae) reared on mulberry plants grown in a mountainous agro-ecological condition. Front Physiol. 2019;10:878. https://doi.org/10.3389/fphys.2019.00878
  15. 15. Matei A, Tanase DB, Diaconescu C, Constantinescu M, Dolis M. Contributions to the study of the leaf protein value in different mulberry varieties. Archiva Zootechnica. 2006;9:153–57.
  16. 16. Muzamil A, Tahir HM, Ali A, Bhatti MF, Munir F, Ijaz F, et al. Effect of amino acid fortified mulberry leaves on economic and biological traits of Bombyx mori L. Heliyon. 2023;9(10):e21053. https://doi.org/10.1016/j.heliyon.2023.e21053
  17. 17. Islam T, Khan IL, Ganie NA, Sahaf KA, Jan N, Gora MM. Impact of egg albumen (egg white) fortified mulberry leaf on rearing and some cocoon parameters of silkworm, Bombyx mori L. (CSR6 × CSR26) × (CSR2 × CSR27) double hybrid. Int J Chem Stud. 2020;8(4):267–71. https://doi.org/10.22271/chemi.2020.v8.i4e.10034
  18. 18. Yang L, Yang C, Li C, Zhao Q, Liu L, Fang X, Chen XY. Recent advances in biosynthesis of bioactive compounds in traditional Chinese medicinal plants. Science Bulletin. 2016;61(1):3–17. https://doi.org/10.1007/s11434-015-0929-2
  19. 19. Islam T, Qadir J, Bashir I. Impact of lentil seed (Lens culinaris) fortified mulberry leaves on silk productivity of Bombyx mori L. Biol Forum Int J. 2023;15(3):851–54.
  20. 20. Hajam OA, Rufaie ZH, Khan IL, Mir SA, Gul S, Buhroo ZI, Baqual MF. Influence of plant extract fortified mulberry leaf on some reeling parameters of silkworm, Bombyx mori L. Int J Vet Sci Animal Hus. 2024; 9(3):429–33.
  21. 21. Bhuvaneswari E, Shree RSM, Thirupathaiah Y, Kumar V, Teotia RS. Impact of Sesbania grandiflora leaf powder fortification on growth and economic traits of bivoltine double hybrid (FC1 × FC2) silkworm, Bombyx mori. Indian J Seri. 2018;57(1–2):14–21. Available from: https://www.scopus.com/inward/record.uri?eid=2s2.085092603974&partnerID=40&md5=3c8a8f54966273db8cceb175aa25b534
  22. 22. Moustafa M. Improving the silk industry by studying the effect of several aqueous extracts to enhance the efficiency of silkworm Bombyx mori L. production. J Plant Protect Pathol. 2020;11(2):121–26. https://doi.org/10.21608/jppp.2020.85989
  23. 23. Moustafa MN. The effect of fortificated mulberry leaves with Echinacea purpurea on silkworm (Bombyx mori L.) physiology and production. Egypt Acad J Bio Sci Entomol. 2023;16(4):163–71. https://doi.org/10.21608/eajbsa.2023.332234
  24. 24. Hassan EM. Effect of dexatrol and peppermint oil as a disinfectants on some biochemical characters of infected silkworm Bombyx mori. J Entomol. 2014;12(1):12–20. https://doi.org/10.3923/je.2015.12.20
  25. 25. Chen C, Song J, Chen M, Li Z, Tong X, Hu H, et al. Rhodiola rosea extends lifespan and improves stress tolerance in silkworm, Bombyx mori. Biogerontol. 2015;17(2):373–81. https://doi.org/10.1007/s10522-015-9622-8
  26. 26. Helaly WM, Elyamani EM, Saad MSI. Influence of some plant extracts as antiseptics to control bacterial and fungal diseases of silkworms, Bombyx mori L. Zagazig J Agric Res. 2020;47(3):707–17. https://doi.org/10.21608/zjar.2020.95906
