Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Nano-preservation- A revolutionary approach to improve the shelf-life of fruits: A comprehensive review

DOI
https://doi.org/10.14719/pst.7492
Submitted
29 January 2025
Published
24-07-2025 — Updated on 01-08-2025
Versions

Abstract

Fruits and vegetables can lose their freshness after harvesting due to various factors, including physical damage during harvesting, moisture loss, unfavorable weather conditions and microbial infestations by pests, molds and bacteria. Fruits, particularly, are more prone to spoilage and loss than vegetables. Several preservation techniques are used to enhance the postharvest quality and extend the shelf life of produce. A key emerging method is nano-preservation, which involves advanced technologies such as nano-edible coatings, active packaging, innovative packaging, nanocomposites, nanofilms and nano-biosensors. These techniques aim to improve the preservation of fruits and vegetables, ensuring they stay fresh longer. One of the significant benefits of nanotechnology in food preservation is the design of functional packaging materials that offer superior mechanical properties, better gas permeability and lower bioactive component levels. These materials help extend shelf life while having minimal impact on the sensory attributes like taste, texture and colour of the produce. Compared to traditional preservation methods, nano-preservation provides a more controlled environment around the produce, preventing spoilage, reducing waste and maintaining nutritional value. Additionally, these technologies help reduce the use of chemical preservatives. This review focuses on various nano-preservation techniques and their applications, indicating that nanotechnology is revolutionizing food preservation, offering sustainable development.

References

  1. 1. Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, et al. Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol. 2016;54:155–64. https://doi.org/10.1016/j.tifs.
  2. 2016.06.008
  3. 2. Gholami-Ahangaran M, Zia-Jahromi N. Nanosilver effects on growth parameters in experimental aflatoxicosis in broiler chickens. Toxicol Ind Health. 2013;29(2):121–25. https://doi.org/10.1177/0748233711425078
  4. 3. Song X-j, Zhang M, Mujumdar AS, Fan L. Drying characteristics and kinetics of vacuum microwave-dried potato slices. Dry Technol. 2009;27(9):969–74. https://doi.org/10.1080/07373930902902099
  5. 4. Abdollahi M, Alboofetileh M, Rezaei M, Behrooz R. Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocoll. 2013;32(2):416–24. https://doi.org/10.1016/j.foodhyd.2013.02.006
  6. 5. Cheng S, Zhang Y, Cha R, Yang J, Jiang X. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties. Nanoscale. 2016;8(2):973–78. https://doi.org/10.1039/C5NR07647A
  7. 6. Xu Z, Li D, Diao G, Wu M, Fraser D, Li J, et al. Effects of Nb C addition on mechanical and tribological properties of AlCrFeNi medium-entropy alloy. Tribol Int. 2024;194:109486. https://doi.org/10.1016/j.triboint.2024.109486
  8. 7. Khan A, Khan RA, Salmieri S, Le Tien C, Riedl B, Bouchard J, et al. Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan-based nanocomposite films. Carbohydrate polymers. 2012;90(4):1601–
  9. 08. https://doi.org/10.1016/j.carbpol.2012.07.037
  10. 8. Sanchez-Garcia MD, Lopez-Rubio A, Lagaron JM. Natural micro and nanobiocomposites with enhanced barrier properties and novel functionalities for food biopackaging applications. Trends Food Sci Technol. 2010;21(11):528–36.
