Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 2 (2025)

Enhancing biomass production in multifunctional agroforestry: A review of strategies and benefits

DOI
https://doi.org/10.14719/pst.7570
Submitted
8 February 2025
Published
27-05-2025 — Updated on 10-06-2025
Versions

Abstract

The decline in the global forest area has increased the demand for timber and forest products, necessitating sustainable forestry practices. Agroforestry integrates trees with crops and livestock, offering multifunctional benefits including soil improvement, biodiversity conservation and climate change mitigation. This review explores agroforestry’s diverse roles, emphasizing biomass production enhancement through optimized planting methods, nutrient management and water conservation. It highlights the environmental, economic and social benefits of agroforestry while addressing sustainable land use. Agroforestry enhances soil quality through improved nutrient cycling and biodiversity. Researchers indicated that agroforestry practices reduce the soil temperature (3.37-9.25 %) and increase the soil moisture considerably (10-20 %). They also reduce the soil erosion by 50 % thus stabilizing soil structure. An increase in soil organic carbon (40 %), nitrogen storage (13 %) and accessible nitrogen and phosphorus (46 % and 11 %) availability was also reported by many. In pest management, it considerably reduces flies (38 %), pollen beetles (57 %), wheat stem sawflies (37 %) and aphid damage by 13 % while increasing farm income. Agroforestry represents a viable strategy for sustainable land management, food security and ecological restoration. Tailored models can improve economic returns, environmental sustainability and climate resilience. Further research should refine best practices and integrate advanced technologies to maximize the benefits.

References

  1. 1. Cuong T, Chinh TTQ, Zhang Y, Xie Y. Economic performance of forest plantations in Vietnam: Eucalyptus, Acacia mangium and Manglietia conifera. Forests. 2020;11(3):284. https://doi.org/10.3390/f11030284
  2. 2. Payn T, Carnus JM, Freer-Smith P, Kimberley M, Kollert W, Liu S, et al. Changes in planted forests and future global implications. For Ecol Manage. 2015;352:57-67. https://doi.org/10.1016/j.foreco.2015.06.021
  3. 3. Sollen-Norrlin M, Ghaley BB, Rintoul NLJ. Agroforestry benefits and challenges for adoption in Europe and beyond. Sustainability. 2020;12(17):7001. https://doi.org/10.3390/su12177001
  4. 4. Aryal K, Maraseni T, Apan A. Transforming agroforestry in contested landscapes: a win-win solution to trade-offs in ecosystem services in Nepal. Sci Total Environ. 2023;857:159301. https://doi.org/10.1016/j.scitotenv.2022.159301
  5. 5. Sharma J, Upgupta S, Jayaraman M, Chaturvedi RK, Bala G, Ravindranath N. Vulnerability of forests in India: a national scale assessment. Environ Manage. 2017;60:544-53. https://doi.org/10.1007/s00267-017-0894-4
  6. 6. Jinger D, Kumar R, Kakade V, Dinesh D, Singh G, Pande VC, et al. Agroforestry for controlling soil erosion and enhancing system productivity in ravine lands of Western India under climate change scenario. Environ Monit Assess. 2022;194(4):267. https://doi.org/10.1007/s10661-022-09910-z
  7. 7. Maňourová A, Polesný Z, Ruiz-Chután A, Sillam-Dussès D, Tsafack S, Tchoudjeu Z, et al. Identification of plus trees for domestication: phenotypical description of Garcinia kola populations in Cameroon. Genet Resour Crop Evol. 2024;71(5):1893-909. https://doi.org/10.1007/s10722-023-01750-1
  8. 8. Handa A, Sirohi C, Arunachalam A, Chavan S. Agroforestry interventions for carbon sequestration and improving degraded lands. Clim Change Environ Sustain. 2020;8(1):3-12. http://dx.doi.org/10.5958/2320-642X.2020.00001.0
  9. 9. Santoro A, Venturi M, Bertani R, Agnoletti M. A review of the role of forests and agroforestry systems in the FAO Globally Important Agricultural Heritage Systems (GIAHS) programme. Forests. 2020;11(8):860. https://doi.org/10.3390/f11080860
  10. 10. Udawatta RP, Gantzer CJ, Jose S. Agroforestry practices and soil ecosystem services. In: Soil health and intensification of agroecosystems. Elsevier; 2017. p. 305-33.
