Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Signalling cascades in plant cells under biotic stress: From herbivore detection to defence activation

DOI
https://doi.org/10.14719/pst.7424
Submitted
25 January 2025
Published
20-08-2025
Versions

Abstract

Plants have evolved both passive and active defence mechanisms to withstand insect herbivory. Passive defences include physical barriers and toxic substances on the plant's surface, while active defences are triggered by herbivore-associated signals. Recent studies have shown that defence mechanisms, including volatile emission, molecular pattern recognition, changes in Ca2+ levels, shifts in plasma membrane potential, NADPH oxidase mobilization and oxygen radical formation, are triggered by interplant and intraplant signalling. Plants detect specific elicitors produced by insects during infestation, enabling them to recognize and respond to herbivory. Infested plants emit chemical signals that lead to the production of volatile terpenoids, attracting host-seeking insects. Plants deploy a wide array of defensive compounds, including cyanogenic glucosides, glucosinolates (GSLs), phenolics, alkaloids, proteinase inhibitors (PIs) and saponins, which deter feeding and impair insect digestion. Morphological features such as trichomes and thorns provide additional protection. Plant hormones such as ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) mediate plant immunity. Calcium (Ca2+) is crucial for regulating cellular processes and plant defence. Oxygen radical, especially hydrogen peroxide (H2O2), are critical for disease resistance. Nitric oxide (NO) influences H2O2 production, modulates the redox status and activates defence genes, thereby enhancing plant resilience against herbivory through various signalling pathways. By detailing the roles of various signalling molecules, hormones and defence compounds, the article aims to enhance understanding of plant defence strategies and the intricate signalling networks that underpin these responses.

References

  1. 1. Malook SU, Maqbool S, Hafeez M, Karunarathna SC, Suwannarach N. Molecular and biochemical mechanisms of elicitors in pest resistance. Life. 2022;12(6):844. https://doi.org/10.3390/life12060844
  2. 2. Wu J, Baldwin I. New insights into plant responses to the attack from insect herbivores. Annu Rev Genet. 2010;44:1–24. https://doi.org/10.1146/annurev-genet-102209-163500
  3. 3. Zacchino S, Butassi E, Liberto M, Raimondi M, Postigo A, Sortino M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine. 2017;37:27–48. https://doi.org/10.1016/j.phymed.2017.10.018
  4. 4. Campos ML, de Souza CM, de Oliveira KB, Dias SC, Franco OL. The role of antimicrobial peptides in plant immunity. J Exp Bot. 2018;69(21):4997–5011. https://doi.org/10.1093/jxb/ery294
  5. 5. Ding LN, Li YT, Wu YZ, Li T, Geng R, Cao J, et al. Plant disease resistance-related signalling pathways: Recent progress and future prospects. Int J Mol Sci. 2022;23(24):16200. https://doi.org/10.3390/ijms232416200
  6. 6. Pieterse CM, Schaller A, Mauch-Mani B, Conrath U. Signalling in plant resistance responses: Divergence and cross-talk of defence pathways. In: Tuzun S, Bent E, editors. Multigenic and induced systemic resistance in plants. New York: Springer. 2006. p. 166–96. https://doi.org/10.1007/0-387-23266-4_8
  7. 7. Stout MJ, Thaler JS, Thomma BP. Plant-mediated interactions between pathogenic microorganisms and herbivorous arthropods. Annu Rev Entomol. 2006;51(1):663–89. https://doi.org/10.1146/annurev.ento.51.110104.
