Research Articles
Vol. 12 No. 3 (2025)
Metabolomic profiling, FT-IR and GC-MS characterization and bioactivity of Psychotria adenophylla leaf extracts
Department of Botany, Annamalai University, Annamalai Nagar, Cuddalore 608 002, India
Department of Botany, Annamalai University, Annamalai Nagar, Cuddalore 608 002, India
Department of Botany, Annamalai University, Annamalai Nagar, Cuddalore 608 002, India
Abstract
Psychotria adenophylla Wall. belongs to Rubiaceae family and known “Chelianthua” in Odisha. It’s used as traditional medicine and an efficient analytical method for reliably assessing the quality of P. adenophylla leaves has yet to be clearly developed. The present study investigated the preliminary phytochemical screening, FT-IR and GC-MS characterization, anti-inflammatory, antidiabetic and anti-bacterial activity of different solvents leaves extract where it showed significant biological activities. Qualitative analysis was used to identify the secondary metabolites saponin, tannin, alkaloid, phenol, phlobatannin, steroid, terpenoid, glycosides, anthraquinone and flavonoids. Quantitative phytochemical screening of total phenolic content (TPC), total flavonoid content (TFC) and total steroid content (TSC) was done using different methods. FT-IR and GC-MS was done using crude extracts, viz., Petroleum ether, chloroform and aqueous. In-vitro anti-inflammatory activity was done by albumin inhibition assay. In-vitro hypoglycemic effect was studied using α-amylase inhibition assay and α-glucosidase assay. Antibacterial potential was studied through agar well diffusion method, MIC and MBC were evaluated by serial dilution method. Result showed the presence of secondary metabolites viz. saponin, tannins, alkaloids, phenol, steroids, terpenoids, glycosides, anthraquinone and flavonoids. Total phenolic content was evaluated to be 118.76 mg GAE, total flavonoid content was 47.42 mg/g rutin equivalent and total steroid content was estimated to be 104.9 mg/g of diosgenin in petroleum ether (PA-Pe) extract which was higher than chloroform (PA-C) i.e 65.51 mg/g of diosgenin and 49.15 mg/g of diosgenin in aqueous extract (PA-A). GC-MS spectrum shows 25 compounds in PA-Pe crude extract, where PA-C showed 50 compounds. The petroleum ether extract demonstrated superior biological activity, exhibiting 73.79 % α-amylase and 71.55 % α-glucosidase inhibition (antidiabetic activity), along with significant antibacterial effects against gram-negative pathogens (18.32 ± 0.58 mm zone against K. pneumoniae) with MIC/MBC values of 37.5 µg/mL where in gram positive bacteria B. subtilis showed higher zone of inhibition of 17.39 ± 0.64. The lowest MIC and MBC were evaluated for both K. pneumoniae and B. subtilis i.e 37.5 µg/mL and > 37.5 µg/mL Every test revealed that petroleum ether extract was more active than chloroform and aqueous extracts. These findings highlight PA-Pe as the most effective extract, suggesting its potential as a source of natural anti-inflammatory, antimicrobial and antidiabetic agents.
References
- 1. Ma Q, Yuan L, Zhuang Y. Preparation, characterization and in vivo antidiabetic effects of polysaccharides from Pachyrrhizus erosus. Int J Biol Macromol. 2018 Jul 15;114:97–105. https://doi.org/10.1016/j.ijbiomac.2018.03.099
- 2. Chen X, Tong YL, Ren ZM, Chen SS, Mei XY, Zhou QY, et al. Hypoglycemic mechanisms of Polygonatum sibiricum polysaccharide in db/db mice via regulation of glycolysis/gluconeogenesis pathway and alteration of gut microbiota. Heliyon. 2023 Apr 1;9(4).:e15484. https://doi.org/10.1016/j.heliyon.2023.e15484
- 3. Wang JJ, Wang X, Li Q, Huang H, Zheng QL, Yao Q, et al. Feto-placental endothelial dysfunction in gestational diabetes mellitus under dietary or insulin therapy. BMC Endocr Disord. 2023 Feb 23;23(1):48. https://doi.org/10.1186/s12902-023-01305-6
- 4. Larchenaud O. Le genre Psychotria (Rubiaceae) en Afrique Centrale et Occidentale. Arch Sci. 2017;69:71–88.
