Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Exponential stability of bioprocess model with mass balance and sequential reactor systems

DOI
https://doi.org/10.14719/pst.7559
Submitted
1 February 2025
Published
17-10-2025

Abstract

This study investigates the stability of a bioprocess model that incorporates mass balance principles within a sequential reactor system equipped with a recycling loop. The analysis employs one-dimensional partial differential equations, including integro-differential terms, to evaluate exponential stability via a Port-Hamiltonian control mechanism. The proposed approach demonstrates how a simplified structural framework, used to estimate the carbon dehydration process within a dynamic model, enables seamless integration of carbon transfer control strategies across domains. Numerical examples are included to illustrate the model’s effectiveness and real-world applicability.

References

  1. 1. Gorrec LY, Zwart H, Maschke B. Dirac structures and boundary control systems associated with skew-symmetric differential operators. SIAM Journal on Control and Optimization. 2005;44:1864-92. https://doi.org/10.1137/040611677
  2. 2. Curtain RF, Zwart HJ. An introduction to infinite-dimensional linear systems theory. New York: Springer-Verlag; 1978.
  3. 3. Petre E, Marin C, Selisteanu D. Adaptive control strategies for a class of recycled depollution bioprocesses. AQTR '08: Proceedings of the 2008 IEEE International Conference on Automation, Quality and Testing, Robotics. 2008;17(2):309-21. https://doi.org/10.1109/AQTR.2008.4588813
  4. 4. Sastry S, Bodson M. Adaptive control: stability, convergence and robustness. Englewood Cliffs, NJ: Prentice-Hall; 1989.
  5. 5. Farza M, Busawon K, Hammouri H. Simple nonlinear observers for on-line estimation of kinetic rates in bioreactors. Automatica. 1998;34(3):301-18. https://doi.org/10.1016/S0005-1098(97)00166-0
  6. 6. Bastin G, Dochain D. On-line estimation and adaptive control of bioreactors. Amsterdam: Elsevier; 1990. eBook ISBN: 9781483290980.
  7. 7. Dey I, Ambati SR, Bhos PN, Sonawane S, Pillic S. Effluent quality improvement in sequencing batch reactor-based wastewater treatment processes using advanced control strategies. Water Science & Technology. 2024;89(10):2661. https://doi.org/10.2166/wst.2024.150
  8. 8. Dochain D, Vanrolleghem P. Dynamical modeling and estimation in wastewater treatment processes. IWA Publishing; 2001.
  9. 9. Sano H. Stability analysis of heat exchangers with delayed boundary feedback. Automatica. 2021;127:109540. https://doi.org/10.1016/j.automatica.2021.109540
  10. 10. Petre E, Popescu D. A multivariable adaptive controller for a class of recycled depollution bioprocesses. Proc 9th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering. 2007;5-7. https://doi.org/10.1109/AQTR.2008.4588813
  11. 11. Ateunkeng JG, Boum AT, Bitjoka L. Hybrid supervised hierarchical control of a biological wastewater treatment plant. Environ Sci Pollut Res. 2024;31:21249-66. https://doi.org/10.1007/s11356-024-32459-y
  12. 12. Sano H, Kunimatsu N. On the stability of a linear bioprocess model with recycle loop. IEEE Transactions on Automatic Control. 2005;50:1200-5. https://doi.org/10.1109/TAC.2005.852555
  13. 13. Weijun Z, Yongxin W, Haiqiang H, Yanjun L, Yu W. Port-Hamiltonian modeling and IDA-PBC control of an IPMC-actuated flexible beam. Actuators. 2021;10:236. https://doi.org/10.3390/act10090236
  14. 14. Borisov M, Dimitrova N, Beschkov V. Stability analysis of a bioreactor model for biodegradation of xenobiotics. Computers and Mathematics with Applications. 2012;64:361-73. https://doi.org/10.1016/j.camwa.2012.02.067
