Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Role of endosymbionts in sap feeding insects and their potential in pest management strategies

DOI
https://doi.org/10.14719/pst.7457
Submitted
27 January 2025
Published
07-07-2025
Versions

Abstract

Endosymbionts are microorganisms living within another organism and are closely associated with their biological functions. Sucking insects viz., aphids, whiteflies, leafhoppers, planthoppers and mealybugs, are major sap-feeding insects that cause considerable damage to crop plants. These homopteran insects have a strong relationship with facultative and obligate bacterial endosymbionts. Through symbiotic adaptations, insects can exploit plant resources and escape from the plant defenses. Endosymbionts play a critical role in physiological adaptation and ecological interactions, greatly affecting host fitness, detoxification processes and interactions with their natural enemies. For example, the endosymbiont Buchnera aphidicola helps the pea aphid, Acyrthosiphon pisum, neutralize hydroxamic acids like DIMBOA derived from plants. It also aids in detoxification processes and improves amino acids metabolism. Beyond detoxification, they also reduce plant defense mechanisms by interfering with communication pathways, triggering susceptibility genes in plants and altering the distribution of nutrients inside host plants. Endosymbionts influence the coevolutionary dynamics between plants and insects as well as the developmental paths of insect host plant ranges, allowing insects to quickly adapt to new plant defenses through the acquisition or change of their symbiont communities. This complex tri-trophic interaction between homopterans, plants and endosymbionts drives the evolution of plant defense and host-plant interaction. The manipulation of these endosymbionts contributes to the development of biological control methods. These modern approaches provide alternatives to established chemical interventions, thus achieving more sustainable and environmentally consistent pest management strategies.

References

  1. 1. Rajashekhar M, Dharavath V, Savani AK, Raidu LC, Kalia V. Endosymbionts and paratransgenesis approach for pest management. J Progress Res Soc Sci. 2016;11(V):2822-6. https://tinyurl.com/3azabar5
  2. 2. Buchner P. Endosymbiosis of animals with plant microorganisms. John Wiley & Sons, Inc.: Interscience Pub. Newyork. 1965. https://doi.org/10.1002/jobm.19670070219
  3. 3. Ishikawa H. Insect symbiosis: An introduction. In. Kostas Bourtzis Thomas A Miller, editors. Insect Symbiosis. CRC Press. 2003;1:1-21. https://doi.org/10.1201/9780203009918
  4. 4. Rahman SM, Kranthi P, Ravi G, Srinivas K. Endosymbionts and its role in insect pest management. Kumud Singh, editor. Latest Trends in Agric Entomol Delhi. 2022;97:119. https://doi.org/10.22271/int.book.113
  5. 5. Baumann P. Biology of bacteriocyte-associated endosymbionts of plant sap -sucking insects. Annu Rev Microbiol. 2005;59(1):155-89. https://doi.org/10.1146/annurev.micro.59.030804.121041
  6. 6. Liu S, Jiao J, Tian CF. Adaptive evolution of rhizobial symbiosis beyond horizontal gene transfer: From genome innovation to regulation reconstruction. Genes. 2023;14(2):274. https://doi.org/10.3390/genes14020274
  7. 7. Fukatsu T. Host’s demand for essential amino acids is compensated by an extracellular bacterial symbiont in a hemipteran insect model. Front Physiol. 2022;13:1028409. https://doi.org/10.3389/fphys.2022.1028409
  8. 8. Wang Y, Lu C, Guo S, Guo Y, Wei T, Chen Q. Leafhopper salivary vitellogenin mediates virus transmission to plant phloem. Nature Communications. 2024;15(1):3. https://doi.org/10.1038/s41467-023-43488-5
  9. 9. Douglas AE. Endosymbionts and intracellular parasites. In: Moselio Schaechter. Encyclopedia of Microbiol. University of York, York, UK. 2009;128-41.
