Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Optimizing baby corn yield and quality: Insights from organic and agronomic interventions

DOI
https://doi.org/10.14719/pst.7627
Submitted
6 February 2025
Published
27-08-2025
Versions

Abstract

Cultivation of baby corn, a profitable crop in the global agricultural market, requires careful attention to increase yield, productivity and quality. This review examines the impact of various land configuration practices and organic nutrient management practices on baby corn yield, productivity and quality. Different land configurations, including flat beds, broad beds and ridges and furrows, can be combined with organic nutrient management strategies that utilize various plant- and animal-based soil amendments. While organic nutrient management has increased the nutritional content of baby corn, particularly by increasing micronutrient levels, improvements in land configuration have had a substantial influence on the crop's productivity. Physical characteristics, such as cob length, width, grain homogeneity and overall quality, have all been significantly improved. These improvements support sustainable farming practices, in addition to increasing the market value of baby corn. Baby corn's versatility and nutritional advantages have expanded its commercial potential and raised demand for both fresh and processed varieties. This review highlights the importance of integrating organic nutrient management with land configuration to enhance the sustainability, quality and productivity of baby corn farming. This review offers valuable insights for farmers and agricultural professionals, supporting the adoption of integrated approaches that harmonize land management techniques with organic nutrient management to optimize crop performance, ensure environmental sustainability and promote farmers' well-being.