  11. https://doi.org/10.1016/j.tifs.2010.07.008
  12. 9. Aulin C, Salazar-Alvarez G, Lindström T. High strength, flexible and transparent nanofibrillated cellulose-nanoclay biohybrid films with tunable oxygen and water vapour permeability. Nanoscale. 2012;4(20):6622–28. https://doi.org/
  13. 10.1039/c2nr31726e
  14. 10. Seifi H, Gholami T, Seifi S, Ghoreishi SM, Salavati-Niasari M. A review on current trends in thermal analysis and hyphenated techniques in the investigation of physical, mechanical and chemical properties of nanomaterials. J Anal Appl Pyrolysis. 2020;149:104840. https://doi.org/10.1016/j.jaap.2020.104840
  15. 11. Mehmood Z, Sadiq MB, Khan MR. Gelatin nanocomposite films incorporated with magnetic iron oxide nanoparticles for shelf life extension of grapes. J Food Saf. 2020;40(4):e12814. https://doi.org/10.1111/jfs.12814
  16. 12. Brody AL, Zhuang H, Han JH. Modified atmosphere packaging for fresh-cut fruits and vegetables. Hoboken (NJ): John Wiley & Sons; 2010. https://doi.org/10.1002/9780470959145
  17. 13. Mihindukulasuriya S, Lim L-T. Nanotechnology development in food packaging: A review. Trends Food Sci Technol. 2014;40(2):149–67. https://doi.org/10.1016/j.tifs.2014.09.009
  18. 14. Omri K, Alonizan N. Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn-TiO 2 nano-composite for applications in photo-catalysis. J Inorg Organomet Polym Mater. 2019;29:203–12. https://doi.org/10.1007/s10904-018-0979-4
  19. 15. Liu D, Gu N. Nanomaterials for fresh-keeping and sterilization in food preservation. Recent Pat Food Nutr Agric. 2009;1(2):149–54. https://doi.org/10.2174/1876142910901020149
  20. 16. Rossi M, Cubadda F, Dini L, Terranova M, Aureli F, Sorbo A, et al. Scientific basis of nanotechnology, implications for the food sector and future trends. Trends Food Sci Technol. 2014;40(2):127–48. https://doi.org/10.1016/j.tifs.2014.
  21. 09.004
  22. 17. Brody A, Zhuang H, Han J. Nanostructure packaging technologies. Modified atmosphere packaging for fresh‐cut fruits and vegetables. 2011. https://doi.org/10.1002/9780470959145
  23. 18. Montazer M, Keshvari A, Kahali P. Tragacanth gum/nano silver hydrogel on cotton fabric: In-situ synthesis and antibacterial properties. Carbohydr Polym. 2016;154:257–66. https://doi.org/10.1016/j.carbpol.2016.06.084
  24. 19. Divya K, Jisha M. Chitosan nanoparticles preparation and applications. Environ Chem Lett. 2018;16:101–12. https://doi.org/10.1007/s10311-017-0670-y
  25. 20. Kalaivani R, Maruthupandy M, Muneeswaran T, Singh M, Sureshkumar S, Anand M, et al. Chitosan-mediated gold nanoparticles against pathogenic bacteria, fungal strains and MCF-7 cancer cells. Int J Biol Macromol. 2020;146:560–68. https://doi.org/10.1016/j.ijbiomac.2020.01.037
  26. 21. Wantat A, Seraypheap K, Rojsitthisak P. Effect of chitosan coatings supplemented with chitosan-montmorillonite nanocomposites on postharvest quality of 'Hom Thong'banana fruit. Food Chem. 2022;374:131731. https://doi.org/
  27. 10.1016/j.foodchem.2021.131731
  28. 22. Melo NFCB, de MendonçaSoares BL, Diniz KM, Leal CF, Canto D, Flores MA, et al. Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biol Technol. 2018;139:56–66. https://doi.org/10.1016/j.postharvbio.2018.01.014
  29. 23. Aadil KR, Mussatto SI, Jha H. Synthesis and characterization of silver nanoparticles loaded poly (vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity. Int J Biol Macromol. 2018;120:763–67. https://doi.org/
  30. 10.1016/j.ijbiomac.2018.08.109
  31. 24. Moradi F, Sedaghat S, Moradi O, Arab Salmanabadi S. Review on green nano-biosynthesis of silver nanoparticles and their biological activities: With an emphasis on medicinal plants. Inorganic and nano-metal chem. 2021;51(1):133–42. https://doi.org/10.1080/24701556.2020.1769662
  32. 25. Noshirvani N, Ghanbarzadeh B, Mokarram RR, Hashemi M, Coma V. Preparation and characterization of active emulsified films based on chitosan-carboxymethyl cellulose containing zinc oxide nanoparticles. Int J Biol Macromol. 2017;99:530–38. https://doi.org/10.1016/j.ijbiomac.2017.03.007
  33. 26. Yusof NAA, Zain NM. The effect of ZnO nanoparticles on the physical, mechanical, and antibacterial properties of chitosan/gelatin hydrogel films. J Teknological. 2019;81(2):21–26. https://doi.org/10.11113/jt.v81.12605
  34. 27. Awwad AM, Amer MW, Salem NM, Abdeen AO. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Ailanthus altissima fruit extracts and antibacterial activity. Chem Int. 2020;6(3):151–59.
  35. 28. Khatri D, Panigrahi J, Prajapati A, Bariya H. Attributes of Aloe vera gel and chitosan treatments on the quality and biochemical traits of post-harvest tomatoes. Sci Hortic. 2020;259:108837. https://doi.org/10.1016/j.scienta.2019.