  8. 151117
  9. 8. Thaler JS, Humphrey PT, Whiteman NK. Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci. 2012;17(5):260–70. https://doi.org/10.1016/j.tplants.2012.02.010
  10. 9. Paré PW, Tumlinson JH. Plant volatiles as a defence against insect herbivores. Plant Physiol. 1999;121(2):325–32. https://doi.org/10.1104/pp.121.2.325
  11. 10. Bos JI, Prince D, Pitino M, Maffei ME, Win J, Hogenhout SA. A functional genomics approach identifies candidate effectors from the aphid species Myzus persicae (green peach aphid). PLoS Genet. 2010;6(11):e1001216. https://
  12. doi.org/10.1371/journal.pgen.1001216
  13. 11. Maffei ME, Mithöfer A, Arimura GI, Uchtenhagen H, Bossi S, Bertea CM, et al. Effects of feeding Spodoptera littoralis on lima bean leaves. III. Membrane depolarization and involvement of hydrogen peroxide. Plant Physiol. 2006;140(3):1022–35. https://doi.org/10.1104/pp.105.071993
  14. 12. Xu W, Huang W. Calcium-dependent protein kinases in phytohormone signalling pathways. Int J Mol Sci. 2017;18(11):2436. https://doi.org/10.3390/ijms18112436
  15. 13. Tian W, Hou C, Ren Z, Wang C, Zhao F, Dahlbeck D, et al. A calmodulin-gated calcium channel links pathogen
  16. patterns to plant immunity. Nature. 2019;572:131–35. https://doi.org/10.1038/s41586-019-1413-y
  17. 14. Bundó M, Coca M. Calcium-dependent protein kinase OsCPK10 mediates both drought tolerance and blast disease resistance in rice plants. J Exp Bot. 2017;68:2963–75. https://doi.org/10.1093/jxb/erx145
  18. 15. Parmagnani AS, Maffei ME. Calcium signalling in plant-insect interactions. Plants. 2022;11:2689. https://doi.org/
  19. 10.3390/plants11202689
  20. 16. Bricchi I, Leitner M, Foti M, Mithöfer A, Boland W, Maffei ME. Robotic mechanical wounding (MecWorm) versus herbivore-induced responses: Early signalling and volatile emission in lima bean (Phaseolus lunatus L.). Planta. 2010;232:719–29. https://doi.org/10.1007/s00425-010-1203-0
  21. 17. Miller GA, Mittler RO. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann Bot. 2006;98(2):279–88. https://doi.org/10.1093/aob/mcl107
  22. 18. Arimura GI, Ozawa R, Maffei ME. Recent advances in plant early signalling in response to herbivory. Int J Mol Sci. 2011;12(6):3723–39. https://doi.org/10.3390/ijms12063723
  23. 19. Arimura GI, Maffei ME. Calcium and secondary CPK signalling in plants in response to herbivore attack. Biochem Biophys Res Commun. 2010;400(4):455–60. https://doi.org/10.1016/j.bbrc.2010.08.134
  24. 20. Alborn HT, Turlings TC, Jones T, Stenhagen G, Loughrin JH, Tumlinson JH. An elicitor of plant volatiles from the beet armyworm oral secretion. Science. 1997;276(5314):945–49. https://doi.org/10.1126/science.276.5314.945
  25. 21. Alborn HT, Hansen TV, Jones TH, Bennett DC, Tumlinson JH, Schmelz EA, et al. Disulfooxy fatty acids from the American bird grasshopper, Schistocerca americana, elicitors of plant volatiles. PNAS. 2007;104(32):12976–81. https://doi.org/10.1073/pnas.0705947104
  26. 22. Mattiacci L, Dicke M, Posthumus MA. β-Glucosidase: An elicitor of herbivore-induced plant odour that attracts host-searching parasitic wasps. PNAS. 1995;92(6):2036–40. https://doi.org/10.1073/pnas.92.6.2036
  27. 23. Fatouros NE, Broekgaarden C, Bukovinszkine'Kiss G, van Loon JJ, Mumm R, Huigens ME, et al. Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defence. PNAS. 2008;105(29):10033–38. https://doi.org/10.
