Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Characterization of bioactive compounds from Saraca asoca and their antibacterial activity against fish pathogens in Oreochromis niloticus

DOI
https://doi.org/10.14719/pst.7346
Submitted
21 January 2025
Published
22-04-2025 — Updated on 26-07-2025
Versions

Abstract

Saraca asoca, known for its therapeutic properties in Ayurveda, is the focus of this study, aiming to identify and quantify the bioactive compounds in its leaf extract using Gas Chromatography-Mass Spectrometry (GC-MS) and Fourier Transform Infrared Spectroscopy (FTIR). The study also investigates the antibacterial efficacy of methanol, ethanol and acetone extracts of S. asoca against fish pathogens in Oreochromis niloticus like Vibrio alginolyticus, Streptococcus pyogenes, Pseudomonas fluorescens and Aeromonas hydrophila through the well-diffusion method. GC-MS confirmed the presence of compounds such as 3- hydroxy biphenyl, n-hexa decanoic acid, oleic acid, octadecanoic acid, 4,5-diethyl octane and 9-tetradecen-1-ol. In contrast, FTIR spectra revealed several significant peaks, indicating the presence of specific functional groups in the S. asoca leaf fraction. The results exhibited high absorbance in the wavenumber ranges of 4000–3500 cm-1, 3000–2500 cm-1, 1800–1500cm-1 and 1100–950 cm-1. The findings of the antibacterial assay suggest that the methanolic extract exhibited a strong inhibitory effect against bacterial pathogens, with zones of inhibition ranging from 6 ± 0.21 to 18 ± 0.57 mm in size. These results indicate that S. asoca leaf extract contains bioactive compounds effective against the pathogenic bacteria in O. niloticus, supporting the growing shift towards reducing antibiotic use in aquaculture.

