Review Articles
Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II
Ethno medicinal plant-based approach to treat anaemia: A systematic review
Department of Home Science, IIS (Deemed to be University) 302 020, India; School of Allied Health Sciences, Jaipur National University 302 017, India
Department of Home Science, IIS (Deemed to be University) 302 020, India
Abstract
Iron deficiency anaemia (IDA) remains one of the leading global health concerns, particularly affecting adolescent girls and women. It is characterized by insufficient red blood cells or haemoglobin levels, primarily caused by iron deficiency and it significantly impacts physical and cognitive health. This study aims to explore the potential of ethnomedicinal plants in managing anaemia by evaluating bioactive compounds and nutrients found in plants such as Moringa oleifera, Psidium guajava, Trigonella foenum-graecum, Hibiscus sabdariffa, Punica granatum, Amaranthus spp., Beta vulgaris, Phyllanthus emblica and Lepidium sativum. A systematic review methodology, guided by the PRISMA framework and utilizing the PSALSAR and PICOC models, was employed to assess the efficacy of these plants in improving haemoglobin and other haematological parameters. Results from studies from databases such as PubMed, Scopus and Google Scholar suggest that these plant-based interventions have improved haemoglobin levels by promoting iron absorption and bioavailability. Thus justifying a medicinal approach to treat anaemia with a sustainable perspective using traditional local resources based on the promising potential of plant-based remedies, being cost-effective solutions for combating anaemia, especially in resource-limited settings and emphasizing the need for further clinical and community-based research to integrate these interventions into public health strategies.
References
- 1. GBD. Disease and Injury Incidence and Prevalence Collaborators. Global, regional and national incidence, prevalence and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2017;390(10100):1211–59. http://doi.org/10.1016/S0140–6736(17)32154–2
- 2. WHO Global Anaemia estimates, 2021 Edition. Global anaemia estimates in women of reproductive age, by pregnancy status and in children aged 6–59 months [Internet]. 2021 [cited 2025 Jan 22]. Available from: https://www.who.int/news–room/fact–sheets/detail/anaemia#:~:text=Globally %2C %20it %20is %20estimated %20that,due %20to %20disability %20in %202019
- 3. Chandrakumari AS, Sinha P, Singaravelu S, Jaikumar S. Prevalence of anaemia among adolescent girls in a rural area of Tamil Nadu, India. J Family Med Prim Care. 2019;8(4):1414. https://doi.org/10.4103/jfmpc.jfmpc_140_19
- 4. Woldu B, Enawgaw B, Asrie F, Shiferaw E, Getaneh Z, Melku M. Prevalence and associated factors of anaemia among reproductive–aged women in Sayint Adjibar Town, Northeast Ethiopia: community–based cross–sectional study. Anaemia. 2020;2020:8683946. https://doi.org/10.1155/2020/8683946
- 5. Katsarou A, Pantopoulos K. Basics and principles of cellular and systemic iron homeostasis. Mol Aspects Med. 2020;75:100866. https://doi.org/10.1016/j.mam.2020.100866
- 6. Lynch S, Pfeiffer CM, Georgieff MK, Brittenham GM, Fairweather–Tait SJ, Hurrell RF, et al. Biomarkers of Nutrition for Development (BOND)—Iron Review. J Nutr. 2018;148(suppl_1):1001S–1067S. https://doi.org/10.1093/jn/nxx036