  28. 1073/pnas.0707809105
  29. 24. Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, et al. Fragments of ATP synthase mediate plant perception of insect attack. PNAS. 2006;103(23):8894–99. https://doi.org/10.1073/pnas.0602328103
  30. 25. Will T, van Bel AJ. Induction as well as suppression: How aphid saliva may exert opposite effects on plant defence. Plant Signal Behav. 2008;3(6):427–30. https://doi.org/10.4161/psb.3.6.5473
  31. 26. Hilker M, Häberlein C, Trauer U, Bünnige M, Vicentini MO, Schulz S. How to spoil the taste of insect prey? A novel feeding deterrent against ants released by larvae of the alder leaf beetle, Agelastica alni. ChemBioChem. 2010;11(12):1720–26. https://doi.org/10.1002/cbic.201000130
  32. 27. Hilker M, Meiners T. Early herbivore alert: Insect eggs induce plant defence. J Chem Ecol. 2006;32:1379–97. https://doi.org/10.1007/s10886-006-9057-4
  33. 28. Tian D, Peiffer M, Shoemaker E, Tooker J, Haubruge E, Francis F, et al. Salivary glucose oxidase from caterpillars mediates the induction of rapid and delayed-induced defences in the tomato plant. PLoS One. 2012;7(4):e36168. https://doi.org/10.1371/journal.pone.0036168
  34. 29. Acevedo FE, Peiffer M, Ray S, Meagher R, Luthe DS, Felton GW. Intraspecific differences in plant defence induction by fall armyworm strains. New Phytol. 2018;18(1):310–21. https://doi.org/10.1111/nph.14981
  35. 30. Guo H, Zhang Y, Tong J, Ge P, Wang Q, Zhao Z, et al. An aphid-secreted salivary protease activates plant defence in phloem. Curr Biol. 2020;30(24):4826–36. https://doi.org/10.1016/j.cub.2020.09.020
  36. 31. Shangguan X, Zhang J, Liu B, Zhao Y, Wang H, Wang Z, et al. A mucin-like protein of planthopper is required for feeding and induces immunity response in plants. Plant Physiol. 2018;176(1):552–65. https://doi.org/10.1104/pp.17.
  37. 00755
  38. 32. Iida J, Desaki Y, Hata K, Uemura T, Yasuno A, Islam M, et al. Tetranins: New putative spider mite elicitors of host plant defence. New Phytol. 2019;24(2):875–85. https://doi.org/10.1111/nph.15813
  39. 33. Guo H, Wielsch N, Hafke JB, Svatoš A, Mithöfer A, Boland W. A porin-like protein from oral secretions of Spodoptera littoralis larvae induces defence-related early events in plant leaves. Insect Biochem Mol Biol. 2013;43(9):849–58. https://doi.org/10.1016/j.ibmb.2013.06.005
  40. 34. Dong Y, Huang X, Yang Y, Li J, Zhang M, Shen H, et al. Characterization of salivary secreted proteins that induce cell death from Riptortus pedestris (Fabricius) and their roles in insect-plant interactions. Front Plant Sci.
  41. 2022;13:912603. https://doi.org/10.3389/fpls.2022.912603
  42. 35. Nabity PD, Zavala JA, DeLucia EH. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann Bot. 2009;103(4):655–63. https://doi.org/10.1093/aob/mcn127
  43. 36. Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S. Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact. 2009;22(2):115–22. https://doi.org/10.1094/MPMI-22-2-0115
  44. 37. Kamoun S. Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol. 2007;10(4):358–65. https://doi.org/10.1016/j.pbi.2007.04.017
  45. 38. Musser RO, Farmer E, Peiffer M, Williams SA, Felton GW. Ablation of caterpillar labial salivary glands: Technique for determining the role of saliva in insect–plant interactions. J Chem Ecol. 2006;32:981–92. https://doi.org/10.1007/s10886-006-9049-4
  46. 39. Yang L, Li B, Zheng XY, Li J, Yang M, Dong X, et al. Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nat Commun. 2015;6:7309. https://doi.org/10.
  47. 1038/ncomms8309
  48. 40. Filgueiras CC, Martins AD, Pereira RV, Willett DS. The ecology of salicylic acid signalling: primary, secondary and tertiary effects with applications in agriculture. Int J Mol Sci. 2019;20(23):5851. https://doi.org/10.3390/ijms20235851
  49. 41. Glazebrook J. Contrasting mechanisms of defence against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol. 2005;43:205–27. https://doi.org/10.1146/annurev.phyto.43.040204.135923
  50. 42. Durner J, Klessig DF. Salicylic acid is a modulator of tobacco and mammalian catalases. J Biol Chem. 1996;271(45):28492–501. https://doi.org/10.1074/jbc.271.45.28492
  51. 43. Hedden P, Thomas SG. Gibberellin biosynthesis and its regulation. Biochem J. 2012;444(1):11–25. https://doi.org/
  52. 10.1042/BJ20120245
  53. 44. Gupta V, Willits MG, Glazebrook J. Arabidopsis thaliana EDS4 contributes to salicylic acid (SA)-dependent expression of defence responses: Evidence for inhibition of jasmonic acid signaling by SA. Mol Plant Microbe Interact. 2000;13(5):503–11. https://doi.org/10.1094/MPMI.2000.13.5.503
  54. 45. Venugopal SC, Jeong RD, Mandal MK, Zhu S, Chandra-Shekara AC, Xia Y, et al. Enhanced disease susceptibility 1 and salicylic acid act redundantly to regulate resistance gene-mediated signaling. PLoS Genet. 2009;5(7):e1000545. https://doi.org/10.1371/journal.pgen.1000545