References

  1. 1. The State of World Fisheries and Aquaculture 2020 [Internet]. Rome: FAO; 2020 [cited 2024 Dec 9]. Available from: https://doi.org/10.4060/ca9229en
  2. 2. The State of World Fisheries and Aquaculture 2022 [Internet]. Rome: FAO; 2022 [cited 2024 Dec 13]. Available from: https://doi.org/10.4060/cc0461en
  3. 3. Zhang J, Yang X, Wang Z, Liu Y, Liu X, Ding Y. Mapping of land-based aquaculture regions in Southeast Asia and its Spatiotemporal change from 1990 to 2020 using time-series remote sensing data. Int J Appl Earth Obs Geoinf. 2023;124:103518. https://doi.org/10.1016/j.jag.2023.103518
  4. 4. The State of Food and Agriculture 2022 [Internet]. Rome: FAO; 2022. [cited 2024 Dec 13].https://doi.org/10.4060/cb9479en
  5. 5. Fayaz Mohd, Ahmed M. Fisheries exports of India: A constant market share analysis. Indian Econ J . 2020;68(1):29–39. https://doi.org/10.1177/0019466220959572
  6. 6. ICAR-Central Institute of Freshwater Aquaculture, Saha S. Present status of Fish disease management in freshwater aquaculture in India: state-of-the-art-review. Aquac Fish. 2017;1(1):1–9. http://doi.org/:10.24966/AAF-5523/100003
  7. 7. McArthur DB. Emerging infectious diseases. Nurs Clin North Am. 2019;54(2):297–311. https://doi.org/10.1016/j.cnur.2019.02.006
  8. 8. Arumugam M, Jayaraman S, Sridhar A, Venkatasamy V, Brown PB, Abdul Kari Z, et al. Recent advances in Tilapia production for sustainable developments in Indian aquaculture and its economic benefits. Fishes. 2023;8(4):176. https://doi.org/10.3390/fishes8040176
  9. 9. Haenen OLM, Dong HT, Hoai TD, Crumlish M, Karunasagar I, Barkham T, Chen SL, Zadoks R, Kiermeier A, Wang B, Gamarro EG. Bacterial diseases of tilapia, their zoonotic potential and risk of antimicrobial resistance. Rev Aquac. 2023;15(S1):154–85. https://doi.org/10.1111/raq.12743
  10. 10. Manchanayake T, Salleh A, Amal MNA, Yasin ISM, Zamri-Saad M. Pathology and pathogenesis of Vibrio infection in fish: A review. Aquac Rep. 2023;28:101459. https://doi.org/10.1016/j.aqrep.2022.101459
  11. 11. Liao PC, Tsai YL, Chen YC, Wang PC, Liu SC, Chen SC. Analysis of Streptococcal infection and correlation with climatic factors in cultured Tilapia Oreochromis spp. in Taiwan. Appl Sci. 2020;10(11):4018. https://doi.org/10.3390/app10114018
  12. 12. Shabana BM, Elkenany RM, Younis G. Sequencing and multiple antimicrobial resistance of Pseudomonas fluorescens isolated from Nile tilapia fish in Egypt. Braz J Biol. 2024;84:e257144. https://doi.org/10.1590/1519-6984.257144
  13. 13. Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev. 2011;35(2):247–74. https://doi.org/10.1111/j.1574-6976.2010.00247.x
  14. 14. Vignesh R, Karthikeyan BS, Periyasamy N, Devanathan K. Antibiotics in Aquaculture: An Overview. South Asian J Exp Biol. 2011;1(3):114–20. https://doi.org/10.38150/sajeb.1(3).p114-120
  15. 15. Chuah LO, Effarizah ME, Goni AM, Rusul G. Antibiotic application and emergence of Multiple Antibiotic Resistance (MAR) in global catfish aquaculture. Curr Environ Health Rep. 2016;3(2):118–27. https://doi.org/10.1007/s40572-016-0091-2
  16. 16. Radhakrishnan A, Vaseeharan B, Ramasamy P, Jeyachandran S. Oral vaccination for sustainable disease prevention in aquaculture—an encapsulation approach. Aquac Int. 2023 31(2):867–91. https://doi.org/10.1007/s10499-022-01004-4
  17. 17. García M. Debating diseases in nineteenth-century Colombia: Causes, interests and the pasteurian therapeutics. Bull Hist Med. 2015;89(2):293–321. https://dx.doi.org/10.1353/bhm.2015.0050
  18. 18. Tammas I, Bitchava K, Gelasakis AI. Transforming aquaculture through vaccination: A review on recent developments and milestones. Vaccines. 2024;12(7):732. https://doi.org/10.3390/vaccines12070732
  19. 19. Yu N tong, Zeng W wei, Xiong Z, Liu Z xin. A high efficacy DNA vaccine against Tilapia lake virus in Nile tilapia (Oreochromis niloticus). Aquac Rep. 2022;24:101166. https://doi.org/10.1016/j.aqrep.2022.101166
  20. 20. Su H, Yakovlev IA, Van Eerde A, Su J, Clarke JL. Plant-produced vaccines: Future applications in aquaculture. Front Plant Sci. 2021;12:718775. https://doi.org/10.3389/fpls.2021.718775
  21. 21. Kuebutornye FKA, Abarike ED. The contribution of medicinal plants to tilapia aquaculture: a review. Aquac Int. 2020;28(3):965–83. https://doi.org/10.1007/s10499-020-00506-3
  22. 22. Leyva-López N, Lizárraga-Velázquez CE, Hernández C, Sánchez-Gutiérrez EY. Exploitation of agro-industrial waste as a potential source of bioactive compounds for aquaculture. Foods. 2020;9(7):843. https://doi.org/10.3390/foods9070843
  23. 23. Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. 2014;87:218–28 http://doi.org/10.1016/j.jpba.2013.03.007
  24. 24. Dawood MAO, El Basuini MF, Zaineldin AI, Yilmaz S, Hasan MdT, Ahmadifar E,et al. Antiparasitic and antibacterial functionality of essential oils: An alternative approach for sustainable aquaculture. Pathogens. 2021;10(2):185. https://doi.org/10.3390/pathogens10020185