  10. 10. Douglas AE. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol. 1998;43(1):17-37. https://doi.org/10.1146/annurev.ento.43.1.17
  11. 11. Juan LS, Paloma M, Ortega-Arenas LD, López-Buenfil JA, Cambron-Crisantos JM, Magallanes-Tapia MA, et al. Endosymbionts associated with Diaphorina citri, vector of Candidatus Liberibacter asiaticus. Revista Chapingo. Serie Horticultura. 2021;27(1):43-54. https://doi.org/10.5154/r.rchsh.2019.12.022
  12. 12. Engel P, Moran NA. The gut microbiota of insects–diversity in structure and function. FEMS Microbiol. Rev. 2013;37(5):699-735. https://doi.org/10.1111/1574-6976.12025
  13. 13. Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, et al. Symbiosis insights through metagenomic analysis of a microbial consortium. Nature. 2006;443(7114):950-5. https://doi.org/10.1038/nature05192
  14. 14. Luan JB, Chen W, Hasegawa DK, Simmons AM, Wintermantel WM, Ling KS, et al. Metabolic coevolution in the bacterial symbiosis of whiteflies and related plant sap-feeding insects. Genome Biol Evol and Evolution. 2015;7(9):2635-47.https://doi.org/https://doi.org/10.1093/gbe/evv170
  15. 15. Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature. 2000;407(6800):81-6. https://doi.org/10.1038/35024074
  16. 16. McCutcheon JP, Von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Current Biology. 2011;21(16):1366-72.https://doi.org/10.1016/j.cub.2011.06.051
  17. 17. Tsuchida T, Koga R, Fukatsu T. Host plant specialization governed by facultative Symbiont. Science. 2004;303(5666):1989. https://doi.org/ 10.1126/science.1094611
  18. 18. Engelstädter J, Hurst GD. The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst. 2009;40(1):127-49. https://doi.org/10.1146/annurev.ecolsys.110308.120206
  19. 19. Ghosh S, Bouvaine S, Richardson SC, Ghanim M, Maruthi MN. Fitness costs associated with infections of secondary endosymbionts in the cassava whitefly species Bemisia tabaci. J Pest Sci. 2018;91:17-28. https://doi.org/10.1007/s10340-017-0910-8
  20. 20. Xue X, Li SJ, Ahmed MZ, De Barro PJ, Ren SX, Qiu BL. Inactivation of Wolbachia reveals its biological roles in whitefly host. PLoS one. 2012;7(10):e48148. https://doi.org/https://doi.org/10.1371/journal.pone.0048148
  21. 21. Salem H, Bauer E, Strauss AS, Vogel H, Marz M, Kaltenpoth M. Vitamin supplementation by gut symbionts ensures metabolic homeostasis in an insect host. Proc R Soc B. 2014;281(1796):20141838. https://doi.org/https://doi.org/10.1098/rspb.2014.1838
  22. 22. Gottlieb Y, Ghanim M, Chiel E, Gerling D, Portnoy V, Steinberg S, et al. Identification and localization of a Rickettsia sp. in Bemisia tabaci (Homoptera: Aleyrodidae). Appl Environ Microbiol. 2006;72(5):3646-52. https://doi.org/10.1128/AEM.72.5.3646-3652.2006
  23. 23. Werren JH, Baldo L, Clark ME. Wolbachia: Master manipulators of invertebrate biology. Nat Rev Microbiol. 2008;6(10):741-51. https://doi.org/10.1038/nrmicro1969
  24. 24. Ahmed MZ, Ren SX, Xue X, Li XX, Jin GH, Qiu BL. Prevalence of endosymbionts in Bemisia tabaci populations and their in vivo sensitivity to antibiotics. Curr Microbiol. 2010;61:322-8. https://doi.org/10.1007/s00284-010-9614-5
  25. 25. Bai J, Zuo Z, DuanMu H, Li M, Tong H, Mei Y, et al. Endosymbiont Tremblaya phenacola influences the reproduction of cotton mealybugs by regulating the mechanistic target of rapamycin pathway. The ISME Journal. 2024;18(1):wrae052. https://doi.org/10.1093/ismejo/wrae052