- 5. Davis AP, Govaerts R, Bridson DM, Ruhsam M, Moat J, Brummitt NA. A global assessment of distribution, diversity, endemism, and taxonomic effort in the Rubiaceae. Ann of Mou Bot Gard. 2009 Mar;96(1):68–78. https://doi.org/10.34
- 17/2006205
- 6. Paul JR, Morton C, Taylor CM, Tonsor SJ. Evolutionary time for dispersal limits the extent but not the occupancy of species’ potential ranges in the tropical plant genus Psychotria (Rubiaceae). Am Nat. 2009 Feb;173(2):188–99. https://doi.org/10.1086/595762
- 7. Nguyen QB, Van Toan EQ, Huynh H, Pham QT, Truong BV, Yahara T, et al. A new species of Psychotria (Rubiaceae) from Bidoup-Nui Ba National Park, Vietnam. Phytotaxa. 2023 Oct 3;618(2):188–94. https://doi.org/10.11646/phyto
- taxa.618.2.8
- 8. Calixto NO, Pinto ME, Ramalho SD, Burger M, Bobey AF, Young MC, et al. The genus Psychotria: phytochemistry, chemotaxonomy, ethnopharmacology and biological properties. J Braz Chem Soc. 2016 Aug;27:1355–78. https://doi.org/10.5935/0103-5053.20160149
- 9. Benevides PJ, Young MC, Bolzani VD. Biological activities of constituents from Psychotria spectabilis. Pharm Biol. 2005 Jan 1;42(8):565–69. https://doi.org/10.1080/13880200490901780
- 10. Pimenta AT, Uchôa DE, Braz-Filho R, Silveira ER, Lima MA. Alkaloid and other chemical constituents from Psychotria stachyoides Benth. J Braz Chem Soc. 2011 Nov;22:2216–19. https://doi.org/10.1590/S0103-505320110011
- 00027
- 11. de Carvalho Jr AR, De Carvalho MG, Braz-Filho R, Vieira IJ. Psychotria genus: Chemical constituents, biological activities, and synthetic studies. Stud Nat Prod Chem. 2016 Jan 1;48:231–61. https://doi.org/10.1016/B978-0-444-636
- 02-7.00007-2
- 12. Sipra Dan SD, Dan SS. Phytochemical study of Adansonia digitata, Coccoloba excoriata, Psychotria adenophylla and Schleichera oleosa. Fitoterapia. 1987 Nov 10;57(6):445–46.
- 13. Nurdiani R, Firdaus M, Prihanto AA. Phytochemical screening and antibacterial activity of methanol extract of mangrove plant (Rhizophora mucronata) from Porong River Estuary. J Basic Sci Technol. 2012;1(2):27–29.
- 14. Slinkard K, Singleton VL. Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic. 1977 Jan 1;28(1):49–55. https://doi.org/10.5344/ajev.1977.28.1.49
- 15. Marinova K, Kleinschmidt K, Weissenbock G, Klein M. Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Plant Physiol. 2007 May 1;144(1):
- 432–44. https://doi.org/10.1104/pp.106.094748
- 16. Madhu M, Sailaja V, Satyadev TN, Satyanarayana MV. Quantitative phytochemical analysis of selected medicinal plant species by using various organic solvents. J Pharmacogn Phytochem. 2016 Feb 8;5(2):25–29.