  27. 27. Bay V, Gür S, Bayraktar O. Plant-derived tormentic acid alters the gut microbiota of the silkworm (Bombyx mori). Sci Reports. 2022;12(1). https://doi.org/10.1038/s41598-022-17478-4
  28. 28. Sabry HM, Saad MI, El Shafiey SN. Reinforce the silkworms' nutrition using essential oil of Taxodium distichum' fruits: A prospective way to improve silk production. Catrina Int J Environ Sci. 2023;28(1):21–31. https://doi.org/10.21608/cat.2023.209349.1174
  29. 29. Gaikwad YB, Gaikwad SM, Bhawane GP. Effect of induced oxidative stress and herbal extracts on acid phosphatase activity in lysosomal and microsomal fractions of midgut tissue of the silkworm, Bombyx mori. J Insect Sci. 2010;10(113):1–9. https://doi.org/10.1673/031.010.11301
  30. 30. Gupta SK, Singh V, Pandey RP, Yadav P. Impact of certain plant extracts on different larval and cocoon characters of silkworm Bombyx mori linn. Zool Entomol Letters. 2022;2(2):42–45. https://doi.org/10.22271/letters.2022.v2.i2a.46
  31. 31. Koul B, Taak P, Kumar A, Kumar A, Sanyal I. Genus Psoralea: A review of the traditional and modern uses, phytochemistry and pharmacology. J Ethnopharmacol. 2019;232:201–26. https://doi.org/10.1016/j.jep.2018.11.036
  32. 32. Nair KS, Nair JS, Trivedy K, Vijayan VA. Influence of Bakuchiol, a JH analogue from Bemchi (Psoralea corylifolia) on silk production in silkworm, Bombyx mori L.(Bombycidae: Lepidoptera). J Appl Sci Environ Manage. 2003;7(2):31–38. https://doi.org/10.4314/jasem.v7i2.17208
  33. 33. Selin DC, Venkadesh B, Kumaran T. Impact of ganoderma and noni extract on the economic parameters of silkworm, Bombyx mori L. Pharma Innov. 2015;4(10):93.
  34. 34. Khezrian A, Bagheri M, Zanjani RS, Rahimabad YK, Nematollahian S, Zahmatkesh A. The effects of feed supplements and Nosema bombycis infection on economical traits in various silkworm breeding lines. Entomol Exp Et Appli. 2021;170(3):277–83. https://doi.org/10.1111/eea.13135
  35. 35. Alfazairy AA, Elsakhawy DA, El-Meniawi FA, Hashem M, Rawash IA. Effects of mulberry leaf enrichment with Lepidium sativum L. seed powder suspension on the economic parameters of Bombyx mori L. Sci Reports. 2024;14(1). https://doi.org/10.1038/s41598-024-67128-0
  36. 36. Elyamani EM, Moustafa MN, Abd-Elmonem MM, Farag MF. Utilization of some volatile and fixed oils in silkworm diets: a novel strategy for maximizing silk production. Egypt J Agri Res. 2025;103(1):29–39. https://doi.org/10.21608/ejar.2025.346665.1627
  37. 37. Prashanthi G, Sujatha K, Sampath A, Fatima K. Antibacterial activity of clove oil extracted from Eugenia caryophyllaea and its effect on the economic traits of mulberry silkworm Bombyx mori L. Bullet Pure Appli Sci Botany. 2022;41(2):87–93. https://doi.org/10.5958/2320-3196.2022.00010.6
  38. 38. Barge S, Pardeshi A. Influence of phytoecdysteroids isolated from Coix aquatica on cocoon characteristics of silkworm Bombyx mori L. Pharma Innov J. 2019;8(3):389–93.