References

  1. 1. Nitesh UC, Sanodiya LK. Influence of organic and inorganic nutrient management on growth and yield of baby corn (Zea mays L.) under high-density planting system. Pharma Innov. 2022;11(7):3502–5.. https://doi.org/10.22271/tpi.2022.v11.i7ar.14610
  2. 2. Singh G, Kumar S, Singh R, Singh S. Growth and yield of Baby corn (Zea mays L.) as influenced by varieties, spacings and dates of sowing. Indian J Agric Res. 2015;49(4):353–7. 10.5958/0976-058X.2015.00064.5
  3. 3. Ram H, Kumar R, Meena RK, Malik R, Mallikarjun M, Saxena A. Effect of tillage and nitrogen management on yields, profitability and nitrogen balance of baby corn (Zea mays). Indian J Agric Sci. 2022;92(2):263–6. https://doi.org/10.56093/ijas.v92i2.122249
  4. 4. Ramachandrappa B, Nanjappa H, Thimmegowda M, Soumya T. Production management for profitable baby corn (Zea mays L.) cultivation. Indian Farming. 2004;8:3–7.
  5. 5. Kumar R, Bohra J, Singh AK, Kumawat N. Productivity, profitability and nutrient-use efficiency of baby corn (Zea mays) as influenced by varying fertility levels. Indian J Agron. 2015;60(2):285–90. https://doi.org/10.59797/ija.v60i2.4451
  6. 6. Babu S, Singh R, Avasthe R, Yadav GS, Das A, Singh VK, et al. Impact of land configuration and organic nutrient management on productivity, quality and soil properties under baby corn (Zea mays L.) in Eastern Himalayas. Sci Rep. 2020;10(1):16129. https://doi.org/10.1038/s41598-020-73072-6
  7. 7. Dadarwal R, Jain N, Singh D. Integrated nutrient management in baby corn (Zea mays). Indian J Agric Sci. 2009;79(12).
  8. 8. Sharma AJ, Singh M, Singh NP. Response of integrated nutrient management on baby corn (Zea mays L.) – A review. Int J Curr Microbiol App Sci. 2020;9(5):3329–38. https://doi.org/10.20546/ijcmas.2020.905.396
  9. 9. Panwar A, Shivay Y. Production potential of baby corn (Zea mays) on raised bed in waterlogged lowland rice fallow in North East India. Indian J Agric Sci. 2015;85(11):1424–7. https://doi.org/10.56093/ijas.v85i11.53669
  10. 10. Thavaprakaash N, Velayudham K, Muthukumar V. Effect of crop geometry, intercropping systems and integrated nutrient management practices on productivity of baby corn-based intercropping systems. Res J Agric Biol Sci. 2005;1(4):295–302. https://doi.org/10.3923/ajar.2007.10.16
  11. 11. Saikia N, Bagrecha S, Nithinkumar K. Baby corn: a potential option to increase the farmer's income. Int J Curr Microbiol App Sci. 2020;9(5):3329–38. https://doi.org/10.20546/ijcmas.2020.905.396
  12. 12. Sarker MH, Quddus MA, Sattar MA, Karim MR, Islam MA, Islam MT, et al. Evaluation of baby corn genotypes on productivity and quality traits in Bangladesh. J Agric Stud. 2023;11(4):15–38. http://dx.doi.org/10.5296/jas.v11i4.21439
  13. 13. Asaduzzaman M, Biswas M, Islam MN, Rahman MM, Begum R, Sarkar MAR. Variety and N-fertiliser rate influence the growth, yield and yield parameters of baby corn (Zea mays L.). J Agric Sci. 2014;6(3):118–31. https://doi.org/10.5539/jas.v6n3p118
  14. 14. Singh M, Singh R, Singh S, Yadav M, Singh V. Integrated nutrient management for higher yield, quality and profitability of baby corn (Zea mays). Indian J Agron. 2010;55(2):100–4. https://doi.org/10.59797/ija.v55i2.4736
  15. 15. Ranjan S, Sow S. Baby corn: A crop with immense importance. Agric Food E-Newsl. 2021;3(2):20.
  16. 16. Pandey A, Prakesh V, MAN V, Singh R. Effect of rate of nitrogen and time of application on yield and economics of baby corn. Indian J Agronomy. 2000;45(2):45–52. https://doi.org/10.59797/ija.v45i2.3387
  17. 17. Cobo J, Barrios E, Kass D, Thomas RJ. Decomposition and nutrient release by green manures in a tropical hillside agroecosystem. Plant Soil. 2002;240:331–42. https://doi.org/10.1023/A:1015720324392
  18. 18. Davis J, Wilson C. Choosing a soil amendment. Colorado State University Extension Fact Sheet 7.235. 2005.
  19. 19. Kumar R, Bohra J, Kumawat N, Kumar A, Kumari A, Singh AK. Root growth, productivity and profitability of baby corn (Zea mays L.) as influenced by nutrition levels under an irrigated ecosystem. Res Crops. 2016;17(1):41–6. http://dx.doi.org/10.5958/2348-7542.2016.00008.5
  20. 20. Bindhani A, Barik K, Garnayak L, Mahapatra P. Nitrogen management in baby corn (Zea mays). Indian J Agron. 2007;52(2):135–8. https://doi.org/10.59797/ija.v52i2.4909
  21. 21. Büchi L, Amosse C, Wendling M, Sinaj S, Charles R. Introduction of no till in a long-term experiment on soil tillage in Switzerland. Soil Tillage Res. 2015;128:49–55. https://doi.org/10.1016/j.still.2017.07.002
  22. 22. Larsson SJ, Peiffer JA, Edwards JW, Ersoz ES, Flint-Garcia S, Holland JB, et al. Genetic analysis of lodging in diverse maize hybrids. BioRxiv. 2017:185769. https://doi.org/10.1101/185769
  23. 23. Peng J, Lu L, Noor MA, Li S, Ma W, Wang J. Mid-season lodging modulates photosynthesis, evapotranspiration and dry matter accumulation and distribution simulated by the optimized model in maize. Front Ecol Evol. 2023;11:1178609. https://doi.org/10.3389/fevo.2023.1178609
  24. 24. Ram H, Singh R, Pal G, Agarwal D, Kumar R. Effect of tillage practices and genotypes on growth, seed yield and nutrient uptake in wheat (Triticum aestivum). Indian J Agric Sci. 2018;88(11):1765–9. https://doi.org/10.56093/ijas.v88i11.84927
  25. 25. Mahapatra A, Behera MP. Integrated nutrient management on baby corn (Zea mays L.): A review. Int J Curr Sci. 2019;7(3):01–6. http://dx.doi.org/10.23910/IJBSM/2018.9.1.1855
