Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Exploring the potential of lisianthus (Eustoma grandiflorum) in India: Challenges, opportunities and future prospects in floriculture

DOI
https://doi.org/10.14719/pst.7613
Submitted
6 February 2025
Published
23-06-2025 — Updated on 01-07-2025
Versions

Abstract

Lisianthus (Eustoma grandiflorum), commonly known as Prairie Gentian or Texas Bluebell, is among the top ten popular cut flowers globally. The plant originates from the grasslands of North America. Lisianthus is admired for its wide colour range, long vase life and suitability for cut flowers and potted plants. However, despite its global popularity, lisianthus cultivation poses several challenges, including light and temperature sensitivities, susceptibility to rosetting, nutrition management issues, seed propagation difficulties and postharvest handling concerns. Pests and diseases also present serious threats to flower production and protection. Effective management strategies involve using light spectra for improved germination, maintaining balanced nutrient levels and implementing pest and disease control measures. Emerging technologies, such as genetic improvements for disease resistance and heat tolerance and protected cultivation methods like soilless culture and greenhouse automation, contribute to better flower growth, yield and quality. Therefore, successful lisianthus cultivation requires innovation in breeding technology, production methods and postharvest treatments to enhance its potential in the floriculture industry. Efficient marketing and optimal harvesting practices are essential for extending postharvest longevity and maintaining flower quality. Understanding these characteristics, this review is crucial for improving the sustainability and profitability of lisianthus (Eustoma grandiflorum) cultivation worldwide.

References

  1. 1. Griesbach R, Semeniuk P, Roh M, Lawson R. Tissue culture in the improvement of Eustoma. HortSci.1988;23(4):790–91. https://doi.org/10.18801/jbar.280221.286.
  2. 2. Halevy AH, Kofranek AM. Evaluation of Lisianthus as a new flower crop. HortSci.1984;19(6):845–47. https://doi.org/10.21273/hortsci.19.6.845
  3. 3. Harbaugh B, Woltz S. Eustoma quality is adversely affected by low pH of root medium. HortSci. 1991;26(10):1279–80. https://doi.org/10.21273/hortsci.26.10.1279
  4. 4. Harbaugh BK, Bell ML, Liang R. Evaluation of forty-seven cultivars of Lisianthus as cut flowers. Horttechnology. 2000;10(4):812–15. https://doi.org/10.21273/horttech.10.4.812
  5. 5. Esizad SG, Kaviani B, Tarang A, Zanjani SB. Micropropagation of Lisianthus (Eustoma grandiflorum), an ornamental plant. Plant Om J. 2012;5(3):314–19.
  6. 6. Cho M, Celikel F, Dodge L, editors. Sucrose enhances the postharvest quality of cut flowers of Eustoma grandiflorum (Raf.) Shinn. Acta Hortic. 2001;543:305–15. https://doi.org/10.17660/actahortic.2001.543.37
  7. 7. Corr B, Katz P. A grower's guide to Lisianthus production. Floracul Int. 1997;7:16–20. https://doi.org/10.1108/rr.1997.11.6.16.354
  8. 8. Belwal R, Chala M. Catalysts and barriers to cut flower export: A case study of Ethiopian floriculture industry. Intl J Emerg Mark. 2008;3(2):216–35. https://doi.org/10.1108/1746880081
  9. 0862650
  10. 9. Yeshiwas T, Workie A. Social, economic and environmental issues of floriculture sector development in Ethiopia. Rev Plant Stud. 2018;5(1):1–10. https://doi.org/10.18488/journal.69.2018.
  11. 51.1.10
  12. 10. Bhatia R, Sindhu S. Vegetative propagation of Lisianthus genotypes through stem cuttings: a viable alternative to seed propagation. Indian J Hortic. 2019;76(4):714–20. https://doi.org/10.5958/
  13. 0974-0112.2019.00112.9
  14. 11. Rehana S, Bala M. Under exploited ornamental crops: treasure for floriculture industry. Ann Hortic. 2022;15(1):43–55. https://doi.org/10.5958/0976-4623.2022.00007.X.