  11. 11. Cherubin MR, Chavarro-Bermeo JP, Silva-Olaya AM. Agroforestry systems improve soil physical quality in northwestern Colombian Amazon. Agrofor Syst. 2019;93:1741-53. https://doi.org/10.1016/B978-0-12-805317-1.00014-2
  12. 12. Favor K, Gold M, Halsey S, Hall M, Vallone R. Agroforestry for enhanced arthropod pest management in Vineyards. Agrofor Syst. 2024;98(1):213-27. https://doi.org/10.1007/s10457-023-00900-9
  13. 13. Montagnini F, del Fierro S. Agroforestry systems as biodiversity islands in productive landscapes. In: Integrating landscapes: agroforestry for biodiversity conservation and food sovereignty. Springer; 2024. p. 551-88. https://doi.org/10.1007/978-3-031-54270-1_19
  14. 14. Luedeling E, Kindt R, Huth NI, Koenig K. Agroforestry systems in a changing climate-challenges in projecting future performance. Curr Opin Environ Sustain. 2014;6:1-7. https://doi.org/10.1016/j.cosust.2013.07.013
  15. 15. Nair PR, Kumar BM, Nair VD. An introduction to agroforestry: four decades of scientific developments. Springer; 2021. https://doi.org/10.1007/978-3-030-75358-0
  16. 16. Forest Survey of India. India State of Forest Report 2019. Dehradun: FSI; 2019.
  17. 17. Kaushik N, Kumari S, Singh S, Kaushik J. Productivity and economics of different agri-silvi-horti systems under drip irrigation. Indian J Agric Sci. 2014;84(10):1166-71. https://doi.org/10.56093/ijas.v84i10.44096
  18. 18. Kaushik N, Tikkoo A, Yadav P, Deswal R, Singh S. Agri–silvi–horti systems for semiarid regions of north-west India. Agric Res. 2017;6:150-8. https://doi.org/10.1007/s40003-017-0247-9
  19. 19. Baradwal H, Ghosh A, Singh AK, Jiménez-Ballesta R, Yadav RK, Misra S, et al. Soil nutrient dynamics under silviculture, silvipasture and hortipasture as alternate land-use systems in semi-arid environment. Forests. 2023;14(1):125. https://doi.org/10.3390/f14010125
  20. 20. Chauhan SK, Singh A, Sikka S, Tiwana U, Sharma R, Saralch H. Yield and quality assessment of annual and perennial fodder intercrops in Leucaena alley farming system. Range Manag Agrofor. 2014;35(2):230-5.
  21. 21. Kumar S, Singh R, Shukla A. Sustaining productivity in Aonla based hortipasture system through in-situ soil moisture conservation in semi-arid region of India; 2015.
  22. 22. Rao GB, PI PY, Syriac EK. Effect of silicon fertilization on yield attributing factors, yield and economics of rice cultivation. J Pharmacogn Phytochem. 2018;7(2):1381-3.
  23. 23. Nair PR, Kumar BM, Nair VD. Soil organic matter (SOM) and nutrient cycling. In: An introduction to agroforestry: Four decades of scientific developments. Springer; 2021. p. 383-411.
  24. 24. Elagib NA, Al-Saidi M. Balancing the benefits from the water–energy–land–food nexus through agroforestry in the Sahel. Sci Total Environ. 2020;742:140509. https://doi.org/10.1016/j.scitotenv.2020.140509
  25. 25. Isaac ME, Borden KA. Nutrient acquisition strategies in agroforestry systems. Plant Soil. 2019;444:1-19. https://doi.org/10.1007/s10705-019-10031-2
  26. 26. Weerasekara C, Udawatta RP, Jose S, Kremer RJ. Soil quality differences in a row-crop watershed with agroforestry and grass buffers. Agrofor Syst. 2016;90:829-38. https://doi.org/10.1007/s10457-016-9903-5
  27. 27. Fahad S, Chavan SB, Chichaghare AR, Uthappa AR, Kumar M, Kakade V, et al. Agroforestry systems for soil health improvement and maintenance. Sustainability. 2022;14(22):14877. https://doi.org/10.3390/su142214877
  28. 28. Muchane MN, Sileshi GW, Gripenberg S, Jonsson M, Pumariño L, Barrios E. Agroforestry boosts soil health in the humid and sub-humid tropics: A meta-analysis. Agric Ecosyst Environ. 2020;295:106899. https://doi.org/10.1016/j.agee.2020.106899
  29. 29. Pandit NR, Mulder J, Hale SE, Martinsen V, Schmidt HP, Cornelissen G. Biochar improves maize growth by alleviation of nutrient stress in a moderately acidic low-input Nepalese soil. Sci Total Environ. 2018;625:1380-9. https://doi.org/10.1007/s10457-023-00819-1
  30. 30. Clarholm M, Skyllberg U. Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils. Soil Biol Biochem. 2013;63:142-53. https://doi.org/10.1016/j.soilbio.2013.03.019