  26. 26. Bennett GM, Moran NA. Heritable symbiosis: The advantages and perils of an evolutionary rabbit hole. Proc Natl Acad Sci. USA. 2015;112(33):10169-76. https://doi.org/10.1073/pnas.1421388112
  27. 27. Tang M, Lv L, Jing S, Zhu L, He G. Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl Environ Microbiol. 2010;76(6):1740-45. https://doi.org/10.1128/AEM.02240-09
  28. 28. Cheng Y, Yang J, Li T, Li J, Ye M, Wang J, et al. Endosymbiotic fungal diversity and dynamics of the brown planthopper across developmental stages, tissues and sexes revealed using circular consensus sequencing. Insects. 2024;15(2):87. https://doi.org/10.3390/insects15020087
  29. 29. Dong S, Pang K, Bai X, Yu X, Hao P. Identification of two species of yeast-like symbiotes in the brown planthopper, Nilaparvata lugens. Curr Microbiol. 2011; 62:1133-8. https://doi.org/10.1007/s00284-010-9830-z
  30. 30. Zhang JueFeng ZJ, Chen JianMing CJ, Chen FaJun CF, Zheng XuSong ZX, Chen LieZhong CL, Yu XiaoPing YX. The isolation of yeast-like-symbiots in the brown planthopper and the sequences analysis of its 26S rDNA. (cabidigitallibrary.org) 2009:2211-6. https://www.cabidigitallibrary.org/doi/full/10.5555/20093202103
  31. 31. López-Madrigal S, Beltrà A, Resurrección S, Soto A, Latorre A, Moya A, et al. Molecular evidence for ongoing complementarity and horizontal gene transfer in endosymbiotic systems of mealybugs. Front Microbiol. 2014;5:449. https://doi.org/10.3389/fmicb.2014.00449
  32. 32. McCutcheon JP, Von Dohlen CD. An interdependent metabolic patchwork in the nested symbiosis of mealybugs. Current Biology. 2011;21(16):1366-72.https://doi.org/10.1016/j.cub.2011.06.051
  33. 33. Husnik F, McCutcheon JP. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc Natl Acad Sci USA. 2016;113(37):E5416-24. https://doi.org/10.1073/pnas.1603910113
  34. 34. Thao ML, Gullan PJ, Baumann P. Secondary (γ-Proteobacteria) endosymbionts infect the primary (β-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Appl Environ Microbiol. 2002;68(7):3190-7. https://doi.org/10.1128/AEM.68.7.3190-3197.2002
  35. 35. Braig HR, Turner BD, Perotti MA. Symbiotic rickettsia. In Insect Symbiosis, Kostas Bourtzis, Thomas A Miller, editors. CRC Press. 2008:239-68. https://www.researchgate.net/publication/276893160_Symbiotic_Rickettsia
  36. 36. Peng L. Cryptic community structure, transmission dynamics and within-host ecology of heritable pea aphid microbiomes. Drexel University. 2022. https://doi.org/10.1111/jeb.14216
  37. 37. Brumin M, Lebedev G, Kontsedalov S, Ghanim M. Levels of the endosymbiont rickettsia in the whitefly Bemisia tabaci are influenced by the expression of vitellogenin. Insect Molecular Biology. 2020;29(2):241-55. https://doi.org/10.1111/imb.12629
  38. 38. Rana VS, Singh ST, Priya NG, Kumar J, Rajagopal R. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. 2012: e42168. https://doi.org/10.1371/journal.pone.0042168
  39. 39. Blawid R, Morgado FS, Souza CA, Resende RO, Boiteux LS, Pereira-Carvalho RC. Fluorescence in situ hybridization analysis of endosymbiont genera reveals novel infection patterns in a tomato-infesting Bemisia tabaci population from Brazil. Trop. Plant Pathol. 2015;40:233-43. https://doi.org/10.1007/s40858-015-0019-7
  40. 40. Thierry M, Becker N, Hajri A, Reynaud B, Lett JM, Delatte H. Symbiont diversity and non-random hybridization among indigenous (Ms) and invasive (B) biotypes of Bemisia tabaci. Molecular Ecology. 2011;20(10):2172-87. https://doi.org/10.1111/j.1365-294X.2011.05087.x
  41. 41. Skaljac M, Zanic K, Ban SG, Kontsedalov S, Ghanim M. Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiology. 2010;10:1-5. https://doi.org/10.1186/1471-2180-10-142
  42. 42. Schuler MA. P450s in plant–insect interactions. Biochimica et Biophysica Acta (BBA)- Proteins and Proteomics. 2011;1814(1):36-45. https://doi.org/10.1016/j.bbapap.2010.09.012
  43. 43. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, et al. Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior. 2012;7(10):1306-20. https://doi.org/10.4161/psb.21663
  44. 44. Hopkins RJ, van Dam NM, van Loon JJ. Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Microbiol. 2009;54(1):57-83. https://doi.org/10.1146/annurev.ento.54.110807.090623
  45. 45. Klassen JL. Microbial secondary metabolites and their impacts on insect symbioses. Current opinion in insect science. 2014;4:15-22. https://doi.org/10.1016/j.cois.2014.08.004
  46. 46. Liu M, Hong G, Li H, Bing X, Chen Y, Jing X, et al. Sakuranetin protects rice from brown planthopper attack by depleting its beneficial endosymbionts. Proc Natl Acad Sci. USA. 2023;120(23):e2305007120. https://doi.org/10.1073/pnas.2305007120
  47. 47. Deng Z, Lai C, Zhang J, Sun F, Li D, Hao P, et al. Effects of secondary metabolites of rice on brown planthopper and its symbionts. Int J Mol Sci. 2023;25(1):386.https://doi.org/10.3390/ijms25010386
  48. 48. Chang CY, Sun XW, Tian PP, Miao NH, Zhang YL, Liu XD. Plant secondary metabolite and temperature determine the prevalence of Arsenophonus endosymbionts in aphid populations. Environ Microbiol. 2022;24(8):3764-76. https://doi.org/10.1111/1462-2920.15929
  49. 49. Santos-Garcia D, Mestre-Rincon N, Zchori-Fein E, Morin S. Inside out: Microbiota dynamics during host-plant adaptation of whiteflies. The ISME Journal. 2020;14(3):847-56. https://doi.org/10.1038/s41396-019-0576-8
  50. 50. Ajene IJ, Khamis FM, van Asch B, Pietersen G, Rasowo BA, Ombura FL, et al. Microbiome diversity in Diaphorina citri populations from Kenya and Tanzania shows links to China. PloS one. 2020;15(6): e0235348. https://doi.org/10.1371/journal.pone.0235348
  51. 51. van den Bosch TJ, Welte CU. Detoxifying symbionts in agriculturally important pestinsects. Microb Biotechnol. 2017;10(3):531-40. https://doi.org/10.1111/1751-7915.12483
  52. 52. Manoj M, GKVK B, Priyadarshini S, Krishnakumar S, Vineeth M, Murali MK. Role of insect gut microbiota in pesticide degradation. Multidiscip Res Agric Allied Sci. 2023:111. https://doi.org/10.3389/fmicb.2022.870462
  53. 53. Zeng B, Zhang F, Liu YT, Wu SF, Bass C, Gao CF. Symbiotic bacteria confer insecticide resistance by metabolizing buprofezin in the brown planthopper, Nilaparvata lugens (Stål). Plos Pathogens. 2023;19(12):e1011828. https://doi.org/10.1371/journal.ppat.1011828
  54. 54. Xia X, Gurr GM, Vasseur L, Zheng D, Zhong H, Qin B, et al. Metagenomic sequencing of diamondback moth gut microbiome unveils key holobiont adaptations for herbivory. Front Microbiol. 2017;8:663. https://doi.org/10.3389/fmicb.2017.00663
  55. 55. Douglas AE. Omics and the metabolic function of insect–microbial symbioses. Curr Opin Insect Sci. 2018;29:1-6. https://doi.org/10.1016/j.cois.2018.05.012
  56. 56. Guo Y, Zhang Y, Dong F, Wu X, Pan X, Zheng Y, et al. Pesticide thiamethoxam in seed treatment: Uptake, metabolic transformation and associated synergistic effects against wheat aphids. Sci Total Environ. 2024;949:174955. https://doi.org/10.1016/j.scitotenv.2024.174955