  36. 108837
  37. 29. Maringgal B, Hashim N, Tawakkal ISMA, Mohamed MTM. Recent advances in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci Technol. 2020;96:253–67. https://doi.org/10.1016/j.tifs.2019.12.024
  38. 30. Hasheminejad N, Khodaiyan F. The effect of clove essential oil-loaded chitosan nanoparticles on the shelf life and quality of pomegranate arils. Food Chem. 2020;309:125520. https://doi.org/10.1016/j.foodchem.2019.125520
  39. 31. Gad MM, Zagzog OA. Mixing xanthan gum and chitosan nanoparticles to form a new coating for maintaining the storage life and quality of Elmamoura guava fruits. Int J Curr Microbiol Appl Sci. 2017;6(11):1582–91. https://doi.org/
  40. 10.20546/ijcmas.2017.611.190
  41. 32. Taha I, Shahat M, Mohamed M, Osheba A. Improving the quality and shelf-life of strawberries coated with nano-edible films during storage. Al-Azhar J Agri Res. 2020;45(2):1–14. https://doi.org/10.21608/ajar.2020.149403
  42. 33. Sharma B, Nigam S, Verma A, Garg M, Mittal A, Sadhu SD. A Biogenic Approach to Develop Guava-Derived Edible Copper and Zinc Oxide Nanocoating to Extend Shelf Life and Efficiency for Food Preservation. J Polym Environ. 2024;32(1):331–44. https://doi.org/10.1007/s10924-023-02972-1
  43. 34. Algarni EH, Elnaggar IA, Abd El-wahed AE-wN, Taha IM, Al-Jumayi HA, et al. Effect of chitosan nanoparticles as edible coating on the storability and quality of apricot fruits. Polymers. 2022;14(11):2227. https://doi.org/10.3390/polym14112227
  44. 35. Zambrano-Zaragoza ML, Quintanar-Guerrero D, Del Real A, González-Reza RM, Cornejo-Villegas MA, Gutiérrez-Cortez E. Effect of nano-edible coating based on beeswax solid lipid nanoparticles on strawberry's preservation. Coatings. 2020;10(3):253. https://doi.org/10.3390/coatings10030253
  45. 36. Anean HEDA. Noval in Nano-Edible Films Applications in the Production of High-Quality Dates Al Hulwah and Soukari for Export. EC Nutrition. 2023;18:04–24. https://doi.org/10.21203/rs.3.rs-2474837/v1
  46. 37. Pudake RN, Chauhan N, Kole C. Nanoscience for sustainable agriculture: Springer; 2019. https://doi.org/10.1007/
  47. 978-3-319-97852-9
  48. 38. Nile SH, Baskar V, Selvaraj D, Nile A, Xiao J, Kai G. Nanotechnologies in food science: Applications, recent trends, and future perspectives. Nano-micro letters. 2020;12:134. https://doi.org/10.1007/s40820-020-0383-9
  49. 39. Sujithra S, Manikkandan T. Application of nanotechnology in packaging of foods: A review. Int J Chemtech Res. 2019;12(4):07–14. https://doi.org/10.20902/IJCTR.2019.120402
  50. 40. Bugatti V, Cefola M, Montemurro N, Palumbo M, Quintieri L, Pace B, et al. Combined effect of active packaging of polyethene filled with a nano-carrier of salicylate and modified atmosphere to improve the shelf life of fresh blueberries. Nanomaterials. 2020;10(12):2513. https://doi.org/10.3390/nano10122513
  51. 41. Ramos M, Jiménez A, Peltzer M, Garrigós MC. Development of novel nano-biocomposite antioxidant films based on poly (lactic acid) and thymol for active packaging. Food Chem. 2014;162:149–55. https://doi.org/10.1016/j.foodchem.2014.04.026
  52. 42. Shi S, Wang W, Liu L, Wu S, Wei Y, Li W. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. J Food Eng. 2013;118(1):125–31. https://doi.org/10.1016/j.jfoodeng.2013.03.029