  15. 12. Ahmad H, Rahul S, Mahbuba S, Jahan M, Uddin AJ. Evaluation of Lisianthus (Eustoma grandiflorum) lines for commercial production in Bangladesh. Int J Bus Soc Sci Res. 2017;5(4):156–67
  16. https://www.ijbssr.com/currentissueview/14013229
  17. 13. Bhatia R, Dey S, Rajkumar R. Lisianthus: New cut flower crop for mid-Himalayan region. Indian J Hortic. 2020;65(5):16–19. https://epubs.icar.org.in/index.php/IndHort/article/view/111201
  18. 14. Lakshmaiah K, Subramanian S, Ganga M, Jeyakumar P. Optimization of pinching and GA3 application to improve growth and flowering of Lisianthus (Eustoma grandiflorum). J Pharmacogn Phytochem. 2019;8(6):614–16.
  19. 15. Alves C, Barbosa J, Sá P, Finger F, Grossi J, Muniz M, et al. Efficiency of preservative solutions on the postharvest life/longevity of lisianthus flowers' ABC'. Acta Hortic. 2015;1060:275–80. https://doi.org/10.17660/actahortic.2015.1060.41
  20. 16. Vaid TM, Runkle ES, Frantz JM. Mean daily temperature regulates plant quality attributes of annual ornamental plants. HortScience. 2014;49(5):574–80. https://doi.org/10.21273/hortsci.49.5.
  21. 574
  22. 17. Anzanello R, de Christo MC. Temperatura base inferior, soma térmica e fenologia de cultivares de videira e quivizeiro. Revista de Ciências Agroveterinárias. 2019;18(3):313–22. https://doi.org/10. 5965/223811711832019313
  23. 18. Anzanello R, Biasi LA. Base temperature as a function of genotype: A foundation for modeling phenology of temperate fruit species. Semina: Ciências Agrárias. 2016;37(4):1811–26. https://doi.org/ 10.5433/1679-0359.2016v37n4p1811
  24. 19. Jamal Uddin A, Islam M, Mehraj H, Roni M, Shahrin S. An evaluation of some Japanese lisianthus (Eustoma grandiflorum) varieties grown in Bangladesh. The Agriculturist. 2013;11(1):56–60. https://doi.org/10.3329/agric.v11i1.15243
  25. 20. Kopsell DA, Kopsell DE. Genetic and environmental factors affecting plant lutein/zeaxanthin. Agro Food Ind Hi Tech. 2008;19:44–46. https://doi.org/10.1108/nfs.2008.01738aab.008
  26. 21. Olle M, Viršile A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agri Food Sci. 2013;22(2):223–34. https://doi.org/10.23986/afsci.7897
  27. 22. McNellis TW, Deng XW. Light control of seedling morphogenetic pattern. The Plant Cell. 1995;7(11):1749. https://doi.org/10.2307/3870184
  28. 23. Rezaee F, Ghanati F, Yusefzadeh BL. Micropropagation of Lisianthus (Eustoma grandiflorum L.) from different explants to flowering onset. Iranian J Plant Physiol.2012;3(1):583–87. https://sid.ir/paper/616678/en
  29. 24. Ecker R, Barzilay A, Osherenko E. Inheritance of seed dormancy in Lisianthus (Eustoma grandiflorum). Plant Breed. 1994;113(4):335–38. https://doi.org/10.1111/j.1439-0523.1994.tb00746.x
  30. 25. Sultana M, Rakibuzzaman M, Uddin A. Influence of light spectrums on seedling emergence and growth of Lisianthus (Eustoma grandiflorum) cultivars. J Biosci Agric Res. 2021;28(2):2355–62. https://doi.org/10.18801/jbar.280221.286
  31. 26. Ahmad I, Khan MA, Qasim M, Ahmad R, Randhawa MA. Growth, yield and quality of Rosa hybrida L. as influenced by various micronutrients. Pak J Agric Sci. 2010;47(1):5–12.
  32. 27. Harbaugh B, McGovern R, Price J. Potted lisianthus: Secrets of success. Greenhouse Grower. 1998;16(1):42–44.
