Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Assessing per se performance, variability, association and principal component analysis in sponge gourd (Luffa cylindrica [L.]Roem.) genotypes for different horticultural attributes

DOI
https://doi.org/10.14719/pst.7618
Submitted
6 February 2025
Published
25-07-2025
Versions

Abstract

Luffa cylindrica [L.] Roem., known as sponge gourd, belongs to the Cucurbitaceae family and the present investigation, conducted with 48 sponge gourd genotypes, aimed to evaluate various horticultural traits at the Department of Vegetable Science, Horticultural College and Research Institute, Tamil Nadu Agricultural University in Coimbatore. The experimental results exhibited significant differences among the genotypes evaluated, with a higher PCV compared to the GCV, suggesting that environmental factors strongly influence the expression of these characters. The high heritability, coupled with high genetic advance, was observed for most characters studied, indicating that they are primarily controlled by additive gene action. This suggests that selection based on these characters would be effective for identifying suitable genotypes. The correlation study among various traits showed the highest positive significant association for the weight of individual fruit (0.86), followed by the number of fruits per vine (0.67) and fruit diameter (0.45). With fruit yield per vine as the designating trait, these traits were identified as the most important yield determinant characters. Principal Component Analysis revealed that days to first male flower anthesis, days to first female flower anthesis, node bearing first male flower and node bearing first female flower components exhibited with an eigenvalue of unity and accounting for 67.91 % of total variance. Characters with positive values in each PC are the important yield-determining characters and hence, all these characters can be well relied upon for the selection of a suitable genotype.