  31. 31. Tsufac AR, Yerima BPK, Awazi NP. Assessing the role of agroforestry in soil fertility improvement in Mbelenka-Lebialem, Southwest Cameroon. Int J Glob Sustain. 2019;3(1):115-35. https://doi.org/10.5296/ijgs.v3i1.15729
  32. 32. Guo J, Feng H, McNie P, Liu Q, Xu X, Pan C, et al. Species mixing improves soil properties and enzymatic activities in Chinese fir plantations: A meta-analysis. Catena. 2023;220:106723. https://doi.org/10.1016/j.catena.2022.106723
  33. 33. Bhattarai S, Bhatta B. Leaf-litter decomposition and nutrient dynamics of five selected tropical tree species. Banko Janakari. 2020;30(1):32-8. https://doi.org/10.3126/banko.v30i1.29180
  34. 34. Geris J, Tetzlaff D, McDonnell J, Soulsby C. The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments. Hydrol Process. 2015;29(7):1844-60. https://doi.org/10.1002/hyp.10289
  35. 35. Tennakoon D, Gentekaki E, Jeewon R, Kuo C, Promputtha I, Hyde K. Life in leaf litter: fungal community succession during decomposition; 2021. https://doi.org/10.5943/mycosphere/12/1/5
  36. 36. Sarkar S, Sinha T. Litter fall decomposition and its effects on nutrient accretion to soil under agroforestry systems. In: Agroforestry to combat global challenges: current prospects and future challenges. Springer; 2024. p. 461-77. https://doi.org/10.1007/978-981-99-7282-1_22
  37. 37. Udawatta RP, Anderson SH, Kremer RJ, Garrett HEG. Agroforestry for soil health. In: North American Agroforestry; 2021. p. 355-86. https://doi.org/10.5296/ijgs.v3i1.15729
  38. 38. Mayerfeld D, Rickenbach M, Rissman A. Overcoming history: attitudes of resource professionals and farmers toward silvopasture in southwest Wisconsin. Agrofor Syst. 2016;90:723-36. https://doi.org/10.1007/s10457-016-9954-7
  39. 39. Hombegowda HC, Adhikary PP, Jakhar P, Madhu M. Alley cropping agroforestry system for improvement of soil health. In: Soil health and environmental sustainability: application of geospatial technology. Cham: Springer; 2022. p. 529-9. https://doi.org/10.1007/978-3-031-09270-1_23
  40. 40. Maitra S, Bhattacharya U, Pramanick B, Sagar L, Gaikwad DJ, Pattanayak S, et al. Agroforestry: A resource conserving technology for efficient utilization of agricultural inputs, leads to food and environmental security. In: Agroforestry to combat global challenges: current prospects and future challenges; 2024. p. 15-52. https://doi.org/10.1007/978-981-99-7282-1_2
  41. 41. Duran-Bautista EH, Angel-Chaudhari YK, Bermúdez MF, Suárez JC. Agroforestry systems generate changes in soil macrofauna and soil physical quality relationship in the northwestern Colombian Amazon. Agrofor Syst. 2023;97(5):927-38. https://doi.org/10.1007/s10457-023-00838-y
  42. 42. Biasi R, Brunori E, Ferrara C, Salvati L. Towards sustainable rural landscapes? A multivariate analysis of the structure of traditional tree cropping systems along a human pressure gradient in a Mediterranean region. Agrofor Syst. 2017;91:1199-217. https://doi.org/10.1007/s10457-016-0006-0
  43. 43. Shahzad L, Waheed A, Sharif F, Ali M. Soil fertility and soil biodiversity health under different agroforestry systems. In: agroforestry to combat global challenges: current prospects and future challenges. Springer; 2024. p. 3-14. https://doi.org/10.1007/978-981-99-7282-1_1
  44. 44. Giri V, Bhoi TK, Samal I, Komal J, Majhi PK. Exploring the agroforestry systems for ecosystem services: a synthesis of current knowledge and future research directions. In: Agroforestry to combat global challenges: current prospects and future challenges; 2024. p. 503-28. https://doi.org/10.1007/978-981-99-7282-1_24
  45. 45. Jing X, Prager CM, Borer ET, Gotelli NJ, Gruner DS, He JS, et al. Spatial turnover of multiple ecosystem functions is more associated with plant than soil microbial β-diversity. Ecosphere. 2021;12(7):e03644. https://doi.org/10.1002/ecs2.3644
  46. 46. Pradhan R, Manohar A, Sarkar BC, Bhat JA, Shukla GCS. Ecosystem services of urban green sites—A case study from Eastern Himalayan foothills. Trees For People. 2020;2:100029. https://doi.org/10.1016/j.tfp.2020.100029