  26. 26. Naveen J, Saikia M, Borah N, Pathak K, Das R. Organic baby corn (Zea mays L.) production as influenced by nutrient management and moisture conservation practices in sandy loam soils of Assam. Indian J Agric Res. 2020; 20(2):3417–20. http://dx.doi.org/10.18805/IJARe.A-5531
  27. 27. Uddin MK, Yeasmin S, Mohiuddin K, Chowdhury MAH, Saha BK. Peat-based organo-mineral fertilizer improves nitrogen use efficiency, soil quality and yield of baby corn (Zea mays L.). Sustainability. 2023;15(11):9086. https://doi.org/10.3390/su15119086
  28. 28. Swapna G, Jadesha G, Mahadevu P, Shivakumar B, Babu B, Hanagi C. Baby corn: A new challenge, scope, present status and strategies. Plant Cell Biotechnol Mol Biol. 2024;25(1-2):1–12. http://dx.doi.org/10.56557/PCBMB/2024/v25i1-28542
  29. 29. Bahuguna A, Pal M. Effect of crop establishment methods and nutrient management options on productivity and economics of baby corn (Zea mays L.). Pantnagar J Res. 2021;19(1):1–6.
  30. 30. Puvila P, Siddeswaran K, Shanmugam P. Germination and crop yield in cotton-maize cropping system influenced by tillage and land configuration. Indian J Agric Sci. 2016;12(2):252–56. https://doi.org/10.15740/has/ijas/12.2/252-256
  31. 31. Kumar A. Growth, yield, and water use efficiency of different maize (Zea mays) based cropping systems under varying planting methods and irrigation levels. Indian J Agric Sci. 2008;78(3):244–47.
  32. 32. Dass S, Kumar A, Jat S, Parihar C, Singh A, Karjagi CG, et al. Maize holds potential for diversification and livelihood security. Indian J Agron. 2012;57(3 Suppl):32–7.
  33. 33. SP D, Patel J, Patel A. Ensuing economic gains from summer pearl millet (Pennisetum glaucum L.) due to different dates of sowing and land configuration. Afr J Agric Res. 2013. https://doi.org/10.5897/AJAR2013.7346
  34. 34. Deshmukh S, Vasave J, Patel A. A short review of land configuration to improve the plant growth, development and yield of cereals. Int J Interdiscip Res Innov. 2016;4(3):1–4.
  35. 35. Liu T, Chen J, Wang Z, Wu X, Wu X, Ding R, et al. Ridge and furrow planting pattern optimizes canopy structure of summer maize and obtains higher grain yield. Field Crops Res. 2018;219:242–9. https://doi.org/10.1016/j.fcr.2018.02.012
  36. 36. Dong F, Yan Q, Yang F, Zhang J, Wang J. Yield structure and water use efficiency of summer maize (Zea mays L.) under wide ridge-furrow planting in the furrow irrigation process. Arch Agron Soil Sci. 2023;69(2):228–42. https://doi.org/10.1080/03650340.2021.1980875
  37. 37. Patil S, Sheelavantar M. Yield and yield components of rabi sorghum (Sorghum bicolor) as influenced by in situ moisture conservation practices and integrated nutrient management in Vertisols of semi-arid tropics of India. Indian J Agron. 2000;45(1):132–7. https://doi.org/10.59797/ija.v45i1.3360
  38. 38. Jnanesha A, Alagundagi S, Mansur C, Kumar A, editors. Effect of broad bed and furrow and integrated nutrient management practices on growth and yield of maize. In: Proceedings of the National Conference on Harmony with Nature in Context of Resource Conservation and Climate Change; 2016.
  39. 39. Muralidaran C, Solaimalai A. Studies on land configuration methods, row spacing and time of nitrogen application on nutrient uptake and yield of cotton in dryland conditions of western zone of Tamil Nadu. Indian J Agron. 2005;65(3). https://doi.org/10.59797/ija.v65i3.2989
  40. 40. Vaghasia P, Khanpara V, Mathukia R. Subsoiling, land configuration and sulphur fertilization effects on soil physico-chemical properties, growth and yield of groundnut. Int J Agric Sci. 2007;3(2):124–6.
  41. 41. Yadav A, Husain K, Verma V, Tiwari U, Khan N, Siddiqui M. Effect of land configuration and nutrient management on growth and yield of hybrid maize. J Pharmacogn Phytochem. 2019;8(4):602–6. https://doi.org/10.20546/ijcmas.2019.807.165
  42. 42. Ramesh T, Rathika S, Nagarajan G, Shanmugapriya P. Land configuration and nitrogen management for enhancing the crop productivity: A review. Pharma Innov J. 2020;9(7):222–30.
  43. 43. Panwar A, Munda G. Response of babycorn (Zea mays) to nitrogen and land configuration in Meghalaya. Indian J Agric Sci. 2011;76(5). https://epubs.icar.org.in/index.php/IJAgS/article/view/2874
  44. 44. Verma A, Harika A, Tomar S. Fodder quality of Baby corn (Zea mays L.) as influenced by method of planting, crop geometry and nitrogen application. Indian J Anim Nutr. 2013;30(2):157–61.
  45. 45. Hue N, Silva J. Organic soil amendments for sustainable agriculture: organic sources of nitrogen, phosphorus and potassium. In: Silva JA, Uchida R, editors. Plant nutrient management in Hawaii's soils: approaches for tropical and subtropical agriculture. Manoa(HI): College of Tropical Agriculture and Human Resources, University of Hawaii; 2000. p. 133–44.
  46. 46. Das SK, Avasthe R. Soil organic nutrients management through an integrated approach: a policy for environment & ecology. Environ Anal Ecol Stud. 2018;4(1):1–8. https://doi.org/10.31031/eaes.2018.04.000579
  47. 47. Koul B, Yakoob M, Shah MP. Agricultural waste management strategies for environmental sustainability. Environ Res. 2022;206:112285. https://doi.org/10.1016/j.envres.2021.112285
  48. 48. Ginni G, Kavitha S, Kannah Y, Bhatia SK, Kumar A, Rajkumar M, et al. Valorization of agricultural residues: Different biorefinery routes. J Environ Chem Eng. 2021;9(4):105435. https://doi.org/10.1016/j.jece.2021.105435
  49. 49. Sharma B, Vaish B, Monika, Singh UK, Singh P, Singh RP. