Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Comparative metabolite profiling of citrus species affected by greening disease

DOI
https://doi.org/10.14719/pst.7461
Submitted
28 January 2025
Published
19-07-2025 — Updated on 29-07-2025
Versions

Abstract

Citrus greening disease (CGD), devastating phloem residing proteobacteria, Candidatus Liberibacter asiaticus, has significantly impacted various citrus species in Tamil Nadu, India. A roving survey of citrus species revealed that the infected Citrus aurantifolia from Palamedu, Madurai district, exhibited the highest susceptibility, with a disease incidence (DI) of 67.89 % and disease severity (DS) of 65.89 %. In contrast, Poncirus trifoliata from Thadiyankudisai, Dindigul district, demonstrated the highest tolerance with a DI of 10.46 % and DS of 12.56 %. Molecular assessments using PCR and LAMP techniques confirmed the infection of CGD in symptomatic samples of Citrus aurantifolia, Citrus reticulata and Citrus × limonia, while asymptomatic samples tested negative. Biochemical analyses revealed substantial changes in metabolite compositions due to infection. Healthy acid lime contained 79 metabolites, with organic acids (27.84 %) and sugars (20.25 %) being the most dominant groups, whereas infected samples showed reduced diversity with only 60 metabolites. Similarly, healthy mandarin orange contained 93 metabolites, while infected samples exhibited 68 metabolites, significantly reducing sugars and organic acids. Poncirus and Rangpur lime also demonstrated metabolic shifts under infection, reducing the number and proportion of various metabolites. Comparative metabolic analysis highlighted the changes in key metabolites, with significant upregulation of mannose, hexadecenoic acid and maltose in healthy acid lime and downregulation of talose and shikimic acid in infected samples. Metabolomics revealed that compounds like tetramethoxyflavone, quinic acid and linoleic acid were consistently more abundant in healthy citrus samples. These findings provide insights into the biochemical responses of different citrus species to CGD, emphasizing the potential of tolerant varieties such as Poncirus trifoliata and guiding future disease management strategies through targeted metabolomic interventions.