  47. 47. Meena R, Kumari T, Solanki V, Partel V, Singh S, Sinha R. Soil, water and biodiversity conservation through agroforestry for crop production. In: Agroforestry to combat global challenges: current prospects and future challenges. Springer; 2024. p. 345-66. https://doi.org/10.1007/978-981-99-7282-1_17
  48. 48. Boinot S, Barkaoui K, Mézière D, Lauri PE, Sarthou JP, Alignier A. Research on agroforestry systems and biodiversity conservation: what can we conclude so far and what should we improve? BMC Ecol Evol. 2022;22(1):24. https://doi.org/10.1186/s12862-022-01977-z
  49. 49. Graham S, Ihli HJ, Gassner A. Agroforestry, indigenous tree cover and biodiversity conservation: a case study of Mount Elgon in Uganda. Eur J Dev Res. 2022;34(4):1893-911. https://doi.org/10.1057/s41287-021-00446-5s
  50. 50. Ceccon E. Productive Restoration as a Tool for Socioecological Landscape Conservation: The Case of “La Montaña” in Guerrero, Mexico. In: Baldauf C, editor. Participatory biodiversity conservation. Cham: Springer; 2020. https://doi.org/10.1007/978-3-030-41686-7_8
  51. 51. Mey CBJ, Gore ML. Biodiversity conservation and carbon sequestration in agroforestry systems of the Mbalmayo Forest Reserve. J For Environ Sci. 2021;37(2):91. https://doi.org/10.7747/JFES.2021.37.2.91
  52. 52. Pumariño L, Sileshi GW, Gripenberg S, Kaartinen R, Barrios E, Muchane MN, et al. Effects of agroforestry on pest, disease and weed control: A meta-analysis. Basic Appl Ecol. 2015;16(7):573-82. https://doi.org/10.1016/j.baae.2015.08.006
  53. 53. Martinez HEP, Maia JTLS, Ventrela MC, Milagres CC, Cecon PR, Clemente JM, et al. Leaf and stem anatomy of cherry tomato under calcium and magnesium deficiencies. Braz Arch Biol Technol. 2020;63:e20180670. https://doi.org/10.1590/1678-4324-2020180670
  54. 54. Ugwu JA. Insecticidal activity of some botanical extracts against legume flower thrips and legume pod borer on cowpea Vigna unguiculata L. Walp. J Basic Appl Zool. 2020;81:1-8. https://doi.org/10.1186/s41936-020-00153-3
  55. 55. Boinot S, Poulmarc’h J, Mézière D, Lauri PE, Sarthou JP. Distribution of overwintering invertebrates in temperate agroforestry systems: Implications for biodiversity conservation and biological control of crop pests. Agric Ecosyst Environ. 2019;285:106630. https://doi.org/10.1016/j.agee.2019.106630
  56. 56. Staton T, Walters R, Smith J, Breeze T, Girling R. Management to promote flowering understoreys benefits natural enemy diversity, aphid suppression and income in an agroforestry system. Agronomy. 2021;11(4):651. https://doi.org/10.3390/agronomy11040651
  57. 57. Staton T, Walters RJ, Smith J, Breeze TD, Girling RD. Evaluating a trait-based approach to compare natural enemy and pest communities in agroforestry vs. arable systems. Ecol Appl. 2021;31(4):e02294. https://doi.org/10.1002/eap.2294
  58. 58. Ngaba MJY, Mgelwa AS, Gurmesa GA, Uwiragiye Y, Zhu F, Qiu Q, et al. Meta-analysis unveils differential effects of agroforestry on soil properties in different zonobiomes. Plant Soil. 2024;496(1):589-607. https://doi.org/10.1007/s11104-024-06780-5
  59. 59. Lowe W, Silva G, Pushpakumara D. Homegardens as a modern carbon storage: Assessment of tree diversity and above-ground biomass of homegardens in Matale district, Sri Lanka. Urban For Urban Green. 2022;74:127671. https://doi.org/10.1016/j.ufug.2022.127671
  60. 60. Ghale B, Mitra E, Sodhi HS, Verma AK, Kumar S. Carbon sequestration potential of agroforestry systems and its potential in climate change mitigation. Water Air Soil Pollut. 2022;233(7):228. https://doi.org/10.1007/s11270-022-05732-4
  61. 61. Banerjee S, Sarkar T. Potential of organic farming in mitigating climate change: sustainable agricultural practices under organic farming. In: Organic farming: principles and practices. Kripa-Drishti Publications; 2024. p. 160-73.
  62. 62. Tripathi A, Dubey PK, Upadhyay MK, Bose P. Role of biochar technology in carbon sequestration and agro-environmental sustainability. In: Sustainable plant nutrition and soil carbon sequestration. Springer; 2024. p. 243-65.
  63. 63. Dissanayaka D, Udumann S, Atapattu AJ. Synergies between tree crops and ecosystems in tropical agroforestry. Agroforestry. 2024:49-87. https://doi.org/10.1002/9781394231164.ch3
  64. 64. Sharma R, Chauhan SK, Tripathi AM. Carbon sequestration potential in agroforestry system in India: an analysis for carbon project. Agrofor Syst. 2016;90:631-44. https://doi.org/10.1007/s10457-015-9840-8
  65. 65. Shrestha BM, Chang SX, Bork EW, Carlyle CN. Enrichment planting and soil amendments enhance carbon sequestration and reduce greenhouse gas emissions in agroforestry systems: a review. Forests. 2018;9(6):369. https://doi.org/10.3390/f9060369
  66. 66. Lal R. Sequestration of atmospheric CO₂ in global carbon pools. Energy Environ Sci. 2008;1(1):86-100. https://doi.org/10.1039/B809492F
  67. 67. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, et al. Greenhouse gas mitigation in agriculture. Philos Trans R Soc Lond B Biol Sci. 2008;363(1492):789-813. https://doi.org/10.1098/rstb.2007.2184
  68. 68. Keprate A, Bhardwaj DR, Sharma P, Kumar D, Rana RK. Biomass partitioning, carbon storage and pea (Pisum sativum L.) crop production under a Grewia optiva-based agroforestry system in the mid-hills of the northwestern Himalayas. Sustainability. 2024;16(17):7438. https://doi.org/10.3390/su16177438
  69. 69. Singh P, Dhankhar J, Sharma A. Agroforestry as a potential measure to enhance plant nutrition and carbon sequestration. In: Sustainable plant nutrition and soil carbon sequestration. Springer; 2024. p. 171-99. https://doi.org/10.1007/978-981-99-7282-1_8
  70. 70. Raj M, Lal K, Satdev, Kumari P, Kumari S, Dubey VK, et al. Potential nutrient cycling and management in agroforestry. In: Agroforestry to combat global challenges: current prospects and future challenges. Springer; 2024. p. 71-92. https://doi.org/10.1007/978-981-99-7282-1_4
  71. 71. Sow S, Ranjan S, Padhan SR, Nath D, Kumar N. Agroforestry and soil carbon sequestration: a nexus for system sustainability. In: Agroforestry solutions for climate change and environmental restoration. Springer; 2024. p. 103-26. https://doi.org/10.1007/978-981-99-7282-1_7
  72. 72. Bhardwaj K, Satpal SS, Goyal V, Yadav R, Pankaj GD, Devi S. Evaluation of soil properties under fodder based agroforestry system - a review; 2024.
  73. 73. Anjali K, Balasubramanian A, Abbas G, Hari Prasath C, Krishnan SN, Swathiga G, et al. Carbon sequestration in agroforestry: enhancement of both soil organic and inorganic carbon. In: Agroforestry to combat global challenges: current prospects and future challenges. Springer; 2024. p. 185-202. https://doi.org/10.1007/978-981-99-7282-1_9
  74. 74. Ghosh PK, Mahanta SK, Mandal D, Mandal B, Ramakrishnan S. Carbon management in tropical and sub-tropical terrestrial systems. Springer; 2020.
  75. 75. Jatav HS, Rajput VD, Minkina T, Van Hullebusch ED, Dutta A. Agroforestry to Combat Global Challenges. Springer; 2024.
  76. 76. Srinivasarao C. Programmes and policies for improving fertilizer use efficiency in agriculture. Indian J Fertil. 2021;17(3):226-54.
  77. 77. Ashrafi MR, Raj M, Shamim S, Lal K, Kumar G. Effect of fertigation on crop productivity and nutrient use efficiency. J Pharmacogn Phytochem. 2020;9(5):2937-42.
  78. 78. Yan XL, Dai TF, Zhao D, Jia LM. Combined surface drip irrigation and fertigation significantly increase biomass and carbon storage in a Populus euramericana cv. Guariento plantation. J For Res. 2016;21:280-90. https://doi.org/10.1007/s10310-016-0555-1
  79. 79. Lorenz K, Lal R. Soil organic carbon sequestration in agroforestry systems: a review. Agron Sustain Dev. 2014;34:443-54. https://doi.org/10.1007/s13593-014-0212-y
  80. 80. Anjali K, Balasubramanian A, Hari Prasath C, Swathiga G, Thiyageshwari S, Ushamalini C, et al. Integrating sustainable fertigation practices in teak (Tectona grandis Linn. F) cultivation by enhancing soil nutrients - a field study from farmlands of Tamil Nadu, India. Appl Ecol Environ Res. 2023;21(2):1565-80. http://dx.doi.org/10.15666/aeer/2102_15651580
  81. 81. Parihar C, Sarkar A, Bharadwaj S, Reddy KS, Patra K, Sinha A, et al. Designing conservation tillage cum nutrient management model for different agro-ecosystems. Indian J Agronomy. 2024;69:S173-84.
  82. 82. Mohanty S, Nayak A, Swain C, Dhal B, Kumar A, Kumar U, et al. Impact of integrated nutrient management options on GHG emission, N loss and N use efficiency of low land rice. Soil Tillage Res. 2020;200:104616. https://doi.org/10.1016/j.still.2020.104616
  83. 83. Pittelkow CM, Linquist BA, Lundy ME, Liang X, Van Groenigen KJ, Lee J, et al. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015;183:156-68. https://doi.org/10.1016/j.fcr.2015.07.020
  84. 84. Mohanty M, Sinha NK, Somasundaram J, McDermid SS, Patra AK, Singh M, et al. Soil carbon sequestration potential in a Vertisol in central India – results from a 43-year long-term experiment and APSIM modeling. Agric Syst. 2020;184:102906. https://doi.org/10.1016/j.agsy.2020.102906
  85. 85. Figueiredo MG, Rocha-Santos L, Mariano-Neto E, Schroth G, Benchimol M, Morante-Filho JC, et al. Management practices can improve yields of carbon-rich cocoa agroforests in Brazil. 2024. https://doi.org/10.21203/rs.3.rs-4730325/v1
  86. 86. Dash U, Gupta B, Bhardwaj D, Sharma P, Kumar D, Chauhan A, et al. Tree spacings and nutrient sources effect on turmeric yield, quality, bio-economics and soil fertility in a poplar-based agroforestry system in Indian Himalayas. Agrofor Syst. 2024;98(4):911-31. https://doi.org/10.1007/s10457-023-00830-6
  87. 87. Verma V, Patel R, Deshmukh N, Jha A, Ngachan S, Singha A, et al. Response of ginger and turmeric to organic versus traditional production practices at different elevations under humid subtropics of north-eastern India. Ind Crops Prod. 2019;136:21-7. https://doi.org/10.1016/j.indcrop.2019.04.068
  88. 88. Prajapati VK, Swaroop N, Masih A, Lakra R. Effect of different dose of NPK and vermicompost on growth and yield attributes of maize [Zea mays (L.)] Cv. MM2255. J Pharmacogn Phytochem. 2018;7(1):2830-2.
  89. 89. Sanjivkumar V. Effect of integrated nutrient management on soil fertility and yield of maize crop (Zea mays) in Entic Haplustart in Tamil Nadu, India. J Appl Nat Sci. 2014;6(1):294-7. https://doi.org/10.31018/jans.v6i1.418
  90. 90. Kaushal GS, Umrao R, Vijaykumar R. Effect of organic and inorganic fertilizer on growth of linseed (Linum usitatissimum L.) under poplar based agroforestry system. J Tree Sci. 2019;38(1):48-51. http://dx.doi.org/10.5958/2455-7129.2019.00008.6
  91. 91. Chethan K, David AA, Thomas T, Swaroop N, Rao S, Hassan A. Effect of different levels of NPK and Zn on physico-chemical properties of soil growth parameters and yield by pea (Pisum sativum L.) Cv. Rachana. J Pharmacogn Phytochem. 2018;7(3):2212-5.
  92. 92. Anuradha U, Patil S, Kurubar A, Ramesh G, Hiregoudar S. Effect of integrated nutrient management on growth and yield of turmeric (Curcuma longa L.) cv. Salem. Int J Curr Microbiol Appl Sci. 2018;7(1):3196-203. https://doi.org/10.20546/ijcmas.2018.701.381
  93. 93. Kumar N, Rao O, Singh M, Singh P, Khan S. Effect of fertilizer and organic manures on growth and yield attributes of wheat and paddy variety under casuarina (Casuarina equisetifolia) based agrisilviculture system. Int J Pure Appl Biosci. 2017;5:879-87.
  94. 94. Sánchez ÓJ, Ospina DA, Montoya S. Compost supplementation with nutrients and microorganisms in composting process. Waste Manag. 2017;69:136-53. https://doi.org/10.1016/j.wasman.2017.08.012
  95. 95. Biswas T, Kole SC. Soil organic matter and microbial role in plant productivity and soil fertility. In: Adhya TK, Mishra BB, Annapurna K, Verma DK, Kumar U, editors. Advances in Soil Microbiology: recent trends and future prospects: Volume 2: soil-microbe-plant interaction. Singapore: Springer; 2017. p. 219-38. https://doi.org/10.1007/978-981-10-7380-9_10
  96. 96. Goswami S, Reddy BV, Yadav S, Adhruj A, Dash U, Rathore A. Rice–fish-based agroforestry system: a climate smart way to reconcile sustainable livelihood options. In: Agroforestry to combat global challenges: current prospects and future challenges. Springer; 2024. p. 551-68. https://doi.org/10.1007/978-981-99-7282-1_26
  97. 97. Chaudhari S, Upadhyay A, Kulshreshtha S. Influence of organic amendments on soil properties, microflora and plant growth. Sustain Agric Rev. 2021;52:147-91. https://doi.org/10.1007/978-3-030-73245-5_5
  98. 98. Tkaczyk M, Gul P, Olejarski I, Oszako T. Possibility of using organic fertilization to grow pine plantations on former agricultural lands. Folia For Pol. 2013;55(4):190-5. https://doi.org/10.2478/ffp-2013-0021
  99. 99. Dhanya V, Vasudevan S, Dhanoji M, Doddagoudar S. Effect of organic, inorganic and bio fertilizers on the early establishment and seedling growth of Melia dubia CAV. J Pharmacogn Phytochem. 2019;8(1S):238-40.