  33. 28. Frett J, Kelly J, Harbaugh B, Roh M. Optimizing nitrogen and calcium nutrition of Lisianthus. Commun Soil Sci Plant Anal. 1988;19(1):13–24. https://doi.org/10.1080/00103628809367916
  34. 29. Roni MZK, Islam MS, Shimasaki K. A timeline for 'Eustoma grandiflorum' seedling production based on an in vitro germination protocol. Plant Omics. 2017;10(5):232–36. https://doi.org/10.
  35. 21475/poj.10.05.17.pne769
  36. 30. Roh MS, Lawson RH, editors. Propagation and transplant production technology of new floral crops. Transplant Production Systems: Proceedings of the International Symposium on Transplant Production Systems, Yokohama, Japan, 21–26 July 1992; 1992: Springer. https://doi.org/10.1007/
  37. 978-94-011-2785-1_1
  38. 31. Raj K. Studies on in vitro propagation of lisianthus (Eustoma grandiflorum (Raf) Shinn.). MSc [Thesis]. Solan:UHF, Nauni, Solan; 2011.
  39. 32. Sotomayor León EM, Rosas Guerra CA, Mazuela P. Propagación vegetativa de Lisianthus (Eustoma grandiflorum RAF) cv. ABC 2-3 Blue Rim. Idesia (Arica). 2016;34(5):71–73. https://doi.org/
  40. 10.4067/s0718-34292016005000030
  41. 33. Wegulo SN, Vilchez M. Evaluation of lisianthus cultivars for resistance to Botrytis cinerea. Plant Dis.2007;91(8):997–1001. https://doi.org/10.1094/pdis-91-8-0997
  42. 34. Iwaki M, Hanada K, Maria ERA, Onogi S. Lisianthus necrosis virus, a new necrovirus from Eustoma russellianum. Phytopathol. 1987;77(6):867–70. https://doi.org/10.1094/phyto-77-867
  43. 35. Yamada M, Jahnke SM, Schafer G, de Oliveira DC. Occurrence of thrips in lisianthus cultivation at different protected crop conditions. Cientifica: revista de agronomia Jaboticabal. 2016;44(3);326–32. https://doi.org/10.15361/1984-5529.2016v44n3p326-332
  44. 36. Rice RP, Crane M. 157 Susceptibility of Poinsettia Cultivars to Whiteflies. HortScience. 2000;35(3):417A–417. https://doi.org/10.21273/hortsci.35.3.417a
  45. 37. Moreno-Ramírez YdR, Rocandio-Rodríguez M, Delgado-Martínez R, Neri-Ramírez E, Segura-Martínez MTdJ, Chacón-Hernández JC. New Record of Tetranychus merganser (Acari: Tetranychidae) on Eustoma grandiflorum (Gentianales: Gentianaceae) in Northeastern Mexico1. J Entomol Sci.
  46. 2024;59(1):83–85. https://doi.org/10.18474/jes23-48
  47. 38. McDonald MR, Sears MK, Clarke T, Chaput J, Marshall S. 025 Pea Leafminer, a new pest of leafy vegetables in Ontario, Canada. HortScience. 2000;35(3):392C–392. https://doi.org/10.21273/hortsci.
  48. 35.3.392c
  49. 39. Kitajima EW. An annotated list of plant viruses and viroids described in Brazil (1926–2018). Biota Neotrop. 2020;20:e20190932. https://doi.org/10.1590/1676-0611-bn-2019-0932
  50. 40. Valverde RA, Sabanadzovic S, Hammond J. Viruses that enhance the aesthetics of some ornamental plants: beauty or beast? Plant Dis. 2012;96(5):600–11. https://doi.org/10.1094/pdis-11-
  51. 11-0928-fe
  52. 41. Koike ST, Gordon TR, Lindow SE. Crown rot of Eustoma caused by Fusarium avenaceum in California. Plant Dis.1996;80(12):1429. https://doi.org/10.1094/pd-80-1429b
  53. 42. McGovern R, Harbaugh B, Polston J. Severe outbreaks of Fusarium crown and stem rot of Lisianthus in Florida. Phytopathol. 1997;87:S64.