  55. 46. Li X, Clarke JD, Zhang Y, Dong X. Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol Plant Microbe Interact. 2001;14(10):1131–39. https://doi.org/10.1094/MPMI.2001.14.10.1131
  56. 47. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, et al. Mechanisms of plant defence against insect herbivores. Plant Signal Behav. 2012;7(10):1306–20. https://doi.org/10.4161/psb.21663
  57. 48. Wilson SK, Pretorius T, Naidoo S. Mechanisms of systemic resistance to pathogen infection in plants and their potential application in forestry. BMC Plant Biol. 2023;23(1):404. https://doi.org/10.1186/s12870-023-04391-9
  58. 49. Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, et al. The wound response in tomato–role of jasmonic acid. J Plant Physiol. 2006;163(3):297–306. https://doi.org/10.1016/j.jplph.2005.10.014
  59. 50. Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, Liu G, et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature. 2007;448(7154):661–65. https://doi.org/10.1038/nature05960
  60. 51. Pauwels L, Goossens A. The JAZ proteins: A crucial interface in the jasmonate signaling cascade. The Plant Cell. 2011;23(9):3089–100. https://doi.org/10.1105/tpc.111.089300
  61. 52. Du M, Zhao J, Tzeng DT, Liu Y, Deng L, Yang T, et al. MYC2 orchestrates a hierarchical transcriptional cascade that regulates jasmonate-mediated plant immunity in tomato. The Plant Cell. 2017;29(8):1883–906. https://doi.org/10.
  62. 1105/tpc.16.00953
  63. 53. Zavala JA, Patankar AG, Gase K, Baldwin IT. Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata. Proc Natl Acad Sci USA. 2004;101(6):1607–12. https://doi.org/10.
  64. 1073/pnas.0305096101
  65. 54. Robert-Seilaniantz A, Grant M, Jones JD. Hormone crosstalk in plant disease and defence: More than just jasmonate-salicylate antagonism. Annu Rev Phytopathol. 2011;49(1):317–43. https://doi.org/10.1146/annurev-phyto-
  66. 073009-114447
  67. 55. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol. 2012;28(1):489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055
  68. 56. Weech MH, Chapleau M, Pan L, Ide C, Bede JC. Caterpillar saliva interferes with induced Arabidopsis thaliana defence responses via the systemic acquired resistance pathway. J Exp Bot. 2008;59(9):2437–48. https://doi.org/10.
  69. 1093/jxb/ern108
  70. 57. Paudel J, Copley T, Amirizian A, Prado A, Bede JC. Arabidopsis redox status in response to caterpillar herbivory. Front Plant Sci. 2013;4:113. https://doi.org/10.3389/fpls.2013.00113
  71. 58. Berrocal-Lobo M, Molina A. Ethylene response factor 1 mediates Arabidopsis resistance to the soil-borne fungus Fusarium oxysporum. Mol Plant Microbe Interact. 2004;17(7):763–70. https://doi.org/10.1094/MPMI.2004.17.7.763
  72. 59. Clarke JD. Roles of salicylic acid, jasmonic acid and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell. 2000;12:2175–90. https://doi.org/10.1105/tpc.12.11.2175
  73. 60. Zarate SI, Kempema LA, Walling LL. Silverleaf whitefly induces salicylic acid defences and suppresses effectual jasmonic acid defences. Plant Physiol. 2007;143(2):866–75. https://doi.org/10.1104/pp.106.090035
  74. 61. Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A, Oliveira MG, et al. A herbivore that manipulates plant defence. Ecol Lett. 2011;14(3):229–36. https://doi.org/10.1111/j.1461-0248.2010.01575.x
  75. 62. Swamy GS. Drought signaling in plants. Resonance. 1999;4(6):34–44. https://doi.org/10.1007/BF02834634
  76. 63. Law JH, Regnier FE. Pheromones. Annu Rev Biochem. 1971;40:533–48. https://doi.org/10.1146/annurev.bi.40.07
  77. 0171.002533
  78. 64. Quiroz A, Pettersson J, Pickett JA, Wadhams LJ, Niemeyer HM. Semiochemicals mediating spacing behavior of bird cherry-oat aphid, Rhopalosiphum padi, feeding on cereals. J Chem Ecol. 1997;23:2599–607. https://doi.org/10.1023/B:JOEC.0000006669.34845.0d
  79. 65. Takabayashi J, Dicke M. Plant–carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1996;1(4):109–13. https://doi.org/10.1016/S1360-1385(96)90004-7
  80. 66. Tumlinson JH, Lewis WJ, Vet LE. How parasitic wasps find their hosts. Sci Am. 1993;268(3):100–06. https://www.jstor.org/stable/24941408
  81. 67. Kessler A, Halitschke R. Specificity and complexity: The impact of herbivore-induced plant responses on arthropod community structure. Curr Opin Plant Biol. 2007;10(4):409–14. https://doi.org/10.1016/j.pbi.2007.06.001
  82. 68. Zhu-Salzman K, Luthe DS, Felton GW. Arthropod-inducible proteins: broad-spectrum defences against multiple herbivores. Plant Physiol. 2008;146(3):852–58. https://doi.org/10.1104/pp.107.112177
  83. 69. Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. Nicotine's defensive function in nature. PLoS Biol.