- 7. Gebreyesus SH, Endris BS, Beyene GT, Farah AM, Elias F, Bekele H. Anaemia among adolescent girls in three districts in Ethiopia. BMC Public Health. 2019;19(1):6422. https://doi.org/10.1186/s12889–019–6422–0
- 8. Habib N, Abbasi SS, Aziz W. An analysis of societal determinants of anaemia among adolescent girls in Azad Jammu and Kashmir, Pakistan. Anaemia. 2020;2020:1628357. https://doi.org/10.1155/2020/1628357
- 9. Mengistu G, Azage M, Gutema H. Iron deficiency anaemia among in–school adolescent girls in rural areas of Bahir Dar City Administration, North West Ethiopia. Anaemia. 2019; 2019:1097547. https://doi.org/10.1155/2019/1097547
- 10. Chaparro CM, Suchdev PS. Anaemia epidemiology, pathophysiology and aetiology in low‐ and middle‐income countries. Ann N Y Acad Sci. 2019. https://doi.org/10.1111/nyas.14092
- 11. Azzopardi PS, Hearps SJC, Francis KL, Kennedy EC, Mokdad AH, Kassebaum NJ, et al. Progress in adolescent health and well-being: tracking 12 headline indicators for 195 countries and territories, 1990–2016. Lancet. 2019;393(10176):1101–18. http://doi.org/10.1016/S0140–6736(18)32427–9
- 12. International Institute for Population Sciences (IIPS) and ICF. IIPS and ICF homepage [Internet]. Mumbai (India): International Institute for Population Sciences (IIPS); 2021 [cited 2025 Jul 21]. Available from: https://www.iipsindia.ac.in
- 13. GBD 2021 Forecasting Collaborators. Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet. 2024; 403(10440):2204–56.https://doi.org/10.1016/S0140–6736(24)00685–8
- 14. Rusu I, Suharoschi R, Vodnar DC, Pop C, Socaci S, Vulturar R, et al. Iron supplementation influence on the gut microbiota and probiotic intake effect in iron deficiency—A literature–based review. Nutrients. 2020;12(7):1993. https://doi.org/10.3390/nu12071993
- 15. Yilmaz B, Li H. Gut microbiota and iron: the crucial actors in health and disease. Pharmaceuticals. 2018;11(4):98. https://doi.org/10.3390/ph11040098
- 16. Yoon SY, Kim MJ, Lee MY, Kim KH, Lee N, Won JH. The effects of iron deficiency on the gut microbiota in young women. Blood. 2022;140(Supplement 1):5348–49. https://doi.org/10.1182/blood–2022–162217
- 17. Wiafe MA, Apprey C, Annan RA. Patterns of dietary iron intake, iron status and predictors of haemoglobin levels among early adolescents in a rural Ghanaian district. J Nutr Metab. 2020;2020:3183281. https://doi.org/10.1155/2020/3183281
- 18. Belali TM. Iron deficiency anaemia: prevalence and associated factors among residents of northern Asir Region, Saudi Arabia. Sci Rep. 2022;12(1). https://doi.org/10.1038/s41598–022–23969–1
- 19. Dudwe R, Singh N. Study of the prevalence and pattern of anaemia in unmarried anaemic females aged (15–30 years). Int J Life–Sciences Sci Res. 2020;6(1):2469–79. https://doi.org/10.21276/ssr–iijls.2020.6.1.4
- 20. Coad J, Pedley KC. Iron deficiency and iron deficiency anaemia in women. Scand J Clin Lab Investig. 2014;74(sup244):82–89. https://doi.org/10.3109/00365513.2014.936694
- 21. Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron absorption: factors, limitations and improvement methods. ACS Omega. 2022;7(24):20441–56. https://doi.org/10.1021/acsomega.2c01833
- 22. Evlash V, Aksonova O, Gubsky S. Food–based intervention strategies for iron deficiency prevention. Foods. 2022. https://doi.org/10.3390/foods2022–12962