  54. 43. Cedeño L, Rodríguez L, Quintero K. First report in Venezuela of powdery mildew caused by Leveillula (Oidiopsis) taurica on Lisianthus. FitopatolVenez. 2009;22(1):23–24. https://doi.org/10.
  55. 1094/pd-79-0426e
  56. 44. Marian M, Takashima Y, Harsonowati W, Murota H, Narisawa K. Biocontrol of Pythium root rot on Lisianthus using a new dark septate endophytic fungus Hyaloscypha variabilis J1PC1. Eur J Plant Pathol. 2022;163(1):97–112. https://doi.org/10.1007/s10658-022-02459-0
  57. 45. Zhou X, Li C, Liu L, Zhao J, Zhang J, Cai Z, et al. Control of Fusarium wilt of Lisianthus by reassembling the microbial community in infested soil through reductive soil disinfestation. Microbiol Res. 2019;220:1–11. https://doi.org/10.1016/j.micres.2018.12.001
  58. 46. McGovern R, Polston J, Harbaugh B. Detection of a severe isolate of Impatiens necrotic spot virus infecting Lisianthus in Florida. Plant Dis. 1997;81(11):1334. https://doi.org/10.1094/pdis.1997.81.11.
  59. 1334b
  60. 47. Harbaugh BK. 095 Rosetting of Lisianthus is influenced by cultivar, seedling age, photoperiod temperature. HortScience. 1994;29(5):441. https://doi.org/10.21273/hortsci.29.5.441f
  61. 48. Darvish M, Shirzad H, Asghari M, Noruzi P, Alirezalu A, Pateiro M, et al. 24-Epibrasinolide modulates the vase life of Lisianthus cut flowers by modulating ACC oxidase enzyme activity and physiological responses. Plants. 2021;10(5):995. https://doi.org/10.3390/plants10050995
  62. 49. López-Guerrero AG, Rodríguez-Hernández AM, Mounzer O, Zenteno-Savín T, Rivera-Cabrera F, Izquierdo-Oviedo H, et al. Effect of oligosaccharins on the vase life of Lisianthus (Eustoma grandiflorum Raf.) cv. 'Mariachi blue'. J Hortic Sci Biotechnol. 2020;95(3):316–24. https://doi.org/10.
  63. 1080/14620316.2019.1674698
  64. 50. Ezhilmathi K, Singh V, Arora A, Sairam R. Effect of 5-sulfosalicylic acid on antioxidant activity in relation to vase life of Gladiolus cut flowers. Plant Growth Regul. 2007;51:99–108. https://doi.org/
  65. 10.1007/s10725-006-9142-2
  66. 51. Hussen S, Yassin H. Review on the impact of different vase solutions on the postharvest life of rose flower. Int J Agric Res Rev. 2013;1(2):13–17. https://doi.org/10.7176/jnsr/9-5-02
  67. 52. Ichimura K, Goto R. Acceleration of senescence by pollination of cut'Asuka-no-nami'Eustoma flowers. J Japanese Soc Hortic Sci. 2000;69(2):166–70. https://doi.org/10.2503/jjshs.69.166
  68. 53. De Beer J, Petersen N. Postharvest physiology of cut flowers: a problem-based, cooperative learning activity for the biology classroom. Am Biol Teach. 2017;79(7):578–83. https://doi.org/10.
  69. 1525/abt.2017.79.7.578
  70. 54. Babalar M, Asghari M, Talaei A, Khosroshahi A. Effect of pre- and postharvest salicylic acid treatment on ethylene production, fungal decay and overall quality of Selva strawberry fruit. Food Chem. 2007;105(2):449–53. https://doi.org/10.1016/j.foodchem.2007.03.021
  71. 55. Hornberger K, Ndiritu N, Ponce-Brito L, Tashu M, Watt T. Kenya's cut-flower cluster: Final paper for microeconomics of competitiveness. Rod Evans, Flamingo Holding, Homegrown Kenya Ltd, Kenya. 2007. https://doi.org/10.1093/ww/9780199540884.013.u167495
  72. 56. Doldur H. Production and trade of the cut flower. J Geog. 2008(16):26.