  25. 25. Prasad S, Younis K, Yousuf O. Investigating potent cardioprotective compounds as ACE inhibitors in Saraca asoca. Toxicol Rep. 2024;13:101731. https://doi.org/10.1016/j.toxrep.2024.101731
  26. 26. Suresh M, Pappuswamy M. Saraca asoca (Roxb.) de Klilde, a sacred tree: its nutritional value, elemental composition and anti-nutritional content. Plant Sci Today. 2024;11(4). https://doi.org/10.14719/pst.3924
  27. 27. Nigussie D, Davey G, Legesse BA, Fekadu A, Makonnen E. Antibacterial activity of methanol extracts of the leaves of three medicinal plants against selected bacteria isolated from wounds of lymphoedema patients. BMC Complement Med Ther. 2021;21(1):2. https://doi.org/10.1186/s12906-020-03183-0
  28. 28. Ekom SE, Tamokou JDD, Kuete V. Antibacterial and therapeutic potentials of the Capsicum annuum extract against infected wound in a rat model with its mechanisms of antibacterial action. Formanowicz D, editor. BioMed Res Int. 2021;2021:1–17. https://doi.org/10.1155/2021/4303902
  29. 29. Liaqat N, Jahan N, Khalil-ur-Rahman, Anwar T, Qureshi H. Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity and cytotoxicity study by hemolysis assay. Front Chem. 2022;10:952006. https://doi.org/10.3389/fchem.2022.952006
  30. 30. Manke MB, Dhawale SC, Jamkhande PG. Helminthiasis and medicinal plants: a review. Asian Pac J Trop Dis. 2015;5(3):175–80. https://doi.org/10.1016/S2222-1808(14)60648-4
  31. 31. Christaki E, Bonos E, Giannenas I, Florou-Paneri P. Aromatic plants as a source of bioactive compounds. Agric. 2012 ;2(3):228–43. https://doi.org/10.3390/agriculture2030228
  32. 32. Hever J, Cronise RJ. Plant-based nutrition for healthcare professionals: implementing diet as a primary modality in the prevention and treatment of chronic disease. J Geriatr Cardiol. 2017;14(5):355–68. http://doi.org/10.11909/j.issn.1671-5411.2017.05.012
  33. 33. Najmi A, Javed SA, Al Bratty M, Alhazmi HA. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules. 2022;27(2):349. https://doi.org/10.3390/molecules27020349
  34. 34. Reverter M, Tapissier?Bontemps N, Sarter S, Sasal P, Caruso D. Moving towards more sustainable aquaculture practices: a meta?analysis on the potential of plant?enriched diets to improve fish growth, immunity and disease resistance. Rev Aquac. 2021;13(1):537–55. https://doi.org/10.1111/raq.12485
  35. 35. Aly SM, ElBanna NI, Elatta MA, Hegazy M, Fathi M. Effects of natural and synthetic immunostimulants on growth, feed utilization, immune status and disease resistance against vibriosis in sea bream (Sparus aurata). Aquac Int. 2024;32(3):2739–56. https://doi.org/10.1007/s10499-023-01294-2
  36. 36. Palanikani R, Chanthini KMP, Soranam R, Thanigaivel A, Karthi S, Senthil-Nathan S, et al. Efficacy of Andrographis paniculata supplements induce a non-specific immune system against the pathogenicity of Aeromonas hydrophila infection in Indian major carp (Labeo rohita). Environ Sci Pollut Res. 2020;27(19):23420–36. https://doi.org/10.1007/s11356-019-05957-7
  37. 37. Shang A, Cao SY, Xu XY, Gan RY, Tang GY, Corke H, et al. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods. 2019;8(7):246. https://doi.org/10.3390/foods8070246
  38. 38. Rawat P, Kaur VI, Tyagi A, Norouzitallab P, Baruah K. Determining the efficacy of ginger Zingiber officinale as a potential nutraceutical agent for boosting growth performance and health status of Labeo rohita reared in a semi-intensive culture system. Front Physiol. 2022;13:960897. https://doi.org/10.3389/fphys.2022.960897
  39. 39. Siddik MAB, Francis P, Rohani MF, Azam MS, Mock TS, Francis DS. Seaweed and seaweed-based functional metabolites as potential modulators of growth, immune and antioxidant responses and gut microbiota in fish. Antioxidants. 2023;12(12):2066. https://doi.org/10.3390/antiox12122066
  40. 40. Awad AAA, Moustafa Ali OA, Fattah Nassar DA. Degradation of dye wastewater by using cobalt, copper and nickel Schiff base complexes as catalysts: spectral, molecular modelling, catalytic activity and metal removal from aqueous solution. Int J Environ Anal Chem. 2023;103(20):9562–81. https://doi.org/10.1080/03067319.2021.2014466
  41. 41. Sanabria?Ríos DJ, Morales?Guzmán C, Mooney J, Medina S, Pereles?De?León T, Rivera?Román A, et al. Antibacterial activity of hexadecynoic acid isomers toward clinical isolates of multidrug?resistant Staphylococcus aureus. Lipids. 2020;55(2):101–16. https://doi.org/10.1002/lipd.12213
  42. 42. Shaaban MT, Ghaly MF, Fahmi SM. Antibacterial activities of hexadecanoic acid methyl ester and green?synthesized silver nanoparticles against multidrug?resistant bacteria. J Basic Microbiol . 2021;61(6):557–68. https://doi.org/10.1002/jobm.202100061