  100. 100. Yukhnovsky V, Urlyuk Y, Golovetsky MP, Sereda IL. Impact of organic fertilizer “Dostatok” on the survival and growth of pine plantations. Naukovyi Visnyk NLTU Ukr. 2018;28(3):62-6.
  101. 101. Kulkarni S, Rao S, Desai B, Basavaneppa M, Bhat S, Yogeesh N. Studies on status of soil microbial population in foxtail millet–Melia dubia based agroforestry system under organic nutrient management practices. J Pharmacogn Phytochem. 2020;9(6):2064-7.
  102. 102. Syaffiary S, Antonius S, Said D, Nugraha AK, Gafur A. Effect of organic fertilizer products on the growth and health of Acacia crassicarpa seedlings. KnE Life Sci. 2022:531-40. https://doi.org/10.18502/kls.v7i3.11159
  103. 103. Bationo A, Fairhurst T, Giller K, Kelly V, Lunduka R, Mando A, et al. Handbook for integrated soil fertility management. Nairobi: Africa Soil Health Consortium (ASHC); 2012. https://doi.org/10.1079/9781780642857.0001
  104. 104. Abedi T, Alemzadeh A, Kazemeini SA. Effect of organic and inorganic fertilizers on grain yield and protein banding pattern of wheat. Aust J Crop Sci. 2010;4(6):384-9.
  105. 105. Dickens ED, Clabo D, Moorhead D. Effect of lime stabilized biosolids and inorganic fertilizer applications on soil and foliar nutrient status, growth, pine straw production and economics in a thinned longleaf pine stand - ten-year results. WSFNR-20-33A. Athens (GA): University of Georgia Warnell School of Forestry and Natural Resources; 2020.
  106. 106. Singh A, Husain M, Geelani SN, Ali SR, Parrey AA, Tariq M. Effect of spacing, nitrogen fertilizer (with and without organic manure) and seed bed density on the growth of Allepo pine seedling in nursery in Kashmir Valley. Int J Chem Stud. 2017;5(5):627-34.
  107. 107. Kim SG, Kim KW, Park EW, Choi D. Silicon-induced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology. 2002;92(10):1095-103. https://doi.org/10.1094/PHYTO.2002.92.10.1095
  108. 108. Schmidt M, Corre MD, Kim B, Morley J, Göbel L, Sharma AS, et al. Nutrient saturation of crop monocultures and agroforestry indicated by nutrient response efficiency. Nutr Cycl Agroecosyst. 2021;119(1):69-82. https://doi.org/10.1007/s10705-020-10113-6
  109. 109. Hardiyanto EB, Inail MA, Nambiar ES. Productivity of Eucalyptus pellita in Sumatra: Acacia mangium legacy, response to phosphorus and site variables for guiding management. Forests. 2021;12(9):1186. https://doi.org/10.3390/f12091186
  110. 110. Yao X, Hui D, Hou E, Xiong J, Xing S, Deng Q. Differential responses and mechanistic controls of soil phosphorus transformation in Eucalyptus plantations with N fertilization and introduced N2-fixing tree species. New Phytol. 2023;237(6):2039-53. https://doi.org/10.1111/nph.18673
  111. 111. Kim D-G, Isaac ME. Nitrogen dynamics in agroforestry systems. A review. Agron Sustain Dev. 2022;42(4):60. https://doi.org/10.1007/s13593-022-00791-7
  112. 112. Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, et al. Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res Int. 2017;24:3315-35. https://doi.org/10.1007/s11356-016-8104-0
  113. 113. Nunes da Silva M, Santos CS, Cruz A, López-Villamor A, Vasconcelos MW. Chitosan increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus) by promoting plant antioxidative metabolism. Sci Rep. 2021;11(1):3781. https://doi.org/10.1038/s41598-021-83445-0
  114. 114. Chavan R, Tembhurne B, Anand B. Effect of biofertilizers on growth and performance of Melia dubia Cav. at nursery stage.
  115. 115. Garg RK, Garg RK, Sharma S. Growth, biomass and nutrient uptake in Casuarina junghuhniana Miq. as influenced by applications of inorganic and biofertilizers. Range Manag Agrofor. 2022;43(2):269-75.