  84. 2004;2(8):e217. https://doi.org/10.1371/journal.pbio.0020217
  85. 70. Hare JD, Elle E, van Dam NM. Costs of glandular trichomes in Datura wrightii: a three‐year study. Evolution. 2003;57(4):793–805. https://doi.org/10.1111/j.0014-3820.2003.tb00291.x
  86. 71. Tian D, Peiffer M, Shoemaker E, Tooker J, Luthe DS, Felton GW. Roles of ethylene and jasmonic acid in systemic induced defence in maize. Plant Signal Behav. 2012;7(11):1484–86. https://doi.org/10.4161/psb.22043
  87. 72. Walling LL. The myriad plant responses to herbivores. J Plant Growth Regul. 2000;19:195–216. https://doi.org/10.
  88. 1007/s003440000026
  89. 73. Rodriguez-Saona C, Crafts-Brandner SJ, Williams L, Paré PW. Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants and artificial substrates. Entomol Exp Appl. 2002;103(3):261–72. https://doi.org/10.
  90. 1046/j.1570-7458.2002.00979.x
  91. 74. Dicke M. Plant phenotypic plasticity in the phytochemical landscape. In: Romeo JT, editor. Integrative phytochemistry: from ethnobotany to molecular ecology. Boston: Springer; 2003. p. 61–70. https://doi.org/10.1007/
  92. 978-1-4419-9093-7_4
  93. 75. Dicke M, Baldwin IT. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci. 2010;15(3):167–75. https://doi.org/10.1016/j.tplants.2009.12.002
  94. 76. Heil M, Karban R. Explaining evolution of plant communication by airborne signals. Trends Ecol Evol. 2010;25(3):137–44. https://doi.org/10.1016/j.tree.2009.09.010
  95. 77. Mumm R, Dicke M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defence. Can J Zool. 2010;88(7):628–67. https://doi.org/10.1139/Z10-032
  96. 78. Nishida R. Chemosensory basis of host recognition in phytophagous insects and implications for pest management. Appl Entomol Zool. 2014;49(1):1–8. https://doi.org/10.1007/s13355-013-0244-2
  97. 79. Takken FL, Albrecht M, Tameling WI. Resistance proteins: molecular switches of plant defence. Curr Opin Plant Biol. 2006;9(4):383–90. https://doi.org/10.1016/j.pbi.2006.05.009
  98. 80. Koo YJ, Kim MA, Kim EH, Song JT, Jung C, Moon JK, et al. Overexpression of Arabidopsis salicylic acid 5-hydroxylase (S5H) reduces salicylic acid-mediated pathogen resistance. Plant Cell Rep. 2020;39(2):243–56. https://doi.org/10.