- 23. Fentie KT, Wakayo T, Gizaw G. Prevalence of anaemia and associated factors among secondary school adolescent girls in Jimma Town, Oromia Regional State, Southwest Ethiopia. Anaemia. 2020;2020:5043646. https://doi.org/10.1155/2020/5043646
- 24. Baig NM, Shaikh S, Samo AA, Sayed RB, Warsi J, Laghari ZA. Relationship between menstrual abnormalities, anaemia and haematological parameters among university students. Pak J Med Health Sci. 2021;15(9):2646–2649. https://doi.org/10.53350/pjmhs211592646
- 25. Kocaöz S, Çirpan R, Degirmencioglu AZ. The prevalence and impacts of heavy menstrual bleeding on anaemia, fatigue and quality of life in women of reproductive age. Pak J Med Sci. 2019;35(2). https://doi.org/10.12669/pjms.35.2.644
- 26. Grimes JET, Tadesse G, Gardiner IA, Yard E, Wuletaw Y, Templeton MR, et al. Sanitation, hookworm, anaemia, stunting and wasting in primary school children in southern Ethiopia: baseline results from a study in 30 schools. PLOS Negl Trop Dis. 2017;11(10):e0005948. https://doi.org/10.1371/journal.pntd.0005948
- 27. Clements ACA, Alene KA. Global distribution of human hookworm species and differences in their morbidity effects: a systematic review. Lancet Microbe. 2022;3(1):e72–e79. https://doi.org/10.1016/s2666–5247(21)00181–6
- 28. Sari P, Judistiani RTD, Herawati DMD, Dhamayanti M, Hilmanto D. Iron deficiency anaemia and associated factors among adolescent girls and women in a rural area of Jatinangor, Indonesia. Int J Women’s Health. 2022;14:1137–47. https://doi.org/10.2147/ijwh.s376023
- 29. Unger HW, Bleicher AV, Ome–Kaius M, Aitken E a B, Rogerson SJ. Associations of maternal iron deficiency with malaria infection in a cohort of pregnant Papua New Guinean women. Malar J. 2022;21(1). https://doi.org/10.1186/s12936–022–04177–8
- 30. White NJ. Anaemia and malaria. Malar J. 2018;17(1). https://doi.org/10.1186/s12936–018–2509–9
- 31. Brabin L, Roberts SJ, Tinto H, Gies S, Diallo S, Brabin BJ. The iron status of Burkinabé adolescent girls predicts malaria risk in the following rainy season. Nutrients. 2020;12(5):1446. https://doi.org/10.3390/nu12051446
- 32. Camaschella C. Iron deficiency. Blood. 2019;133(1):30–9. https://doi.org/10.1182/blood–2018–05–815944
- 33. Sari P, Herawati DMD, Dhamayanti M, Hilmanto D. Fundamental aspects of the development of a model of an integrated health care system for the prevention of iron deficiency anaemia among adolescent girls: a qualitative study. Int J Environ Res Public Health. 2022;19(21):13811. https://doi.org/10.3390/ijerph192113811
- 34. Tura MR, Egata G, Fage SG, Roba KT. Prevalence of anaemia and its associated factors among female adolescents in Ambo Town, West Shewa, Ethiopia. J Blood Med. 2020;11:279–87. https://doi.org/10.2147/jbm.s263327
- 35. Jeihooni AK, Hoshyar S, Harsini PA, Rakhshani T. The effect of nutrition education based on PRECEDE model on iron deficiency anaemia among female students. BMC Women’s Health. 2021;21(1). https://doi.org/10.1186/s12905–021–01394–2
- 36. Shaka MF, Wondimagegne YA. Anaemia, a moderate public health concern among adolescents in South Ethiopia. PLOS One. 2018;13(7):e0191467. https://doi.org/10.1371/journal.pone.0191467
- 37. Daru J, Zamora J, Fernández–Félix BM, Vogel J, Oladapo OT, Morisaki N, et al. Risk of maternal mortality in women with severe anaemia during pregnancy and postpartum: a multilevel analysis. Lancet Glob Health. 2018;6(5):e548–e554. https://doi.org/10.1016/s2214–109x(18)30078–0