References

  1. 1. Bové JM. Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol. 2006;88(1):7–37.
  2. 2. Halbert SE, Manjunath KL, Ramadugu C, Brodie MW, Webb SE, Lee RF. Trailers transporting oranges to processing plants move Asian citrus psyllids. Fla Entomol. 2010;93:33–38. https://doi.org/10.1653/024.093.0104
  3. 3. López-Arroyo JI, Peña MA, Rocha-Peña MA, Loera J. Ocurrenciaen México del psílidoasiático Diaphorina citri (Homoptera: Psyllidae). Memorias del VII Congreso Internacional de Fitopatología, Chihuahua; 2005. p. 68
  4. 4. Halbert SE. The discovery of Huanglongbing in Florida. In: Proceedings of the 2nd International Citrus Canker and Huanglongbing Research Workshop, Orlando, FL; 2005. p. 50.
  5. 5. Bové JM, Rogers ME. Huanglongbing-control. Acta Horti. 2015;1065:869–89. https://doi.org/10.17660/ActaHortic.2015.1065.109
  6. 6. Inoue H, Yamashita-Muraki S, Fujiwara K, Honda K, Ono H, Nonaka T, et al. Fe²⁺ ions alleviate the symptom of citrus greening disease. Int J Mol Sci. 2020;21(11):4033. https://doi.org/10.3390/ijms21114033
  7. 7. McCollum G, Baldwin E. Huanglongbing: devastating disease of citrus. In: Janick J, editor. Horticultural Reviews. 2016;43:315–61 https://doi.org/10.1002/9781119281269.ch7
  8. 8. Davis MJ, Mondal SN, Chen H, Rogers ME, Brlansky RH. Co-cultivation of 'Candidatus Liberibacter asiaticus' with Actinobacteria from citrus with Huanglongbing. Plant Dis. 2008;92:1547–50. https://doi.org/10.1094/PDIS-92-11-1547
  9. 9. Parker JK, Wisotsky SR, Johnson EG, Hijaz FM, Killiny N, Hilf ME, De La Fuente L. Viability of 'Candidatus Liberibacter asiaticus' prolonged by addition of citrus juice to culture medium. Phytopathol. 2014;104:15–26. https://doi.org/10.1094/PHYTO-05-13-0119-R
  10. 10. Sechler A, Schuenzel EL, Cooke P, Donnua S, Thaveechai N, Postnikova E, et al. Cultivation of 'Candidatus Liberibacter asiaticus', 'Ca. L. africanus’ and ‘Ca. L. americanus' associated with Huanglongbing. Phytopathol. 2009;99:480–86. https://doi.org/10.1094/PHYTO-99-5-0480
  11. 11. Etxeberria E, Gonzalez P, Achor D, Albrigo G. Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiol Mol Plant Patho. 2009;74:76–83. https://doi.org/10.1016/j.pmpp.2009.09.004
  12. 12. Zhang LH, Ren SL, Su ZQ, Xu PP, Ou D, Wang LJ, et al. Impact of Huanglongbing pathogen infection on the amino acid composition in both citrus plants and the Asian citruspsyllid. FrontPhysiol. 2021;12:777908. https://doi.org/10.3389/fphys.2021.777908
  13. 13. Kumar R, Sariga R, Manonmani K, Ayyandurai M, Senthilraja C, Akila R, et al. Assessment of Huanglongbing - induced changes in primary and secondary metabolites of acid lime. Physiol Mol Plant Patho. 2025;136:102547. https://doi.org/10.1016/j.pmpp.2024.102547
  14. 14. Naser TZ, Mohammad B. Physiological and morphological response to drought stress in seedlings of ten citrus. Trees. 2016;30:985–93. https://doi.org/10.1007/s00468-016-1372-y
  15. 15. Wang Z, Yin Y, Hu H, Yuan Q, Peng G, Xia Y. Development and application of molecular‐based diagnosis for 'Candidatus Liberibacter asiaticus', the causal pathogen of citrus huanglongbing. Plant Patho. 2006;55(5):630–38. https://doi.org/10.1111/j.1365-3059.2006.01438.x
  16. 16. Ghosh DK, Bhose S, Warghane A, Motghare M, Sharma AK, Dhar AK, Gowda S. Loop-mediated isothermal amplification (LAMP) based method for rapid and sensitive detection of 'Candidatus Liberibacter asiaticus' in citrus and the psyllid vector, Diaphorina citri Kuwayama. J Plant Biochem. 2016;25:219–23. https://doi.org/10.1007/s13562-015-0332-8
  17. 17. Karaman M, Tesanovic K, Gorjanovic S, Pastor FT, Simonovic M, Glumac M, et al. Polarography as a technique of choice for the evaluation of total antioxidant activity: the case study of selected Coprinus comatus extracts and quinic acid, their antidiabetic ingredient. Nat Prod Res. 2021;35(10):1711–16. https://doi.org/10.1080/14786419.2019.1628753
  18. 18. Pero RW, Lund H. In vivo treatment of humans with quinic acid enhances DNA repair and reduces the influence of lifestyle factors on risk to disease. Int J Biotechnol Biochem. 2009;5(3):293–305.
  19. 19. Bai J, Wu Y, Wang X, Liu X, Zhong K, Huang Y, et al. In vitro and in vivo characterization of the antibacterial activity and membrane damage mechanism of quinic acid against Staphylococcus aureus. J Food Saf. 2018;38(1):e12416. https://doi.org/10.1111/jfs.12416.
  20. 20. Samimi S, Ardestani MS, Dorkoosh FA. Preparation of carbon quantum dots-quinic acid for drug delivery of gemcitabine to breast cancer cells. J Drug Deliv Sci Technol. 2021;61:102287. https://doi.org/10.1016/j.jddst.2020.102287
  21. 21. Liu L, Liu Y, Zhao J, Xing X, Zhang C, Meng H. Neuroprotective effects of D-(-)-quinic acid on aluminum chloride-induced dementia in rats. Evid Based Complement Altern Med. 2020:1–10. https://doi.org/10.1155/2020/5602597
  22. 22. Gohari AR, Saeidnia S, Mollazadeh K, Yassa N, Malmir M, Shahverdi AR. Isolation of a new quinic acid derivative and its antibacterial modulating activity. Daru. 2010;18(1):69–73.
  23. 23. Nirmal NP, Khanashyam AC, Mundanat AS, Shah K, Babu KS, Thorakkattu P, et al. Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods. 2023;12:556. https://doi.org/10.3390/foods12030556
  24. 24. Heena B, Kaushal S, Kalia A, Kaur V. Proximate, mineral, chemical composition, antioxidant and antimicrobial potential of dropped fruits of Citrus reticulata Blanco. J Food Meas Charact. 2022;16:4303–17. https://doi.org/10.1007/s11694-022-01532-w
  25. 25. Meng LL, Liu RC, Yang L, Zou YN, Srivastava AK,et al. The change in fatty acids and sugars reveals the association between trifoliate orange and endophytic fungi. J Fungi. 2021;7(9):716. https://doi.org/10.3390/jof7090716
  26. 26. Hasanuzzaman M, Bhuyan MB, Zulfiqar F, Raza A, Mohsin SM, Mahmud JA, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants. 2020;9(8):681. https://doi.org/10.3390/antiox9080681
  27. 27. Hijaz F, Al-Rimawi F, Manthey JA, Killiny N. Phenolics, flavonoids and antioxidant capacities in citrus species with different degree of tolerance to Huanglongbing. Plant Signal. Behav. 2020;15(5):1752447. https://doi.org/10.1080/15592324.2020.1752447

Downloads

Download data is not yet available.