  73. 57. Reinten E, Coetzee J, Van Wyk BE. The potential of South African indigenous plants for the international cut flower trade. S Afr J Bot. 2011;77(4):934–46. https://doi.org/10.1016/j.sajb.2011.
  74. 09.005
  75. 58. Loyola CE, Dole JM, Dunning R. North American speciality cut flower production and postharvest survey. Hort Technology. 2019;29(3):338-–39. https://doi.org/10.21273/horttech04270-19
  76. 59. Armitage AM. Speciality cut flowers. The production of annuals, perennials, bulbs and woody plants for fresh and dried cut flowers. 1993. https://doi.org/10.1016/b978-0-12-437651-9.50012-9
  77. 60. Pawar DB. Export potential of Indian cut flowers. J Pharmacogn Phytochem 2018. p. 1924-27. https://doi.org/10.22271/phyto.2018.v7.i6au
  78. 61. Darras A. Overview of the dynamic role of speciality cut flowers in the international cut flower market. Horticulturae. 2021;7(3):51. https://doi.org/10.3390/horticulturae7030051
  79. 62. Ahmad I, Dole JM, Blazich FA. Effects of daily harvest time on postharvest longevity, water relationsand carbohydrate status of selected speciality cut flowers. Hort Science. 2014;49(3):297–
  80. 305. https://doi.org/10.21273/hortsci.49.3.297
  81. 63. van Uffelen RL, de Groot NS. Floriculture World Wide: production, trade and consumption patterns show market opportunities and challenges. 2005. https://doi.org/10.17660/actahortic.
  82. 1999.495.4
  83. 64. Harbaugh BK. Lisianthus: Eustoma grandiflorum. Flower Breeding and Genetics: Issues, Challenges and Opportunities for the 21st Century: Springer; 2007. p. 644-63. https://doi.org/10. 1007/978-1-4020-4428-1_24
  84. 65. Chappell J, Hahlbrock K. Transcription of plant defence genes in response to UV light or fungal elicitor. Nature. 1984;311(5981):76–78. https://doi.org/10.1038/311076a0
  85. 66. Martin C, Gerats T. The control of flower colouration. Mol Biol Fl. 1993:219–55. https://doi.org/
  86. 10.2307/3869778
  87. 67. Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. The Plant Cell. 1995;7(7):1085. https://doi.org/10.2307/3870059
  88. 68. Davies K, Winefield C, Lewis D, Nielsen K, Bradley M, Schwinn K, Deroles S, Manson D, Jordon B. Research into the control of flower colour and flowering time in Eustoma grandiflorum (Lisianthus). Flowering Newsletter. 1997;23:24–32. https://www.jstor.org/stable/43008960
  89. 69. Deroles SC, Bradley JM, Schwinn KE, Markham KR, Bloor S, Manson DG, et al. An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers. Mol Breed. 1998;4(1):59–66. https://doi.org/10.1023/a:1009621903402
  90. 70. Deroles SC, Gardner RC. Expression and inheritance of kanamycin resistance in a large number of transgenic petunias generated by Agrobacterium-mediated transformation. Plant Mol Biol. 1988;11:355–64. https://doi.org/10.1007/bf00027392
  91. 71. Kawakatsu K, Yagi M, Harada T, Yamaguchi H, Itoh T, Kumagai M, et al. Development of an SSR marker-based genetic linkage map and identification of a QTL associated with flowering time in Eustoma. Breed Sci. 2021;71(3):344–53. https://doi.org/10.1270/jsbbs.20100
  92. 72. Kaviani B. Micropropagation of ten weeks (Matthiola incana) and Lisianthus (Eustoma grandiflorum)(two ornamental plants) by using kinetin (KIN), naphthalene acetic acid (NAA) and 2, 4-dichlorophenoxyacetic acid (2, 4-D). Acta Sci Pol., Hortorum Cultus. 2014;13(1):141–54.