- 38. Marcus H, Schauer C, Zlotkin S. Effect of anaemia on work productivity in both labour– and nonlabor–intensive occupations: a systematic narrative synthesis. Food Nutr Bull. 2021;42(2):289–308. https://doi.org/10.1177/03795721211006658
- 39. Świątczak M, Młodziński K, Sikorska K, Raczak A, Lipiński P, Daniłowicz–Szymanowicz L. Chronic Fatigue Syndrome in Patients with Deteriorated Iron Metabolism. Diagnostics. 2022;12 (9):2057. https://doi.org/10.3390/diagnostics12092057
- 40. Musallam KM, Taher AT. Iron deficiency beyond erythropoiesis: Should we be concerned? Curr Med Res Opin. 2017;34(1):81–93. https://doi.org/10.1080/03007995.2017.1394833
- 41. Lopez A, Cacoub P, Macdougall IC, Peyrin–Biroulet L. Iron deficiency anaemia. Lancet. 2016;387(10021):907–16. https://doi.org/10.1016/s0140–6736(15)60865–0
- 42. Bouri S, Martin J. Investigation of iron deficiency anaemia. Clin Med. 2018;18(3):242–4. https://doi.org/10.7861/clinmedicine.18–3–242
- 43. Tao Z, Xu J, Chen W, Yang Z, Xu X, Liu L, et al. Anaemia is associated with severe illness in COVID–19: A retrospective cohort study. J Med Virol. 2021;93(3):1478–88. https://doi.org/10.1002/jmv.26444
- 44. Hariyanto TI, Kurniawan A. Anaemia is associated with severe coronavirus disease 2019 (COVID–19) infection. Transfus Apher Sci. 2020;59(6):102926. https://doi.org/10.1016/j.transci.2020.102926
- 45. Maladkar M, Sankar S, Yadav A. A Novel approach for iron deficiency anaemia with liposomal iron: concept to clinic. J Biosci Med. 2020;8(9):27–41. https://doi.org/10.4236/jbm.2020.89003
- 46. Cotoraci C, Ciceu A, Sasu A, Hermenean A. Natural Antioxidants in Anaemia Treatment. Int J Mol Sci. 2021;22:1883. https://doi.org/10.3390/ijms22041883
- 47. Saha U, Dharwadkar PS, Sur S, Vishaharini V, Malleshappa M. Plant extracts as an astounding remedy to anaemia – A review. Ann Plant Sci. 2018;7(4):2166. https://doi.org/10.21746/aps.2018.7.4.16
- 48. Qi X, Zhang Y, Guo H, Hai Y, Luo Y, Yue T. Mechanism and intervention measures of iron side effects on the intestine. Crit Rev Food Sci Nutr. 2020;60(12):2113–25. https://doi.org/10.1080/10408398.2019.1630599
- 49. Trivedi S, Pandey R. 5′–Hydroxy – 6, 7, 8, 3′, 4′–pentamethoxyflavone extends longevity mediated by DR–induced autophagy and oxidative stress resistance in C. elegans. GeroScience. 2021;43(2):759–772. https://doi.org/10.1007/s11357–020–00229–6
- 50. Hasoon MRA, Kadhim NJ. Improvement of the selectivity index and cytotoxicity activity of doxorubicin drug by Panax ginseng plant extract. Arch Razi Inst. 2021;76(3):659–66. https://doi.org/10.22092/ari.2021.355413.1681
- 51. Onyeabo C, Achi N, Ekeleme–Egedigwe CA, Ebere CE, Okoro CK. Haematological and biochemical studies on Justicia carnea leaves extract in phenylhydrazine-induced anaemia in albino rats. Acta Sci Pol. 2017. https://doi.org/10.17306/j.afs.0492
- 52. Kashyap P, Kumar S, Riar CS, Jindal N, Baniwal P, Guiné RPF, et al. Recent Advances in Drumstick (Moringa oleifera) Leaves Bioactive Compounds: Composition, Health Benefits, Bioaccessibility and Dietary Applications. Antioxidants. 2022;11(2):402. https://doi.org/10.3390/antiox11020402
- 53. Laiskodat J, Kundaryanti R, Novelia S. The effect of Moringa oleifera on haemoglobin level in pregnancy. Nurs Health Sci J. 2021;1(2):136–141. https://doi.org/10.53713/nhs.v1i2.65