  116. 116. Chaiya L, Gavinlertvatana P, Teaumroong N, Pathom-Aree W, Chaiyasen A, Sungthong R, et al. Enhancing Teak (Tectona grandis) seedling growth by rhizosphere microbes: a sustainable way to optimize agroforestry. Microorganisms. 2021;9(9):1990. https://doi.org/10.3390/microorganisms9091990
  117. 117. Sethi D, Subudhi S, Rajput VD, Kusumavathi K, Sahoo TR, Dash S, et al. Exploring the role of mycorrhizal and rhizobium inoculation with organic and inorganic fertilizers on the nutrient uptake and growth of Acacia mangium saplings in acidic soil. Forests. 2021;12(12):1657. https://doi.org/10.3390/f12121657
  118. 118. Nair PR, Kumar BM, Nair VD. Multipurpose trees (MPTs) and other agroforestry species. In: Nair PR, Kumar BM, Nair VD, editors. An introduction to agroforestry: four decades of scientific developments. 2021. p. 281-351. https://doi.org/10.1007/978-3-030-75358-0_4
  119. 119. Gonçalves AC. Challenges to the management of evergreen oak forest systems in the Mediterranean basin. In: Agroforestry for Carbon and Ecosystem Management. 2024. p. 295-310. https://doi.org/10.1016/B978-0-323-95393-1.00021-X
  120. 120. Dollinger J, Jose S. Agroforestry for soil health. Agrofor Syst. 2018;92:213-9. https://doi.org/10.1007/s10457-018-0223-9
  121. 121. Hombegowda H, Adhikary PP, Jakhar P, Madhu M, Barman D. Hedge row intercropping impact on run-off, soil erosion, carbon sequestration and millet yield. Nutr Cycl Agroecosyst. 2020;116:103-16. https://doi.org/10.1007/s10705-019-10031-2
  122. 122. Partel V, Meena RK, Solanki VK, Kumari T. Restoration of degraded soils for food production through agroforestry. In: Agroforestry to combat global challenges: current prospects and future challenges. Springer; 2024. p. 275-91. https://doi.org/10.1007/978-981-99-7282-1_14
  123. 123. Dutta M, Deb P, Das AK. Factors shaping plant diversity in traditional agroforestry system of dominant ethnic communities of upper Brahmaputra valley regions of Northeast India. Agrofor Syst. 2023;97(4):727-38. https://doi.org/10.1007/s10457-023-00823-5
  124. 124. Mehta K, Kaushik N. Impact of planting geometry on Ailanthus excelsa L. based silvoarable systems for food and biomass production. Agrofor Syst. 2023;97(4):739-49. https://doi.org/10.1007/s10457-023-00824-4
  125. 125. Kumar J, Thakur C, Bhardwaj D, Kumar S, Dutt B. Effects of integrated nutrient management on performance of bhringraj (Eclipta prostrata L.) and soil fertility under the Grewia optiva Drummond. canopy in a mid-hill agroecosystem of north western Himalayas. Agrofor Syst. 2023;97(4):711-26. https://doi.org/10.1007/s10457-023-00822-6
  126. 126. Chavan S, Dhillon R, Sirohi C, Keerthika A, Kumari S, Bharadwaj K, et al. Enhancing farm income through boundary plantation of poplar (Populus deltoides): An economic analysis. Sustainability. 2022;14(14):8663. https://doi.org/10.3390/su14148663
  127. 127. Ortiz Timoteo J, Kainer KA, Luna Cavazos M, García Moya E, Sánchez Sánchez O, Vibrans H. Trees in pastures: local knowledge, management and motives in tropical Veracruz, Mexico. Agrofor Syst. 2023;97(4):687-98. https://doi.org/10.1007/s10457-023-00819-1
  128. 128. Gatti M, Cornaglia P, Golluscio R. Morphogenetic and structural responses to tree-shading in three temperate perennial grasses: implications for growth, persistence and defoliation practices. Agrofor Syst. 2023;97(4):549-59. https://doi.org/10.1007/s10457-023-00809-3
  129. 129. Mupepele A-C, Keller M, Dormann CF. European agroforestry has no unequivocal effect on biodiversity: a time-cumulative meta-analysis. BMC Ecol Evol. 2021;21:193. https://doi.org/10.1186/s12862-021-01911-9
  130. 130. Islam KK, Saifullah M, Mahboob MG, Jewel KN-E-A, Ashraf SK, Hyakumura K. Restoring soil fertility, productivity and biodiversity through participatory agroforestry: Evidence from Madhupur Sal Forest, Bangladesh. Land. 2024;13(3):326. https://doi.org/10.3390/land13030326
  131. 131. Santos M, Cajaiba RL, Bastos R, Gonzalez D, Petrescu Bakış AL, Ferreira D, et al. Why do agroforestry systems enhance biodiversity? Evidence from habitat amount hypothesis predictions. Front Ecol Evol. 2022;9:630151. https://doi.org/10.3389/fevo.2021.630151
  132. 132. Rahman SA, Samsudin YB, Bhatta KP, Aryal A, Hayati D, Cahya M, et al. The role of agroforestry systems for enhancing biodiversity and provision of ecosystem services in agricultural landscapes in Southeast Asia. In: Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa. Springer; 2023. p. 303-19.
  133. 133. Mevada R, Tandel M, Prajapati V, Patel D, Patel N, Pathak J, et al. Impact of INM and intercrop on soil properties under Teak (Tectona grandis) based agroforestry. system. Int J Chem Stud. 2021;9(1):902-6. https://doi.org/10.22271/chemi.2021.v9.i1m.11339

Downloads

Download data is not yet available.