  39. 39. Hassan SI, Rateb SH, Mohanny KM, Hussein MH. Efficiency of some plants powder mix as a dietary supplement for silkworm (Bombyx mori). SVU-Int J Agri Sci. 2020;2(2):378–83. https://doi.org/10.21608/svuijas.2020.41808.1034
  40. 40. Suraporn S, Suthikhum V, Terenius O. The mortality of Bombyx mori larvae challenged by BmNPV is reduced when supplemented with Lactobacillus acidophilus bacteria. BMC Res Notes. 2024;17(1). https://doi.org/10.1186/s13104-024-07019-9
  41. 41. Vasava D, Kher MM, Nataraj M, Silva TAJ. Bael tree (Aegle marmelos (L.) Corrêa): importance, biology, propagation and future perspectives. Trees. 2018;32:1165–98. https://doi.org/10.1007/s00468-018-1754-4
  42. 42. Somu C, Karuppiah H, Sundaram J. Antiviral activity of seselin from Aegle marmelos against nuclear polyhedrosis virus infection in the larvae of silkworm, Bombyx mori. J Ethnopharma. 2019;245:112155. https://doi.org/10.1016/j.jep.2019.112155
  43. 43. Somu C, Paulchamy R, Moorthy SM, Sundaram J. Antiviral activity of selected medicinal plants and marine seaweeds on the grasserie infected larvae of silkworm, Bombyx mori. Arch Phytopathol Plant Protect. 2017;50(17–18):850–67. https://doi.org/10.1080/03235408.2017.1401700
  44. 44. Elumalai D, Thaiyalnayagi G, Poovizhiraja B. Investigation of BmNPV infection on physiological and biochemical parameters of Bombyx mori administrated with botanicals. J Crop Weed. 2022;18(2):248–52. https://doi.org/10.22271/09746315.2022.v18.i2.1596
  45. 45. Shivdas BS. Effect of ethanolic plant extractives on cephalic neuroendocrine system of BmNPV inoculated 5th instar larvae of Bombyx mori L. (Lepidoptera, Bombycidae). Entomon. 2024;49(2):235–42. https://doi.org/10.33307/entomon.v49i2.1175
  46. 46. Mohanta MK, Saha AK, Saleh DK, Hasan MA. Bioefficacy of some plant extracts against pathogenic bacteria isolated from diseased silkworm larvae. Uni J Zool. 2013;32:9–14.
  47. 47. Mohanta MK, Saha AK, Saleh DKMA, Islam MS, Mannan KSB, Fakruddin M. Characterization of Klebsiella granulomatis pathogenic to silkworm, Bombyx mori L. 3 Biotech. 2014;5(4):577–83. https://doi.org/10.1007/s13205-014-0255-4
  48. 48. Surendra DM, Chamaraja NA, Yallappa S, Bhavya DK, Joseph S, Varma RS, et al. Efficacy of phytochemical-functionalized silver nanoparticles to control flacherie and sappe silkworm diseases in Bombyx mori L. larvae. Plant Nano Biol. 2023;5:100048. https://doi.org/10.1016/j.plana.2023.100048
  49. 49. Choudhury A, Guha A, Yadav A, Unni B, Roy M. Causal organism of flacherie in the silkworm Antheraea assama Ww: Isolation, characterization and its inhibition by garlic extract. Phyto Res: PTR. 2002;16(1):S89–90. https://doi.org/10.1002/ptr.810
  50. 50. Omar S, Fathy D. Evaluation of controlling silkworm bacterial diseases using propolis extract and cinnamon oil. J Agri Chem Biotechnol. 2016;7(7):213–18. https://doi.org/10.21608/jacb.2016.40892
  51. 51. Jaisyprabha R, Quraiza MTF, Jespa JP, Prabha V. Effect of Phyllanthus niruri on the Escherichia coli infected silkworm, Bombyx mori L. Uttar Pradesh J Zool. 2024;45(16):8–14. https://doi.org/10.56557/upjoz/2024/v45i164282
  52. 52. Matsumoto Y, Sekimizu K. Silkworm as an experimental animal for research on fungal infections. Microbiol Immun. 2019;63(2):41–50. https://doi.org/10.1111/1348-0421.12668
  53. 53. Dongare SK, Gaikwad PM, Pawar SS, Khyade VB. Studies on symptomological and economic parameters of silk cocoons of Bombyx mori inoculated with Beauveria bassiana (Bals.) Vuill. International Acad J Account Fin Manage. 2018;05(01):28–34. https://doi.org/10.9756/iajafm/v5i1/1810004
  54. 54. Bhat A, Dar KA, Ganie NA, Sahaf KA, Mir SA. Efficacy of botanical extracts on the management of muscardine disease of silkworm, Bombyx mori L. caused by Beauveria bassiana, (Bals) Vuill. J Entomol Res. 2021;45(3):430–35. https://doi.org/10.5958/0974-4576.2021.00067.0