  93. 73. Akbari H, Pajooheshgar R, Karimi N. Evaluating the micropropagation of Lisianthus (Eustoma grandiflorum L.) as an important ornamental plant. Indian J Fundamental Appl Sci. 2014;4(2):596–602. https://doi.org/10.24126/jobrc.2014.8.3.344
  94. 74. Castillo-González AM, Valdez-Aguilar LA, Avitia-García E. Response of Lisianthus (Eustoma grandiflorum [Raf.] Shinn) to applications of growth regulators. Acta Hortic. 2019;1263:241–44. https://doi.org/10.17660/ActaHortic.2019.1263.31
  95. 75. Rauter S, Stock M. Ranunculus Cut Flower Production in Utah. Utah State University. 2023;1:1-6. https://doi.org/10.1093/owc/9780199554775.003.0012
  96. 76. Fayaz K, Singh D, Singh VK, Bashir D, Kuller LR. Effect of NPK on plant growth, flower quality and yield of gerbera (Gerbera jamesonii). Res Environ Life Sci. 2016;9(11):1361–63. https://doi.org/10.
  97. 20546/ijcmas.2017.608.130
  98. 77. Alvarado-Camarillo D, Valdez-Aguilar L, Cadena-Zapata M. Growth and fertilization program for Lisianthus based on nutrimental accumulation. Agro Productividad. 2018;11(8):3–11. https://doi.org/10.21640/ns.v14i29.3230
  99. 78. Van Henten E, Bontsema J, Van Straten G. Improving the efficiency of greenhouse climate control: an optimal control approach. Neth J Agric Sci. 1997;45(1):109–25. https://doi.org/10.18174/njas.v45i1.529
  100. 79. Noh Y. Does converting abandoned railways to greenways impact neighbouring housing prices? Landscape and urban planning. 2019;183:157–66. https://doi.org/10.1016/j.landurbplan.
  101. 2018.11.002
  102. 80. Fascella G, Agnello S, Delmonte F, Sciortino B, Giardina G. Crop response of Lisianthus (Eustoma grandiflorum Shinn.) hybrids grown in soilless culture. Acta Hortic. 2009;807(2):559–64. https://doi.org/10.17660/actahortic.2009.807.82
  103. 81. Christie C, Nichols M. Aeroponics-a production system and research tool. Acta Hortic. 2004;648:185-190. https://doi.org/10.17660/actahortic.2004.648.22
  104. 82. Su J, Nie Y, Zhao G, Cheng D, Wang R, Chen J, et al. Endogenous hydrogen gas delays petal senescence and extends the vase life of Lisianthus cut flowers. Postharvest Biol Technol. 2019;147:148–55. https://doi.org/10.1016/j.postharvbio.2018.09.018
  105. 83. López-Guerrero AG, Zenteno-Savín T, Rivera-Cabrera F, Izquierdo-Oviedo H, Melgar LdAAS. Pectin-derived oligosaccharins effects on flower buds opening, pigmentation and antioxidant content of cut lisianthus flowers. Sci Hortic. 2021;279:109909. https://doi.org/10.1016/j.scienta.
  106. 2021.109909
  107. 84. Kiamohammadi M. The effects of different floral preservative solutions on the vase life of Lisianthus cut flowers. J Ornamental Horti Plants. 2012;1(2):115–22. https://doi.org/10.17660/actahortic.2012.943.25
  108. 85. Höhn D, Peil RMN, Marchi PM, Grolli PR, Trentin R, Shaun WS. Base temperature estimates for lisianthus cultivars grown in different planting seasons. Pesqui Agropecu Bras. 2023;58:e03447. https://doi.org/10.1590/s1678-3921.pab2023.v58.03447
  109. 86. Kathari Lakshmaiah MG, Subramanian S, Santhi R. Role of postharvest treatments in improving vase life of lisianthus (Eustoma grandiflorum) variety Mariachi Blue. Int J Chem Stud. 2019;7(6):247–49.
  110. 87. Cloyd RA. Ecology of fungus gnats (Bradysia spp.) in greenhouse production systems associated with disease-interactions and alternative management strategies. Insects. 2015;6(2):325–32. https://doi.org/10.3390/insects6020325

Downloads

Download data is not yet available.