  53. 43. Liu Z, Du M, Liu H, Zhang K, Xu X, Liu K, et al. Chitosan films incorporating litchi peel extract and titanium dioxide nanoparticles and their application as coatings on watercored apples. Prog Org Coat. 2021;151:106103. https://doi.org/10.1016/j.porgcoat.2020.106103
  54. 44. Saba MK, Amini R. Nano-ZnO/carboxymethyl cellulose-based active coating impact on ready-to-use pomegranate during cold storage. Food Chem. 2017;232:721–26. https://doi.org/10.1016/j.foodchem.2017.04.076
  55. 45. Meira SMM, Zehetmeyer G, Werner JO, Brandelli A. A novel active packaging material based on starch-halloysite nanocomposites incorporating antimicrobial peptides. Food Hydrocoll. 2017;63:561–70. https://doi.org/10.1016/j.foodhyd.2016.10.013
  56. 46. Vigneshwaran N, Kadam DM, Patil S. Nanomaterials for active and smart packaging of food. Nanoscience for Sustainable Agriculture. 2019:581–600. https://doi.org/10.1007/978-3-319-97852-9_22
  57. 47. Mlalila N, Kadam DM, Swai H, Hilonga A. Transformation of food packaging from passive to innovative via nanotechnology: concepts and critiques. J Food Sci Technol. 2016;53:3395–407. https://doi.org/10.1007/s13197-016-
  58. 2325-6
  59. 48. Kruijf ND, Beest MV, Rijk R, Sipiläinen-Malm T, Losada PP, Meulenaer BD. Active and intelligent packaging: Applications and regulatory aspects. Food Addit Contam. 2002;19(S1):144–62. https://doi.org/10.1080/0265203011
  60. 0072722
  61. 49. Altaf U, Kanojia V, Rouf A. Novel packaging technology for the food industry. J Pharmacogn Phytochem. 2018;7(1):1618–25.
  62. 50. Batista RA, Espitia PJP, Quintans JdSS, Freitas MM, Cerqueira MÂ, Teixeira JA, et al. Hydrogel as an alternative structure for food packaging systems. Carbohydr Polym. 2019;205:106–16. https://doi.org/10.1016/j.carbpol.2018.
  63. 10.006
  64. 51. de Oliveira Filho JG, Miranda M, Ferreira MD, Plotto A. Nanoemulsions as edible coatings: A potential strategy for fresh fruits and vegetables preservation. Foods. 2021;10(10):2438. https://doi.org/10.3390/foods10102438
  65. 52. Meng F-B, Gou Z-Z, Li Y-C, Zou L-H, Chen W-J, Liu D-Y. The efficiency of lemon essential oil-based nanoemulsions on the inhibition of Phomopsis sp. and reduction of postharvest decay of kiwifruit. Foods. 2022;11(10):1510. https://doi.org/10.3390/foods11101510
  66. 53. Miranda M, Sun X, Ference C, Plotto A, Bai J, Wood D, et al. Nano- and micro-carnauba wax emulsions versus shellac protective coatings on postharvest citrus quality. J Am Soc Hortic Sci. 2021;146(1):40–49. https://doi.org/10.
  67. 21273/JASHS04972-20
  68. 54. Chu Y, Gao C, Liu X, Zhang N, Xu T, Feng X, et al. Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT. 2020;122:109054. https://doi.org/10.1016/j.lwt.2020.109054
  69. 55. Yang R, Miao J, Shen Y, Cai N, Wan C, Zou L, et al. Antifungal effect of cinnamaldehyde, eugenol and carvacrol nanoemulsion against Penicillium digitatum and application in postharvest preservation of citrus fruit. LWT. 2021;141:110924. https://doi.org/10.1016/j.lwt.2021.110924
  70. 56. Ali A, Muhammad MTM, Sijam K, Siddiqui Y. Potential of chitosan coating in delaying the postharvest anthracnose (Colletotrichum gloeosporioides Penz.) of Eksotika II papaya. Int J Food Sci Technol. 2010;45(10):2134–40. https://doi.