- 54. Suzana D, Suyatna FD, Rajati R, Sari SP, Mun’im A. Effect of Moringa oleifera leaves extract against haematology and blood biochemical value of patients with iron deficiency anaemia. J Young Pharm. 2017;9(1s):s79–s84. https://doi.org/10.5530/jyp.2017.1s.20
- 55. Chunaeni S, Lusiana A, Martanti LE. Effectiveness of Psidium guajava to increase haemoglobin and hematocrit levels of the third trimester in pregnancy. J Phys. 2020;1524(1):012131. https://doi.org/10.1088/1742–6596/1524/1/012131
- 56. Yulaeka Y, Suwondo A, Suherni T, Hadisaputro S, Anwar M. Effect of consuming guava leaves (Psidii folium) extract on the level of blood profile in teenage girls at vocational high school of Palebon Semarang, Indonesia. Belitung Nurs J. 2017;3(6):200. https://doi.org/10.33546/bnj.200
- 57. Shaheena S, Chintagunta AD, Dirisala VR, Kumar N. Extraction of bioactive compounds from Psidium guajava and their application in dentistry. AMB Express. 2019;9(1):93–5. https://doi.org/10.1186/s13568–019–0935–x
- 58. Chourasiya A, Sahu RK, Khan MS. Anti–anaemic and haemopoietic evaluation of Trigonella foenum–graecum (fenugreek) in rodent model. J Drug Deliv Ther. 2019;9(4–s):332–7. https://doi.org/10.22270/jddt.v9i4–s.3335
- 59. Peter EL, Rumisha SF, Mashoto KO, Malebo HM. Ethno–medicinal knowledge and plants traditionally used to treat anaemia in Tanzania: A cross-sectional survey. J Ethnopharmacol. 2014;154(3):767–73. https://doi.org/10.1016/j.jep.2014.05.002
- 60. Olusola AO, Olusola AO, Bada SO, Obi FO. Comparative study on the effect of Hibiscus sabdariffa calyx anthocyanins and ascorbate on 2,4–dinitrophenylhydrazine–induced damage in rabbits. Am J Biochem. 2012;2(2):54–9. https://doi.org/10.5923/j.ajb.20120202.01
- 61. Balasubramani SP, Padmagiri G, Venkatasubramanian P, Vidyashankar R, Godbole AA. Pomegranate juice improves iron status and ameliorates iron deficiency-induced cellular changes in Saccharomyces cerevisiae. J Nutr Ther. 2015;4(3):104–12. https://doi.org/10.6000/1929–5634.2015.04.03.5
- 62. Nana FW, Hilou A, Millogo JF, Nacoulma OG. Phytochemical composition, antioxidant and xanthine oxidase inhibitory activities of Amaranthus cruentus L. and Amaranthus hybridus L. extracts. Pharmaceuticals. 2012;5(6):613–28. https://doi.org/10.3390/ph5060613
- 63. Elaby SM, Ali JS. The anti–anaemic effect of dried beet green in phenylhydrazine-treated rats. Arch Pharm Sci Ain Shams Univ. 2018;2(2):54–69. https://doi.org/10.21608/aps.2018.18735
- 64. Gheith I, El-Mahmoudy A. Laboratory evidence for the hematopoietic potential of Beta vulgaris leaf and stalk extract in a phenylhydrazine model of anaemia. Braz J Med Biol Res. 2018;51(11). https://doi.org/10.1590/1414–431x20187722
- 65. Ahmad B, Hafeez N, Rauf A, Bashir S, Linfang H, Rehman M, et al. Phyllanthus emblica: A comprehensive review of its therapeutic benefits. S Afr J Bot. 2021;138:278–310. https://doi.org/10.1016/j.sajb.2020.12.028
- 66. Dashora R, Choudhary M. Development of recipes from garden cress seeds and their effect on anaemic patients. Food Sci Res J. 2016;7(2):299–305. https://doi.org/10.15740/has/fsrj/7.2/299–305
- 67. Anisa N, Wahyuni S, Rahayu S, Choirunnisa A, Martanti LE. Effect of moringa leaves and vitamin C capsule combinations in increasing haemoglobin levels of young women with anaemia. Proc Int Conf Appl Sci Health. 2019;4:565–70.