  43. 43. Yuyama KT, Rohde M, Molinari G, Stadler M, Abraham WR. Unsaturated fatty acids control biofilm formation of Staphylococcus aureus and other gram-positive bacteria. antibiotics. 2020;9(11):788. https://doi.org/10.3390/antibiotics9110788
  44. 44. Ghavam M, Afzali A, Manca ML. Chemotype of damask rose with oleic acid (9 octadecenoic acid) and its antimicrobial effectiveness. Sci Rep. 2021;11(1):8027. https://doi.org/10.1038/s41598-021-87604-1
  45. 45. Chen X, Wang Z, Wu J. Processing and characterization of natural rubber/stearic acid-tetra-needle-like zinc oxide whiskers medical antibacterial composites. J Polym Res . 2018;25(2):48. https://doi.org/10.1007/s10965-017-1433-y
  46. 46. Han S, He K, An J, Qiao M, Ke R, Wang X, et al. Detection of specific volatile organic compounds in Tribolium castaneum (Herbst) by solid-phase microextraction and gas chromatography-mass spectrometry. Foods. 2023;12(13):2484. https://doi.org/10.3390/foods12132484
  47. 47. Chen J, Yang J, Ma L, Li J, Shahzad N, Kim CK. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl and carboxylic acid groups of phenolic acids. Sci Rep.. 2020;10(1):2611. https://doi.org/10.1038/s41598-020-59451-z
  48. 48. Qian Y, Deng S, Cong Z, Zhang H, Lu Z, Shao N, et al. Secondary amine pendant ?-peptide polymers display potent antibacterial activity and promising therapeutic potential in treating MRSA-induced wound infections and Keratitis. J Am Chem Sock 2022;144(4):1690–9. https://doi.org/10.1021/jacs.1c10659
  49. 49. Burman S, Bhattacharya K, Mukherjee D, Chandra G. Antibacterial efficacy of leaf extracts of Combretum album Pers. against some pathogenic bacteria. BMC Complement Altern Med. 2018;18(1):213. https://doi.org/10.1186/s12906-018-2271-0
  50. 50. Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, et al. The natural product curcumin as an antibacterial agent: Current achievements and problems. Antioxidants. 2022 ;11(3):459. https://doi.org/10.3390/antiox11030459
  51. 51. Reinhardt T, Lee KM, Niederegger L, Hess CR, Sieber SA. Indolin-2-one Nitroimidazole Antibiotics Exhibit an Unexpected Dual Mode of Action. ACS Chem Biol. 2022 ;17(11):3077–85. https://doi.org/10.1021/acschembio.2c00462
  52. 52. El-Adawy M, El-Aziz MA, El-Shazly K, Ali NG, El-Magd MA. Dietary propionic acid enhances antibacterial and immunomodulatory effects of oxytetracycline on Nile tilapia, Oreochromis niloticus. Environ Sci Pollut Res. 2018;25(34):34200–11. https://doi.org/10.1007/s11356-018-3206-5
  53. 53. Michel P, Olszewska MA. Phytochemistry and biological profile of Gaultheria procumbens L. and wintergreen essential oil: From traditional application to molecular mechanisms and therapeutic targets. Int J Mol Sci . 2024 Jan;25(1): 565https://doi.org/10.3390/ijms25010565
  54. 54. Ergene C, Yasuhara K, Palermo EF. Biomimetic antimicrobial polymers: recent advances in molecular design. Polym Chem. 2018;9(18):2407–27. https://doi.org/10.1039/C8PY00012C
  55. 55. Vani B, Pabba M, Kalyani S, Sridhar S. Separation of anisole and valuable byproducts from liquid reaction mixtures by solvent extraction and multicomponent distillation. J Solut Chem. 2021;50(1):160–77. https://doi.org/10.1007/s10953-020-01049-0
  56. 56. Yuan H, Ou H, Cao C. The application of a new approach based on organic homo?rank compounds and homologous compounds to the structure-property relationship study of monosubstituted alkanes. J Phys Org Chem. 2016;29(1):42–58. https://doi.org/10.1002/poc.3486
  57. 57. Ibrahim N, Kebede A. In vitro antibacterial activities of methanol and aqueous leaf extracts of selected medicinal plants against human pathogenic bacteria. Saudi J Biol Sci . 2020;27(9):2261–8. https://doi.org/10.1016/j.sjbs.2020.06.047
  58. 58. Saleh-E-In MdM, Bhattacharyya P, Van Staden J. Chemical composition and cytotoxic activity of the essential oil and oleoresins of in vitro micropropagated Ansellia africana Lindl: A vulnerable medicinal orchid of Africa. Mol. 2021;26(15):4556. https://doi.org/10.3390/molecules26154556
  59. 59. Ngo TV, Scarlett CJ, Bowyer MC, Ngo PD, Vuong QV. Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. J Food Qual. 2017;2017:1–8. https://doi.org/10.1155/2017/9305047
  60. 60. Sibi G, Naveen R, Dhananjaya K, Ravikumar KR, Mallesha H. Potential use of Muntingia calabura L. extracts against human and plant pathogens. Pharmacogn J . 2012;4(34):44–7. https://doi.org/10.5530/pj.2012.34.8
  61. 61. Unuofin JO, Lebelo SL. Antioxidant effects and mechanisms of medicinal plants and their bioactive compounds for the prevention and treatment of type 2 diabetes: An updated review. Oxid Med Cell Longev. 2020;2020:1–36. http://doi.org/10.1155/2020/1356893
  62. 62. Anilkumar AT, Manoharan S, Balasubramanian S, Perumal E. Garcinia gummi?gutta?: Phytochemicals and pharmacological applications. BioFactors. 2023;49(3):584–99. https://doi.org/10.1002/biof.1943

Downloads

Download data is not yet available.