  71. org/10.1111/j.1365-2621.2010.02389.x
  72. 57. Prakash A, Baskaran R, Vadivel V. Citral nanoemulsion incorporated edible coating to extend the shelf life of fresh cut pineapples. LWT. 2020;118:108851. https://doi.org/10.1016/j.lwt.2019.108851
  73. 58. Gardesh ASK, Badii F, Hashemi M, Ardakani AY, Maftoonazad N, Gorji AM. Effect of nanochitosan-based coating on climacteric behaviour and postharvest shelf-life extension of apple cv. Golab Kohanz. LWT. 2016;70:33–40. https://doi.org/10.1016/j.lwt.2016.02.002
  74. 59. Verma ML, Rani V. Biosensors for toxic metals, polychlorinated biphenyls, biological oxygen demand, endocrine disruptors, hormones, dioxin, phenolic and organophosphorus compounds: a review. Environ Chem Lett. 2021;19(2):1657–66. https://doi.org/10.1007/s10311-020-01116-4
  75. 60. Shen Y. Rice husk silica derived nanomaterials for sustainable applications. Renew Sustain Energy Rev. 2017;80:453–66. https://doi.org/10.1016/j.rser.2017.05.115
  76. 61. Zhang F, Zhang Q, Zhang D, Lu Y, Liu Q, Wang P. Biosensor analysis of natural and artificial sweeteners in intact taste epithelium. Biosens Bioelectron. 2014;54:385–92. https://doi.org/10.1016/j.bios.2013.11.020
  77. 62. Kakimova Z, Orynbekov D, Zharykbasova K, Kakimov A, Zharykbasov Y, Mirasheva G, et al. Advancements in nano-bio sensors for food quality and safety assurance review. Potr S J Food Sci. 2023;17(1). https://doi.org/10.5219/1903
  78. 63. Feng L, Song S, Li H, He R, Chen S, Wang J, et al. Nano-biosensors based on noble metal and semiconductor materials: emerging trends and future prospects. Metals. 2023;13(4):792. https://doi.org/10.3390/met13040792
  79. 64. Sarfraz J, Gulin-Sarfraz T, Nilsen-Nygaard J, Pettersen MK. Nanocomposites for food packaging applications: An overview. Nanomaterials. 2020;11(1):10. https://doi.org/10.3390/nano11010010
  80. 65. Jang W-S, Rawson I, Grunlan JC. Layer-by-layer assembly of a thin film oxygen barrier. Thin Solid Films. 2008;516(15):4819–25. https://doi.org/10.1016/j.tsf.2007.08.141
  81. 66. Yildirim S, Röcker B, Pettersen MK, Nilsen‐Nygaard J, Ayhan Z, Rutkaite R, et al. Active packaging applications for food. ComprRev Food Sci Food Saf. 2018;17(1):165–99. https://doi.org/10.1111/1541-4337.12322
  82. 67. Pelissari FM, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC. Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. J Colloid Interface Sci. 2017;505:154–67. https://doi.org/10.1016/j.jcis.2017.05.106
  83. 68. Xiao Y, Liu Y, Kang S, Wang K, Xu H. Development and evaluation of soy protein isolate-based antibacterial nanocomposite films containing cellulose nanocrystals and zinc oxide nanoparticles. Food Hydrocoll. 2020;106:105898. https://doi.org/10.1016/j.foodhyd.2020.105898
  84. 69. Karimi N, Alizadeh A, Almasi H, Hanifian S. Preparation and characterization of whey protein isolate/polydextrose-based nanocomposite film incorporated with cellulose nanofiber and L. plantarum: A new probiotic active packaging system. LWT. 2020;121:108978. https://doi.org/10.1016/j.lwt.2019.108978
  85. 70. Basumatary K, Daimary P, Das SK, Thapa M, Singh M, Mukherjee A, et al. Lagerstroemia speciosa fruit-mediated synthesis of silver nanoparticles and its application as filler in agar-based nanocomposite films for antimicrobial food packaging. Food Packag Shelf Life. 2018;17:99–106. https://doi.org/10.1016/j.fpsl.2018.06.003
  86. 71. Vimala Bharathi S, Maria Leena M, Moses J, Anandharamakrishnan C. Zein‐based anti‐browning cling wraps for fresh‐cut apple slices. Int J Food Sci Technol. 2020;55(3):1238–45. https://doi.org/10.1111/ijfs.14401
  87. 72. Basumatary IB, Mukherjee A, Katiyar V, Kumar S. Biopolymer-based nanocomposite films and coatings: Recent advances in shelf-life improvement of fruits and vegetables. Crit Rev Food Sci Nutr. 2022;62(7):1912–35. https://doi.org/10.1080/10408398.2020.1848789
  88. 73. Chavoshizadeh S, Pirsa S, Mohtarami F. Conducting/smart color film based on wheat gluten/chlorophyll/polypyrrole nanocomposite. Food Packag Shelf Life. 2020;24:100501. https://doi.org/10.1016/j.fpsl.2020.100501