  57. 57. Singh KS, Cordeiro EM, Troczka BJ, Pym A, Mackisack J, Mathers TC, et al. Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus Persicae. Commun Biol. 2021;4(1): 847. https://doi.org/10.1038/s42003-021-02373-x
  58. 58. Godavari AKH, Bharathi KK. Endosymbionts mediated detoxification of insecticides in insects. IJABR. 2024;8(2):625-34. https://doi.org/10.33545/26174693.2024.v8.i2h.643
  59. 59. Zhang J, Pan Y, Zheng C, Gao X, Wei X, Xi J, et al. Rapid evolution of symbiotic bacteria populations in spirotetramat-resistant Aphis gossypii glover revealed by pyrosequencing. Comp Biochem Physiol D Genomics Proteomics. 2016;20:151-8. https://doi.org/10.1016/j.cbd.2016.10.001
  60. 60. De Barro P, Ahmed MZ. Genetic networking of the Bemisia tabaci cryptic species complex reveals pattern of biological invasions. PLoS One. 2011;6(10):e25579. https://doi.org/10.1371/journal.pone.0025579
  61. 61. Bing XL, Ruan YM, Rao Q, Wang XW, Liu SS. Diversity of secondary endosymbionts among different putative species of the whitefly Bemisia tabaci. Insect Sci. 2013;20(2):194-206. https://doi.org/10.1111/j.1744-7917.2012.01522.x
  62. 62. Wang XW, Li P, Liu SS. Whitefly interactions with plants. Curr Opin Insect Sci. 2017;19:70-5. https://doi.org/10.1016/j.cois.2017.02.001
  63. 63. Yang X, He C, Xie W, Liu Y, Xia J, Yang Z, et al. Glutathione S-Transferases are involved in thiamethoxam resistance in the field whitefly Bemisia tabaci Q (Hemiptera: Aleyrodidae). Pestic Biochem Physiol. 2016;134:73-8. https://doi.org/10.1016/j.pestbp.2016.04.003
  64. 64. Ghanim M, Kontsedalov S. Susceptibility to insecticides in the Q biotype of Bemisia tabaci is correlated with bacterial symbiont densities. Pest Manag Sci. 2009;65(9):939-42. https://doi.org/10.1002/ps.1795
  65. 65. Barman M, Samanta S, Thakur H, Chakraborty S, Samanta A, Ghosh A, et al. Effect of neonicotinoids on bacterial symbionts and insecticide-resistant gene in whitefly, Bemisia tabaci. Insects. 2021;12(8):742.https://doi.org/10.3390/insects12080742
  66. 66. Taravati S, Mannion C, McKenzie C, Osborne L. Lethal and sublethal effects of selected systemic and contact insecticides on Nephaspis oculata (Coleoptera: Coccinellidae), in a tri-trophic system. J Econ Entomol. 2019;112(2):543-8. https://doi.org/10.1093/jee/toy364
  67. 67. Von Dohlen CD, Kohler S, Alsop ST, McManus WR. Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature. 2001;412(6845):433-6. https://doi.org/10.1016/j.cub.2011.06.051
  68. 68. Kumar V, Kaur J, Kaur J. Bioefficacy of new generation insecticides against mealybug Phenacoccus solenopsis tinsley on cotton crop. Pestic Res J. 2024;36(1):41-4. https://doi.org/10.5958/2249-524X.2024.00007.3
  69. 69. Krishnamoorthy R, Arul Jose P, Janahiraman V, Indira Gandhi P, Gandhi Gracy R, Jalali SK, et al. Function and insecticidal activity of bacteria associated with papaya mealybug, Paracoccus marginatus Williams & Granara de Willink (Hemiptera: Pseudococcidae). Biocontrol Science and Technology. 2020;30(8):762-8. https://doi.org/10.1080/09583157.2020.1765983
  70. 70. Ganter PF. Yeast and invertebrate associations. In: Péter G, Rosa C, editors. In biodiversity and ecophysiology of yeasts. Berlin, Heidelberg: Springer Berlin Heidelberg. 2006:303-70. https://doi.org/10.1007/3-540-30985-3_14