  99. 1007/s00299-019-02488-4
  100. 81. Heil M. Damaged-self recognition in plant herbivore defence. Trends Plant Sci. 2009;14(7):356–63. https://doi.org/
  101. 10.1016/j.tplants.2009.04.002
  102. 82. Karban R, Baldwin IT. Induced responses to herbivory. Chicago: University of Chicago Press; 1997. p. 319. https://doi.org/10.7208/chicago/9780226424972.001.0001
  103. 83. Hilker M, Meiners T. Early herbivore alert: insect eggs induce plant defence. J Chem Ecol. 2006;32:1379–97. https://doi.org/10.1007/s10886-006-9057-4
  104. 84. Little D, Gouhier-Darimont C, Bruessow F, Reymond P. Oviposition by pierid butterflies triggers defence responses in Arabidopsis. Plant Physiol. 2007;143(2):784–800. https://doi.org/10.1104/pp.106.091397
  105. 85. Fatouros NE, Broekgaarden C, Bukovinszkine’Kiss G, van Loon JJ, Mumm R, Huigens ME, et al. Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defence. Proc Natl Acad Sci U S A. 2008;105(29):10033–38. https://doi.org/10.1073/pnas.0802417105
  106. 86. Bruessow F, Gouhier-Darimont C, Buchala A, Metraux JP, Reymond P. Insect eggs suppress plant defence against chewing herbivores. Plant J. 2010;62(5):876–85. https://doi.org/10.1111/j.1365-313X.2010.04203.x
  107. 87. Reymond P. Perception, signalling and molecular basis of oviposition-mediated plant responses. Planta. 2013;238(2):247–58. https://doi.org/10.1007/s00425-013-1903-y
  108. 88. Hilker M, Fatouros NE. Plant responses to insect egg deposition. Annu Rev Entomol. 2015;60:493–515. https://doi.org/10.1146/annurev-ento-010814-020620
  109. 89. Doss RP. Insect egg deposition and the elicitation of plant chemical defences. In: Schaller A, editor. Induced plant resistance to herbivory. Dordrecht: Springer; 2008. p. 205–19. https://doi.org/10.1007/978-1-4020-8182-8_9
  110. 90. Petzold-Maxwell JL, Wong S, Arellano C, Gould F. Host plant direct defence against eggs of its specialist herbivore, Heliothis subflexa. Ecol Entomol. 2011;36(5):700–08. https://doi.org/10.1111/j.1365-2311.2011.01317.x
  111. 91. Balmer D, Pastor V, Gamir J, Flors V, Mauch-Mani B. The ‘prime-ome’: towards a holistic approach to priming. Trends Plant Sci. 2015;20(7):443–52. https://doi.org/10.1016/j.tplants.2015.04.002
  112. 92. Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR. Priming for enhanced defence. Annu Rev Phytopathol. 2015;53:97–119. https://doi.org/10.1146/annurev-phyto-080614-120132
  113. 93. Hakeemi MS, Bosa P, Schoettner M, Vasseur-Coronado S, Weisser WW, Heisswolf A. Predator cues reduce insect herbivory through altered plant quality. Commun Biol. 2021;4(1):1223. https://doi.org/10.1038/s42003-021-02709-w
  114. 94. Weeraddana C, Tan WT, Reichelt M, Mithöfer A, Suzui N, Shinya T. Priming Arabidopsis by insect egg extract renders plant tissues a less suitable food source for herbivores. Plant Cell Physiol. 2020;61(4):800–10. https://doi.org/
  115. 10.1093/pcp/pcz226
  116. 95. Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, et al. Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev Camb Philos Soc. 2016;91(4):1118–33. https://doi.org/10.
  117. 1111/brv.12215
  118. 96. Hilker M, Schmülling T. Stress priming, memory and signalling in plants. Plant Cell Environ. 2019;42(3):753–61. https://doi.org/10.1111/pce.13526
  119. 97. Bandoly M, Grichnik R, Hilker M, Steppuhn A. Priming of antiherbivore defence in Nicotiana attenuata by insect egg deposition. Entomol Exp Appl. 2016;158(2):109–19. https://doi.org/10.1111/eea.12383
  120. 98. Bonnet C, Lassueur S, Roussel E, Clément C, Baillieul F, Dorey S. Treatment of grapevine with a proteinaceous elicitor from Botrytis cinerea induces protection against the necrotrophic pathogen. Eur J Plant Pathol. 2008;122(2):171–83. https://doi.org/10.1007/s10658-008-9278-6
  121. 99. Savary S, Ficke A, Aubertot JN, Hollier C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. 2012;4(4):519–37. https://doi.org/10.1007/s12571-012-0200-5
  122. 100. Walters DR, Ratsep J, Havis ND. Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot. 2013;64(5):1263–80. https://doi.org/10.1093/jxb/ert026

Downloads

Download data is not yet available.