  15. 15. Zheng M, Bai Y, Han H, Zhang Z, Xu C, Wencheng M, et al. Robust removal of phenolic compounds from coal pyrolysis wastewater using anoxic carbon-based fluidized bed reactor. Journal of Cleaner Production. 2021;280:124451. https://doi.org/10.1016/j.jclepro.2020.124451
  16. 16. Mohammad EW, Adel M, Alexander M. Optimal flexible operation of electrified and heat-integrated biodiesel production. IFAC-PapersOnLine. 2024;58(14):513-8. https://doi.org/10.1016/j.ifacol.2024.08.388
  17. 17. Matthew JW. Not just numbers: mathematical modelling and its contribution to anaerobic digestion processes. Processes. 2020;8:888. https://doi.org/10.3390/pr8080888
  18. 18. Ortega R, van der Schaft AJ, Maschke B, Escobar G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica. 2002;38:585-96.
  19. 19. Pfeifer M, Kölsch L, Degünther C, Ruf J, Andresen L, Hohmann S. Towards port-Hamiltonian modeling of multi-carrier energy systems: a case study for a coupled electricity and gas distribution system. IFAC-PapersOnLine. 2018;51(2):463-8. https://doi.org/10.1016/j.ifacol.2018.03.078
  20. 20. Suganya K, Arulmozhi V. Simpsons 1/3 base fuzzy neural network with passive controller of wheeled mobile robot system. Arab Journal of Basic and Applied Sciences. 2021;28:244-54. https://doi.org/10.1080/25765299.2021.1911071
  21. 21. Ravi Kumar R, Cao J, Ahmad A. The passivity of adaptive output regulation of nonlinear exosystem with application of aircraft motions. Nonlinear Analysis: Modelling and Control. 2017;22:366-85. https://doi.org/10.15388/NA.2017.3.6
  22. 22. Ravi Kumar R. Adaptive wavelet output regulation of nonlinear systems. Chaos, Solitons and Fractals. 2022;161:112292. https://doi.org/10.1016/j.chaos.2022.112280
  23. 23. Ravi Kumar R, Naveen R, Anandhi V, Sudha A. The robust H∞ control of stochastic neutral state delay systems. Journal of Electrical Systems and Information Technology. 2023;10:39-62. https://doi.org/10.1186/s43067-023-00106-0
  24. 24. Geethalakshmi V, Ravi Kumar R, Kalarani MK, Karthikeyan R, Sivakumar R, Sathyamoorthy NK, et al. Stability of diurnal cycles atmospheric boundary layer in partial differential equation with finite element model. Chaos, Solitons & Fractals. 2025:116367. https://doi.org/10.1016/j.chaos.2025.116367
  25. 25. Flavio LC, Andrea B, Denis M, Laurent LE. Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. Proc IEEE 58th Conference on Decision and Control (CDC), France. 2019;11-3. https://doi.org/10.1109/CDC40024.2019.9030007
  26. 26. José P, João A, João R, Rafael SC, Rui O. Modeling and optimization of bioreactor processes. Current Developments in Biotechnology and Bioengineering: Advances in Bioprocess Engineering. 2022:89-115. https://doi.org/10.1016/B978-0-323-91167-2.00016-2
  27. 27. Khadija M, Francisco VSS, Jason M, Maria JSG. A roadmap for model-based bioprocess development. Biotechnology Advances. 2024:10837872. https://doi.org/10.1016/j.biotechadv.2024.108378
  28. 28. Wilkins MR. Factors influencing microbial growth and its kinetics. Current Developments in Biotechnology and Bioengineering: Advances in Bioprocess Engineering. 2022:373-95. https://doi.org/10.1016/B978-0-323-91167-2.00014-9
  29. 29. Simpson R, Sastry SK. Fundamentals of material balance (reactive systems). In: Chemical and Bioprocess Engineering. New York: Springer; 2013:1-10. https://doi.org/10.1007/978-1-4614-9126-2_8
  30. 30. Yu L, Varghese K, Babatunde AO. Bioprocess systems analysis, modeling, estimation and control. Current Opinion in Chemical Engineering. 2021:100705-33. https://doi.org/10.1016/j.coche.2021.100705

Downloads

Download data is not yet available.