  71. 71. Moran NA, Russell JA, Koga R, Fukatsu T. Evolutionary relationships of three new species of Enterobacteriaceae living as symbionts of aphids and other insects. Appl Environ Microbiol. 2005;71(6):3302-10. https://doi.org/10.1128/AEM.71.12.8802-8810.2005
  72. 72. Sreerag RS, Jayaprakas CA, Ragesh L, Kumar SN. Endosymbiotic bacteria associated with the mealy bug, Rhizoecus amorphophalli (Hemiptera: Pseudococcidae). ISRN Entomol. 2014;2014(1):268491. https://doi.org/10.1155/2014/268491
  73. 73. Horgan FG, Srinivasan TS, Crisol-Martínez E, Almazan ML, Ramal AF, Oliva R, et al. Microbiome responses during virulence adaptation by a phloem-feeding insect to resistant near-isogenic rice lines. Ecol Evol. 2019;9(20):11911-29. https://doi.org/https://doi.org/10.1002/ece3.5699
  74. 74. Liu XD, Guo HF. Importance of endosymbionts Wolbachia and Rickettsia in insect resistance development. Curr Opin Insect Sci. 2019;33:84-90. https://doi.org/10.1016/j.cois.2019.05.003
  75. 75. Nakabachi A, Shigenobu S, Sakazume N, Shiraki T, Hayashizaki Y, Carninci P, et al. Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proc Natl Acad Sci USA. 2005;102(15):5477-82. https://doi.org/10.1073/pnas.0409034102
  76. 76. Tamas I, Klasson L, Canback B, Naslund AK, Eriksson AS, Wernegreen JJ, et al. 50 million years of genomic stasis in endosymbiotic bacteria. Science. 2002;296(5577):2376-9. https://doi.org/10.1126/science.1071278
  77. 77. Degnan PH, Lazarus AB, Wernegreen JJ. Genome sequence of Blochmannia pennsylvanicus indicates parallel evolutionary trends among bacterial mutualists of insects. Genome Res. 2005;15(8):1023-33. https://doi.org/10.1101/gr.3771305
  78. 78. Karunker I, Benting J, Lueke B, Ponge T, Nauen R, Roditakis E, et al. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochem Mol Biol. 2008;38(6):634-44. https://doi.org/10.1016/j.ibmb.2008.03.008
  79. 79. Rouhbakhsh D, Lai CY, Von Dohlen CD, Clark MA, Baumann L, Baumann P, et al. The tryptophan biosynthetic pathway of aphid endosymbionts (Buchnera): Genetics and evolution of plasmid-associated anthranilate synthase (trpEG) within the Aphididae. J Mol Evol. 1996;42:414-21. https://doi.org/10.1007/BF02498635
  80. 80. Chaudhary R, Atamian HS, Shen Z, Briggs SP, Kaloshian I. GroEL from the endosymbiont Buchnera aphidicola betrays the aphid by triggering plant defense. Proc Natl Acad Sci USA. 2014;111(24):8919-24. https://doi.org/10.1073/pnas.1407687111
  81. 81. Oliver KM, Higashi CH. Variations on a protective theme: Hamiltonella defensa infections in aphids variably impact parasitoid success. Curr Opin Insect Sci. 2019;32:1-7. https://doi.org/10.1016/j.cois.2018.08.009
  82. 82. Jaenike J, Brekke TD. Defensive endosymbionts: a cryptic trophic level in community ecology. Ecol Lett. 2011;14(2):150-5. https://doi.org/10.1111/j.1461-0248.2010.01564.x
  83. 83. Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the nNational Academy of Sciences. 2005;102(36):12795-800. https://doi.org/10.1073/pnas.0506131102
  84. 84. Costopoulos K, Kovacs JL, Kamins A, Gerardo NM. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens. BMC Ecology. 2014;14:1-7. https://doi.org/10.1186/1472-6785-14-5
  85. 85. Kogan M. Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol. 1998;43(1):243-70. https://doi.org/10.1146/annurev.ento.43.1.243