- 17. Benayad O, Bouhrim M, Tiji S, Kharchoufa L, Addi M, Drouet S, et al. Phytochemical profile, α-glucosidase, and α-amylase inhibition potential and toxicity evaluation of extracts from Citrus aurantium (L) peel, a valuable by-product from Northeastern Morocco. Biomolecules. 2021 Oct 20;11(11):1555. https://doi.org/10.3390/biom11111555
- 18. Perez C. Antibiotic assay by agar-well diffusion method. Acta Biol Med Exp. 1990;15:113–15.
- 19. Ericsson HM, Sherris JC. Antibiotic sensitivity testing. Report of an international collaborative study. Acta Pathol Microbiol Scand B Microbiol Immunol. 1971 May 22;217:90.
- 20. Kartnig T, Still F, Reinthaler F. Antimicrobial activity of the essential oil of young pine shoots (Picea abies L.). J Ethnopharmacol. 1991 Dec 1;35(2):155–57. https://doi.org/10.1016/0378-8741(91)90067-N
- 21. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy, 4th ed. Brooks/Cole, USA. 2009:691–95.
- 22. Silverstein RM, Bassler GC. Spectrometric identification of organic compounds. J Chem Educ. 1962 Nov;39(11):546. https://doi.org/10.1021/ed039p546
- 23. Nipun TS, Khatib A, Ahmed QU, Redzwan IE, Ibrahim Z, Khan AA, et al. Alpha-glucosidase inhibitory effect of Psychotria malayana jack leaf: A rapid analysis using infrared fingerprinting. Molecules. 2020 Sep 11;25(18):4161. https://doi.org/10.3390/molecules25184161
- 24. Coates J. Interpretation of infrared spectra, a practical approach. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Chichester: John Wiley & Sons; 2000 Sep 15;12:10815–37. https://doi.org/10.1002/9780470027318.a5606
- 25. Banurekha J, Sangeetha M, Mahendran C, Muruganatham SV. Phytochemical Evaluation of Different Solvent-Mediated Extracts and Brine Shrimp Lethality Bioassay of Psychotria octosulcata WA Talbot. International Journal of Nanoscience. 2024 Apr 18;23(02):2350064. https://doi.org/10.1142/S0219581X23500643
- 26. Thejashree AB, Naika R. Identification of bioactive compounds in acetone leaf and stem-bark extracts of Psychotria dalzellii Hook. f. by GC-MS analysis and evaluation of in vitro anti-bacterial properties. Asian J Biol Life Sci. 2023 Sep;12(3):499. https://doi.org/10.5530/ajbls.2023.12.66
- 27. Alara OR, Abdurahman NH, Ukaegbu CI. Extraction of phenolic compounds: a review. Current Res Food Sci. 2021 Jan 1;4:200–14. https://doi.org/10.1016/j.crfs.2021.03.011
- 28. Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: an overview. Medicines. 2018 Aug 25;5(3):93. https://doi.org/10.3390/medicines5030093
- 29. Esmat AU, Mittapally S, Begum S. GC-MS analysis of bioactive compounds and phytochemical evaluation of the ethanolic extract of Gomphrena globosa L. flowers. J Drug Deliv Ther. 2020 Mar 15;10(2):53–58. https://doi.org/10.22
- 270/jddt.v10i2.3914
- 30. Chen J, Chen C, Chen J, Tang J, An Y, Yu G. Bringing organophosphate ester Tris (2, 4-di-tert-butylphenyl) phosphate to the forefront: hidden threat to the environment. Environ Sci Technol Lett. 2024 Aug 13;11(9):920–30. https://doi.org/10.1021/acs.estlett.4c00545
- 31. Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett. 2009 Nov 28;285(2):
- 109–15. https://doi.org/10.1016/j.canlet.2009.04.033
- 32. Akihisa T, Ogihara J, Kato J, Yasukawa K, Ukiya M, Yamanouchi S, et al. Inhibitory effects of triterpenoids and sterols on human immunodeficiency virus-1 reverse transcriptase. Lipids. 2001 May;36:507–12. https://doi.org/10.10
- 07/s11745-001-0750-4
- 33. Fidrianny I, Budiana W, Ruslan K. Antioxidant activities of various extracts from Ardisia sp leaves using DPPH and CUPRAC assays and correlation with total flavonoid, phenolic, and carotenoid content. Int. J. Pharmacogn. Phytochem. Res. 2015;7(4):859–65.
- 34. Bharath B, Perinbam K, Devanesan S, AlSalhi MS, Saravanan M. Evaluation of the anticancer potential of Hexadecanoic acid from brown algae Turbinaria ornata on HT–29 colon cancer cells. J Mol Struct. 2021 Jul 5;1235:130
- 229. https://doi.org/10.1016/j.molstruc.2021.130229
- 35. Ganesan T, Subban M, Christopher Leslee DB, Kuppannan SB, Seedevi P. Structural characterization of n-
- hexadecanoic acid from the leaves of Ipomoea eriocarpa and its antioxidant and antibacterial activities. Biomass Convers Biorefin. 2024 Jul;14(13):14547–58. https://doi.org/10.1007/s13399-022-03576-w
- 36. El-Halmouch YH, Nasr EE, Al-Sodany YM, El-Nogoumy BA, Mahmoud YA. Biosurfactants production by some Aspergilli species under solid-state fermentation. Egypt J Bot. 2024 May 1;64(2):745–64. https://doi.org/10.21608/ejbo.2024.261884.2652
- 37. Siddique HR, Saleem M. Beneficial health effects of lupeol triterpene: a review of preclinical studies. Life Sci. 2011 Feb 14;88(7–8):285–93. https://doi.org/10.1016/j.lfs.2010.11.020
- 38. Kadela-Tomanek M, Jastrzębska M, Chrobak E, Bębenek E, Boryczka S. Chromatographic and computational screening of lipophilicity and pharmacokinetics of newly synthesized betulin-1, 4-quinone hybrids. Processes. 2021 Feb 19;9(2):376. https://doi.org/10.3390/pr9020376
- 39. Bębenek E, Bober-Majnusz K, Siudak S, Chrobak E, Kadela-Tomanek M, Wietrzyk J, et al. Application of TLC to evaluate the lipophilicity of newly synthesized betulin derivatives. J Chromatogr Sci. 2020 Apr 23;58(4):323–33. https://doi.org/10.1093/chromsci/bmz117
- 40. Calixto SMB, Barbosa MF, Costa ACM, Silva MB, Carvalho VP, Pinto AC. The genus Psychotria: phytochemistry, chemotaxonomy, ethnopharmacology and biological properties. J Braz Chem Soc. 2016 Aug;27(8):1355–78. https://doi.org/10.5935/0103-5053.20160149
- 41. Uddin TM, Chakraborty AJ, Khusro A, Zidan BR, Mitra S, Emran TB, et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J Infect Public Health. 2021 Dec 1;14(12):1750–66. https://doi.org/10.1016/j.jiph.2021.10.020
- 42. Das R, Rauf A, Mitra S, Emran TB, Hossain MJ, Khan Z, et al. Therapeutic potential of marine macrolides: an overview from 1990 to 2022. Chem Biol Interact. 2022 Sep 25;365:110072. https://doi.org/10.1016/j.cbi.2022.110072
- 43. Abhishek M, Somashekaraiah BV, Dharmesh SM. In vivo antidiabetic and antioxidant potential of Psychotria dalzellii in streptozotocin-induced diabetic rats. S Afr J Bot. 2019 Mar 1;121:494–99. https://doi.org/10.1016/j.sajb.20
- 18.12.006
- 44. Ngnokam Jouogo DC, Tamokou JD, Teponno RB, Matsuete-Takongmo G, Voutquenne-Nazabadioko L, Tapondjou LA, et al. Chemotaxonomy and antibacterial activity of the extracts and chemical constituents of Psychotria succulenta Hiern.(Rubiaceae). Bio Med Res Int. 2022;2022(1):1–10. https://doi.org/10.1155/2022/7856305
- 45. Chittaragi A, Naika R, Aruna KB, Jayashree KK. In Vitro Antibacterial Activity of Hygrocybe parvula (Peck) Pegler. Int J Pharm Life Sci. 2013 Nov 1;4(11):3080.