References

  1. 1. Weiss J, Gruda NS. Enhancing nutritional quality in vegetables through breeding and cultivar choice in protected cultivation. Sci Hortic. 2025;339:113914. https://doi.org/10.1016/j.scienta.2024.113914
  2. 2. Kalloo G. Loofah-Luff spp. In: Kalloo G, editor. Genetic improvement of vegetable crops. 1st ed. Oxford: Pergamon Press; 1993. p. 265–6. https://doi.org/10.1016/B978-0-08-040826-2.50023-0
  3. 3. Mashilo J, Shimelis H, Ngwepe MR. Genetic improvement and innovations of sponge gourd (Luffa cylindrica L.): an opportunity crop. Ind Crops Prod. 2025;225:120430. https://doi.org/10.1016/j.indcrop.2024.120430
  4. 4. Choudhary BR, Kumar S, Sharma SK. Evaluation and correlation for growth, yield and quality traits of ridge gourd (Luffa acutangula) under arid conditions. Indian JAgri Sci. 2014;84(4):498–502. https://doi.org/10.56093/ijas.v84i4.39465
  5. 5. Kumar JS, Pandit MK, Pathy TL. Genetic variability, diversity and character association in sponge gourd [Luffa cylindrica (Roem.) L.] Int J Curr Microbiol Appl Sci. 2019;8(3):278–90. https://doi.org/10.20546/ijcmas.2019.803.035
  6. 6. Abhijeet SK, Yadav NP, Singh VB, Mishra SK. Genetic variability studies on sponge gourd [Luffa cylindrical (L.) Roem. Int J Agri Environ Biotechnol. 2018;11:941–5.
  7. 7. Panse VG, Sukhatme PV. Statistical methods for agricultural workers. New Delhi: Indian Council of Agricultural Research, New Delhi. 1957;97.
  8. 8. Burton GW. Quantitative inheritance in pearl millet (Pennisetum glaucum). Agron J. 1952;43:409–17. https://doi.org/10.2134/agronj1951.00021962004300090001x
  9. 9. Lush JL. Intra-size correlation and regression of offspring rams as a method of estimating heritability of characters. J Anim Sci. 1940;(1):293–301.
  10. 10. Johnson HW, Robinson JF, Comstock RE. Estimation of genetic and environmental variability in soybean. Agron J. 1955;7:314–18. https://doi.org/10.2134/agronj1955.00021962004700070009x
  11. 11. Annigeri SV, Shashidhar TR, Patil RV, Kulkarni S, Patil BR. Performance of sponge gourd [Luffa cylindrica (Roem.) L.] genotypes for growth, yield and quality traits. Pharma Innov J. 2023;12(2):461–8.
  12. 12. Sivabharathy B, Kanthaswamy V, Sundaram V, Krishnan V, Manikandan M. Studies on per se performance of sponge gourd genotypes (Luffa cylindrica L.) for growth and yield attributes. Biol Forum Int J. 2023;15(9):28–33.
  13. 13. Yadav V, Mishra AC, Singh RB, Kumar P, Kumar S, Singh R, et al. Assessment of genetic variability, heritability and genetic advance among the characters of sponge gourd (Luffa cylindrica L. Roem). Int J Environ Clim Chang. 2024;14(1):471–8. https://doi.org/10.9734/ijecc/2024/v14i13857
  14. 14. Katre H, Topno SE, Bahadur V. Performance of different varieties of sponge gourd (Luffa cylindrica L.) in terms of growth, yield and quality under Prayagraj agro climatic conditions. J Adv Biol Biotechnol. 2024;27(7):79–85. https://doi.org/10.9734/jabb/2024/v27i7968
  15. 15. Singh PK, Bisht A, Kumar N, Kumar S, Singh VB. Analysis of heritability in the narrow sense and genetic advance in per cent of mean in sponge gourd (Luffa cylindrica (L.) M. Roem). Pharma Innov J. 2023;12(6):4511–3.
  16. 16. Sagar KR, Babu BR, Babu MR, Rao MP, Sekhar V. Studies on genetic variability, heritability and genetic advance in bitter gourd (Momordica charantia L.) germplasm lines. Plant Arch. 2024;24(1):232–6. https://doi.org/10.51470/PLANTARCHIVES.2024.v24.no.1.033
  17. 17. Kumar R, Ameta KD, Dubey RB, Pareek S. Genetic variability, correlation and path analysis in sponge gourd (Luffa cylindrical Roem.). Afr J Biotechnol. 2013;12(6);539–43.
  18. 18. Rai S, Sarkar RK, Roy SK, Datta S, Rai U, Rai S, et al. Estimates of genetic variability, heritability and genetic advance for yield and yield component traits in ridge gourd (Luffa acutangula Roxb.). Int J Bio-Res Stress Manag. 2025;16(3). https://doi.org/10.23910/1.2025.6003
  19. 19. Karthik D, Varalakshmi B, Kumar G, Lakshmipathi N. Genetic variability studies of ridge gourd advanced inbred lines (Luffa acutangula (L.) Roxb.). Int J Pure Appl Biosci. 2017;5(6):1223–8. https://doi.org/10.18782/2320-7051.6079
  20. 20. Sharma N, Bisen BP, Rajani B, Verma B. Genetic variability, correlation and path analysis in sponge gourd genotypes in Kymore plateau. Green Farming. 2017;8(2):301–5.
  21. 21. Pandey V, Singh VB, Singh MK. Selection parameters in sponge gourd (Luffa cylindrica Roem.) for yield and yield-related component traits. Environ Ecol. 2012;30(2):412–4.
  22. 22. Samaida DK. Genetic variability studies and scope of improvement in sponge gourd under hot humid agro-climate. Indian J Arid Hortic. 2010;5(2):37–9.
  23. 23. Subhash DM, Yashavantakumar KH, Raveendra SJ, Patil BB, Peerajade DA. Genetic variability studies in families of the F3 generation of ridge gourd [Luffa acutangula (L.) Roxb.]. Int J Adv Biochem Res. 2024;8(9):102–6. https://doi.org/10.33545/26174693.2024.v8.i9b.2101
  24. 24. Yadav AN, Singh VB, Yadav GC, Kumar V. Determining relationships between different horticultural and yield traits in sponge gourd (Luffa cylindrical Roem.) genotypes with path coefficient analysis. J Pharmacogn Phytochem. 2017;6(3):342–5.
  25. 25. Sarma I, Phookan DB, Sarma A, Barua NS, Bordoloi D, Sarma D. Genetic variation, trait interrelationships and cluster analysis in indigenous sponge gourd (Luffa cylindrica L. Roem.) germplasm of Assam. Indian J Gen Plant Breed. 2022;82(4).
  26. 26. Chithra K, Shashikanth E, Gowda KH, Ramanagouda SH, Devaraju M, Jagadeesh SL, et al. Multivariate analysis for nutritional composition, phytochemical contents, yield and yield contributing characters in underutilized cucurbit sponge gourd [Luffa cylindrica (L.) Roem.]. Gen Res Crop Evol. 2024;1 –19. https://doi.org/10.1007/s10722-024-02159-0
  27. 27. Narasannavar A, Gasti VD, Malghan S. Correlation and path analysis studies in ridge gourd [Luffa acutangula (L.) Roxb.]. Trends Biosci. 2014;7(13):1603–7.
  28. 28. Aslam RMT, Khan RI, Abbas RM, Rafique T, Khatana MA, Aslam HRMW, et al. Morphological, reproductive and biochemical diversity in Luffa (Luffa aegyptiaca) cultivars. Int J Hortic Sci Technol. 2025;12(4),445–64.
  29. 29. He X, Zheng Y, Yang S, Wang Y, Lin YE, Jiang B, et al. Combined genomic, transcriptomic and metabolomic analyses provide insights into the fruit development of bottle gourd (Lagenaria siceraria). Hortic Res. 2025;12(3):uhae335. https://doi.org/10.1093/hr/uhae335

Downloads

Download data is not yet available.