  86. 86. Rupawate PS, Roylawar P, Khandagale K, Gawande S, Ade AB, Jaiswal DK, et al. Role of gut symbionts of insect pests: A novel target for insect-pest control. Front Microbiol. 2023;14:1146390. https://doi.org/10.3389/fmicb.2023.1146390
  87. 87. Merzendorfer H, Zimoch L. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. J Exp Biol. 2003;206(24):4393-412. https://doi.org/10.1242/jeb.00709
  88. 88. Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim GH, Saravanan VS, et al. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofos-susceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism towards entomopathogenic fungi and host insect nutrition. J Appl Microbiol. 2007;103(6):2664-75. https://doi.org/10.1111/j.1365-2672.2007.03506.x
  89. 89. Okongo RN, Puri AK, Wang Z, Singh S, Permaul K. Comparative biocontrol ability of chitinases from bacteria and recombinant chitinases from the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng. 2019;127(6):663-71. https://doi.org/10.1016/j.jbiosc.2018.11.007
  90. 90. Saranya M, Kennedy JS, Anandham R, Manikandan A. Characterization and functional significance of bacteria associated with rugose spiralling whitefly, Aleurodicus rugioperculatus Martin (Hemiptera: Aleyrodidae) reared on guava plants. Appl Entomol Zool. 2022;57(4):323-1. https://doi.org/10.1007/s13355-022-00791-9
  91. 91. Saranya M, Kennedy JS, Anandham R. Functional characterization of cultivable gut bacterial communities associated with rugose spiralling whitefly, Aleurodicus rugioperculatus Martin. 3 Biotech. 2022;12(1):14. https://doi.org/10.1007/s13205-021-03081-3
  92. 92. Salunkhe RB, Patil CD, Salunke BK, Rosas-García NM, Patil SV. Effect of wax degrading bacteria on life cycle of the pink hibiscus mealybug, Maconellicoccus hirsutus (Green) (Hemiptera: Pseudococcidae). BioControl. 2013;58:535-42. https://doi.org/10.1007/s10526-013-9513-3
  93. 93. Enayati AA, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Mol Biol. 2005;14(1):3-8. https://doi.org/10.1111/j.1365-2583.2004.00529.x
  94. 94. Mohamedova MS, Valcheva IS, Draganova DG, Naydenov MK, Borisov YB. Effect of Bacillus amyloliquefaciens A1, Paenibacillus polymyxa AB3 and Providencia rettgeri K10 on the Citrus Mealybug, Planococcus citri (Risso) (Hemiptera: Pseudococcidae). Egyptian Journal of Biological Pest Control. 2017;27(1). https://tinyurl.com/3jvsraun
  95. 95. Hemalatha D, Prabhu S, Rani WB, Anandham R. Isolation and characterization of toxins from Xenorhabdus nematophilus against Ferrisia virgata (Ckll.) on tuberose, Polianthes tuberosa. Toxicon. 2018;146:42-9. https://doi.org/10.1016/j.toxicon.2018.03.012
  96. 96. Ali EA, Ibrahim HA, Abd ell Razzik MI, Balboul OA. Biocidal effect of some bacterial isolates against mealy bug insect Phenacoccus parvus (Hemipetra: Pseudococcidae). Middle East J Appl Sci. 2017;7(04). https://tinyurl.com/2xxmn4vu
  97. 97. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806-11. https://doi.org/10.1038/35888
  98. 98. Carthew RW, Sontheimer EJ. Origins and mechanisms of miRNAs and siRNAs. Cell. 2009;136(4):642-55. https://doi.org/10.1016/j.cell.2009.01.035
  99. 99. Li T, Wei Y, Zhao C, Li S, Gao S, Zhang Y, et al. Facultative symbionts are potential agents of symbiont-mediated RNAi in aphids. Front Microbiol. 2022;13:1020461. https://doi.org/10.3389/fmicb.2022.1020461
  100. 100. Knipling EF. The basic principles of insect population suppression and management. US Department of Agriculture. 1979.

Downloads

Download data is not yet available.