- 68. Tirtawati GA, Kusmiyati K, Purwandari A, Donsu A, Korompis MD, Wahyuni W, et al. Moringa oleifera teabags increase haemoglobin in adolescent females. Open Access Maced J Med Sci. 2021;9(A):393–6. https://doi.org/10.3889/oamjms.2021.6270
- 69. Loa M, Hidayanty H, Arifuddin S, Ahmad MI, Hadju V. Moringa oleifera leaf flour biscuits increase the index of erythrocytes in pregnant women with anaemia. Gac Sanit. 2021;35:S206–S210. https://doi.org/10.1016/j.gaceta.2021.10.022
- 70. Wahyuntari E, Wahtini S. The effect of guava juice on haemoglobin levels in pregnant women. Int J Res Med Sci. 2020;8(3):926–30. https://doi.org/10.18203/2320–6012.ijrms20200226
- 71. Olii N, Sukaisi N, Asriah N, Kusika SY, Situmorang C, Haumahu CP, et al. The effect of red guava (Psidium guajava L.) juice on pregnant women’s haemoglobin level. Food Res. 2022;6(3):382–88. https://doi.org/10.26656/fr.2017.6(3).435
- 72. Apriyanti F andriani L. The effect of giving red guava juice to grade of pregnant women’s haemoglobin. J Midwifery. 2019;4(1):26–30. https://doi.org/10.25077/jom.4.1.26–30.2019
- 73. Utari R, Setyaningsih Y, Suwondo A. The effect of giving avocados (Persea americana Mill) and guava (Psidium guajava Linn) on haemoglobin levels in traditional rice farmers. IOP Conf Ser Earth Environ Sci. 2020;448(1):012027. https://doi.org/10.1088/1755–1315/448/1/012027
- 74. Kandasamy R, Devi MA, Subramanian P, Jayaraman B, Chandirasekaran KK. Effectiveness of fenugreek leaf powder with iron supplementation vs iron supplementation alone on increasing haemoglobin level among adolescent girls with anaemia at Koravallimedu, Puducherry. Pondicherry J Nurs. 2022;15(1):3–6. https://doi.org/10.5005/jp–journals–10084–13125
- 75. Mahmoud NY, Salem RH, Mater AA. Nutritional and biological assessment of wheat biscuits supplemented with fenugreek plant to improve the diet of anaemic rats. Acad J Nutr. 2012;1(1):1–9. https://doi.org/10.5829/idosi.ajn.2012.1.1.63103.
- 76. Nisa R, Soejoenoes A, Wahyuni S. Effect of roselle (Hibiscus sabdariffa) on changes in haemoglobin levels in pregnant women with anaemia taking iron supplement. Belitung Nurs J. 2017;3(6):771–77. https://doi.org/10.33546/bnj.305
- 77. Emelike CU, Dapper DV. Effects of oral administration of aqueous extract of Hibiscus sabdariffa on some haematological parameters of Wistar albino rats. IOSR J Dent Med Sci. 2013;9(1):31–34. https://doi.org/10.9790/0853–0913134
- 78. Kubuga CK, Hong HG, Song WO. Hibiscus sabdariffa meal improves the iron status of childbearing age women and prevents stunting in their toddlers in northern Ghana. Nutrients. 2019;11(1):198. https://doi.org/10.3390/nu11010198.
- 79. Balasubramani SP, Varghese RK, Vishnuprasad CN, Venkatasubramanian P. Pomegranate juice enhances iron dialysability and assimilation in in–vitro cell-free and cell–based models. Plant Foods Hum Nutr. 2020;75(2):272–8. https://doi.org/10.1007/s11130–020–00815–1
- 80. Riaz A, Khan RA. Anticoagulant, antiplatelet and antianemic effects of Punica granatum (pomegranate) juice in rabbits. Blood Coagul Fibrinolysis. 2016;27(3):287–93. https://doi.org/10.1097/mbc.0000000000000415
- 81. Pandey S, Ganeshpurkar A, Bansal D, Dubey N. Hematopoietic effect of Amaranthus cruentus extract on phenylhydrazine–induced toxicity in rats. J Diet Suppl. 2016;13(6):607–15. https://doi.org/10.3109/19390211.2016.1155685