- 46. Peixoto MA, Corrêa JG, de Moura VM, da Silva JF, Ames FQ, Pomini AM et al. Antiproliferative and anti-inflammatory activity from aerial parts of Psychotria cupularis (Rubiaceae). Braz J Dev. 2020 Sep 10;6(9):67217–28. https://doi.org/10.34117/bjdv6n9-234
- 47. Demgne OM, Tchinda CF, Mbaveng AT, Guefack MG, Beng VP, Kuete V. Cellular modes of action of the methanol extract from the aerial parts of Psychotria sycophylla (K. Schum.) Petit (Rubiaceae) against multidrug-resistant bacteria. Investig Med Chem Pharmacol. 2022;5(2). https://doi.org/10.31183/imcp.2022.00066
- 48. Aro AO, Famuyide IM, Oyagbemi AA, Kabongo-Kayoka PN, McGaw LJ. In vitro potential of the acetone leaf extract and fractions of Psychotria capensis (Eckl.) Vatke (Rubiaceae) to combat co-infection of tuberculosis and helminthiasis. Front Pharmacol. 2022 Jan 11;12:744137. https://doi.org/10.3389/fphar.2021.744137
- 49. de Carvalho Junior AR, Oliveira Ferreira R, de Souza Passos M, da Silva Boeno SI, Glória das Virgens LD, Ventura TL, et al. Antimycobacterial and nitric oxide production inhibitory activities of triterpenes and alkaloids from Psychotria nuda (Cham. & Schltdl.) Wawra. Molecules. 2019 Mar 15;24(6):1026. https://doi.org/10.3390/molecules24
- 061026
- 50. Sharath KP, Naika R. Preliminary phytochemical, gas chromatography-mass spectroscopy analysis and in-vitro anticancer activities of Macrosolen parasiticus (L.) Danser on human prostate cancer cell line (PC-3). Asian J Biol Life Sci. 2022 May;11(2):435–41. https://doi.org/10.5530/ajbls.2022.11.59
- 51. Devadoss SA, Murugaiyan IN, Rajan MU, Thangaraj PA. Evaluation of phytochemical, antioxidant and
- antimicrobial properties of ethnomedicinal plant Psychotria nilgiriensis Deb. and Gang. Int J Pharm Pharm Sci; 2013 Jun 23;5:417–22.
- 52. Castro SG, Cid JE, Ibañez WA, Alejandro GJ, Tan MA. GC–MS metabolite profiling of the hexane extract and antimicrobial characterization of the Philippine endemic Rubiaceae species Uncaria cordata var. circa, Psychotria luzoniensis, and Psydrax puberula. Acta Manilana. 2016;64:9–16.
- 53. Soares DB, Duarte LP, Cavalcanti AD, Silva FC, Braga AD, Lopes MT, et al. Psychotria viridis: Chemical constituents from leaves and biological properties. An Acad Bras Cienc. 2017 Apr–Jun;89(02):927–38. https://doi.org/10.1590/0001-
- 3765201720160411
- 54. Demgne OM, Mbougnia JF, Seukep AJ, Mbaveng AT, Tene M, Nayim P, et al. Antibacterial phytocomplexes and compounds from Psychotria sycophylla (Rubiaceae) against drug-resistant bacteria. Adv Tradit Med. 2022 Dec;22(4):
- 761–72. https://doi.org/10.1007/s13596-021-00608-0
- 55. Bykkam S, Rao K, Chakra C, Thunugunta T. Synthesis and characterization of graphene oxide and its antimicrobial activity against Klebsiella and Staphylococcus. Int J Adv Biotechnol Res. 2013 Jan;4(1):1005–09.
Downloads
Download data is not yet available.