  89. 74. Noorbakhsh-Soltani S, Zerafat M, Sabbaghi S. A comparative study of gelatin and starch-based nano-composite films modified by nano-cellulose and chitosan for food packaging applications. Carbohydr Polym. 2018;189:48–55. https://doi.org/10.1016/j.carbpol.2018.02.012
  90. 75. Fakhouri FM, Martelli SM, Caon T, Velasco JI, Mei LHI. Edible films and coatings based on starch/gelatin: Film properties and effect of coatings on quality of refrigerated Red Crimson grapes. Postharvest Biol Technol. 2015;109:57–64. https://doi.org/10.1016/j.postharvbio.2015.05.015
  91. 76. Tabassum N, Khan MA. Modified atmosphere packaging of fresh-cut papaya using alginate-based edible coating: Quality evaluation and shelf life study. Sci Hortic. 2020;259:108853. https://doi.org/10.1016/j.scienta.2019.108853
  92. 77. Xu D, Qin H, Ren D. Prolonged preservation of tangerine fruits using chitosan/montmorillonite composite coating. Postharvest Biol Technol. 2018;143:50–57. https://doi.org/10.1016/j.postharvbio.2018.04.013
  93. 78. Chen H, Sun Z, Yang H. Effect of carnauba wax-based coating containing glycerol monolaurate on the quality maintenance and shelf-life of Indian jujube (Zizyphus mauritiana Lamk.) fruit during storage. Sci Hortic. 2019;244:
  94. 157–64. https://doi.org/10.1016/j.scienta.2018.09.039
  95. 79. Pellá MC, Silva OA, Pellá MG, Beneton AG, Caetano J, Simões MR, et al. Effect of gelatin and casein additions on starch edible biodegradable films for fruit surface coating. Food Chem. 2020;309:125764. https://doi.org/10.1016/j.foodchem.2019.125764
  96. 80. Lin D, Zhao Y. Innovations in the development and application of edible coatings for fresh and minimally processed fruits and vegetables. Compr Rev Food Sci Food Saf. 2007;6(3):60–75. https://doi.org/10.1111/j.1541-4337.
  97. 2007.00018.x
  98. 81. Shabanpour B, Kazemi M, Ojagh SM, Pourashouri P. Bacterial cellulose nanofibers as reinforcement in edible fish myofibrillar protein nanocomposite films. Int J Biol Macromol. 2018;117:742–51. https://doi.org/10.1016/j.ijbiomac.
  99. 2018.05.038
  100. 82. GarcÃa-Almendà B, Regalado C, Pimentel-Gonzà D, Barbosa-Cà G, Reyes-Gonzà L. Effect of starch-beeswax coatings on quality parameters of blackberries (Rubus spp.). J Food Biosci Technol. 2015;52(9). https://doi.org/10.
  101. 1007/s13197-014-1665-3
  102. 83. Zambrano-Zaragoza M, Mercado-Silva E, Gutiérrez-Cortez E, Cornejo-Villegas M, Quintanar-Guerrero D. The effect of nano-coatings with α-tocopherol and xanthan gum on shelf-life and browning index of fresh-cut "Red Delicious" apples. Innov Food Sci Emerg Technol. 2014;22:188–96. https://doi.org/10.1016/j.ifset.2013.09.008
  103. 84. Tomadoni B, Moreira MdR, Pereda M, Ponce AG. Gellan-based coatings incorporated with natural antimicrobials in fresh-cut strawberries: Microbiological and sensory evaluation through refrigerated storage. LWT. 2018;97:384–89. https://doi.org/10.1016/j.lwt.2018.07.029
  104. 85. Sharma B, Malik P, Jain P. Biopolymer reinforced nanocomposites: A comprehensive review. Mater Today Commun. 2018;16:353–63. https://doi.org/10.1016/j.mtcomm.2018.07.004
  105. 86. Salinas‐Roca B, Guerreiro A, Welti‐Chanes J, Antunes MD, Martín‐Belloso O. Improving quality of fresh‐cut mango
  106. using polysaccharide‐based edible coatings. Int J Food Sci Technol. 2018;53(4):938–45. https://doi.org/10.1111/ijfs.13666
  107. 87. Yousuf B, Srivastava AK. Impact of honey treatments and soy protein isolate-based coating on fresh-cut pineapple during storage at 4 °c. Food Packag Shelf Life. 2019;21:100361. https://doi.org/10.1016/j.fpsl.2019.100361
  108. 88. Kumar S, Boro JC, Ray D, Mukherjee A, Dutta J. Bionanocomposite films of agar incorporated with ZnO nanoparticles as an active packaging material for shelf life extension of green grape. Heliyon. 2019;5(6). https://doi.org/10.1016/j.heliyon.2019.e01867

Downloads

Download data is not yet available.