- 82. Orsango AZ, Loha E, Lindtjørn B, Engebretsen IMS. Efficacy of processed amaranth–containing bread compared to maize bread on haemoglobin, anaemia and iron deficiency anaemia prevalence among two–to–five year–old anaemic children in Southern Ethiopia: A cluster randomized controlled trial. PLoS One. 2020;15(9):e0239192. https://doi.org/10.1371/journal.pone.023919
- 83. GW JA, J. A study to evaluate the effectiveness of amla juice with honey on levels of haemoglobin among B.Sc. nursing students with anaemia at selected nursing colleges in Dindugal. Int J Res Rev. 2021;8(9):205–9. https://doi.org/10.52403/ijrr.20210927
- 84. Resmi S, Latheef F, Vijayaraghavan. Effectiveness of amla, jaggery and pumpkin leaves extract on the level of haemoglobin, vitamin C and iron among adolescent girls with iron deficiency anaemia. Int J Pharm Sci Rev. 2017;8(11):4812–17. https://doi.org/10.13040/ijpsr.0975–8232.8(11).4812–17
- 85. Sheeba MK, Sabitha N. Effect of supplementation of Lepidium sativum (garden cress seed) incorporated chikkies on tribal anaemic adolescent girls (12–18 years) in Nilgiris District. Foodsci: Indian J Res Foods Nutr. 2017;4(2):38. https://doi.org/10.15613/fijrfn/2017/v4i2/167616
- 86. Verma R. Effect of administration garden cress seeds on hematological and immunological profile of chicks. Int J Recent Sci Res. 2019;10(2):30887–88. https://doi.org/10.24327/ijrsr.2019.1002.3146
- 87. Manjegowda N, Kumar MR, Raghunathanaidu BD, Babu A, Sridhara K, Ramesh B, et al. Anti–anaemic potential of Moringa oleifera flower extract against phenylhydrazine–induced anaemia in rats. Acta Pharm Sci. 2024;62(2):448. https://doi.org/10.23893/1307–2080.aps6228
- 88. Nurfitri, Margiyanti NJ, Sari DP, Wilujeng AR. Systematic review of the PICO method regarding the effectiveness of giving guava juice (Psidium guajava) to women in increasing hemoglobin levels. Inst Kesehatan Mitra Bunda. 2024;1:4318. https://doi.org/10.11594/nstp.2024.4318
- 89. Tewari A, Singh R, Brar JK. Pharmacological and therapeutic properties of Fenugreek (Trigonella foenum–graecum) seed: A review. J Phytopharmacol. 2024;13(2):97–104. https://doi.org/10.31254/phyto.2024.13203
- 90. Okpokam DC, Uzokwe JI, Anyanwu SO, Obembe AO. Use of Hibiscus sabdariffa in ameliorating anaemia in Wistar rats induced with phenylhydrazine. Deleted J. 2024;2(4):316–24. https://doi.org/10.3923/asb.2024.316.324
- 91. Dogara AM, Hama HA, Ozdemir D. Update on the potential of Punica granatum L. traditional uses and pharmacological uses: A review. Adv Pharmacol Pharm Sci. 2024;1. https://doi.org/10.1155/adpp/6523809
- 92. Chandaka M, Shaik S, Shaik R, Jajala G, Kanne T, Pathan A, et al. Studies on Amaranthus cruentus’s ethanolic herbal extract’s antianemic properties against rats’ phenylhydrazine–induced anemia. Int J Zoology Environ Life Sci. 2024;1(1):9–15. https://doi.org/10.70604/ijzels.v1i1.4
- 93. Khot VS, Kumbhar ST. Investigating the role of Beta vulgaris L extract in treating anemia and enhancing muscle coordination in experimental models. Res J Pharm Tech. 2024;3593–98. https://doi.org/10.52711/0974–360x.2024.00561
- 94. Mehjabin S, Akanda MKM, Akhter N, Bosri MR, Ali S. Medicinal and nutritional importance of Phyllanthus emblica in human health. In: Azam MA, Shoaib S, Islam N, editors. Medicinal plants and their bioactive compounds in human health: Volume 1. Cham: Springer; 2024. p. 143–64. https://doi.org/10.1007/978-981-97-6895-08
- 95. Bhatt T, Thakkar K, Hasmani A, Dhebar Z. Hemoglobin, iron deficiency anemia, role of Halim seeds to eradicate the ailment: a complete overview. Int J Multidiscip Res. 2023;5(2). Available from: https://doi.org/10.36948/ijfmr.2023.v05i02.2691
Downloads
Download data is not yet available.