  55. 55. Saharia S, Kalita S, Kalita D, Ojah A, Bardoloi S. Assessment of the effect of methanolic herbal extract on cocoon parameters and tensile properties of silk fiber spun by Beauveria bassiana infected Muga silkworm, Antheraea assamensis Helfer. Asian J Bio Life Sci. 2023;12(2):395–401. https://doi.org/10.5530/ajbls.2023.12.52
  56. 56. Saad MSI, Elyamani EMY, Helaly WMM. Controlling of bacterial and fungal diseases that contaminating mulberry silkworm, Bombyx mori by using some plant extracts. Bulletin Nat Res Centre. 2019;43(1). https://doi.org/10.1186/s42269-019-0218-3
  57. 57. Anitharani KV, Bhaskar RN, Gowda M, Chandrashekhar S, Peter A. Effect of medicinal plants on cocoon parameters of PM×CSR2 inoculated with BmNPV and Staphylococcus sciuri. Pest Manage Horti Ecosyst. 2022;28(2):81–86. https://doi.org/10.5958/0974-4541.2022.00043.1
  58. 58. Bora D, Khanikor B, Gogoi H. Plant based pesticides: Green environment with special reference to silkworms. In: Soundararajan RP, Editor. Pesticides - Advances in Chemical and Botanical Pesticides. InTech; 2012 https://doi.org/10.5772/47832
  59. 59. Sut R, Naan TR, Dutta RB, Kashyap B, Saikia M, Gogoi I, Saikia H. The Uzi fly challenge: Biological insights and threats to Muga silkworms. Ann Res Rev Bio. 2024;39(9):1–10. https://doi.org/10.9734/arrb/2024/v39i92113
  60. 60. Bari F, Kumar R, Lavannya V. Study of Uzi fly, Exorista bombycis (Louis) infestation during rearing of mulberry silkworm in different seasons in Karnataka. Indian J Entomol. 2023:142–44. https://doi.org/10.55446/IJE.2023.1178
  61. 61. Sathe TV, Desai AS. Economical and distributional status of Uzi fly, Exorista sorbillans Wied. (Diptera: Tachinidae) in sericulture in India. Indian J Appl Res. 2014;4(8):10–13. https://doi.org/10.15373/2249555X/August2014/3.
  62. 62. Naan T, Sut R, Kashyap B, Dutta RB, Saikia M, Gogoi I, Saikia H. Effectiveness of plant oils for bio-intensive control of Uzi fly infestation in mulberry silkworm (Bombyx mori): A comparative study. J Adv Bio Biotechnol. 2024;27(9):1025–37. https://doi.org/10.9734/jabb/2024/v27i91373
  63. 63. Khanikor B, Bora D. Ocimum gratissimum Linn. (Lamiaceae) essential oil for the management of Exorista sorbillans Wiedemann (Diptera: Tachinidae) menace of silkworm in seri ecosystem. J Asia-Pacific Entomol. 2022;25(3):101960. https://doi.org/10.1016/j.aspen.2022.101960
  64. 64. Alamgir ANM. Herbal drugs: Their collection, preservation and preparation; evaluation, quality control and standardisation of herbal drugs. In: Therapeutic Use of Medicinal Plants and Their Extracts: Volume 1. Progress in Drug Research, vol 73. Cham: Springer; 2017. p. 453–95 https://doi.org/10.1007/978-3-319-63862-1_10
  65. 65. Nishad J. Stability of plant extracts. In: Mir SA, Manickavasagan A, Shah MA, editors. Plant Extracts: Applications in the Food Industry. Academic Press; 2022. p. 89–126 https://doi.org/10.1016/B978-0-12-822475-5.00007-7
  66. 66. Rattanapan A, Sujayanont P. Impact of neem seed extract on mortality, esterase and glutathione-s-transferase activities in Thai polyvoltine hybrid silkworm, Bombyx mori L. Insects. 2024;15(8):591. https://doi.org/10.3390/insects15080591
  67. 67. Mahmoud M. Effect of certain evaluated plant crude extracts on the productivity of silkworm (Bombyx mori L.). J Adv Agri Res. 2014;1;19(1):50–59.https://doi.org/10.21608/jalexu.2014.160304
  68. 68. Talari S, Akula S, Kuntamalla S, Nanna RS. Effect of stem bark extracts of Oroxylum Indicum; an ethnomedicinal forest tree on silk production of Bombyx mori. Int J Pharma Sci Res. 2014;5(2):568. https://doi.org/10.13040/ijpsr.0975-8232.5(2).568-71
  69. 69. Barge SB, Pardeshi AB. Influence of dietary supplementation of Sida acuta plant extract on the mulberry silkworm, Bombyx mori L. Int J Zool Stud. 2018;3(2):199–202.
  70. 70. Kumari S, Hassan SMM. Effect of giloy on the commercial parameters of the Bombyx mori. Acta Entomol Zool. 2023;4(1):55–58. https://doi.org/10.33545/27080013.2023.v4.i1a.97

Downloads

Download data is not yet available.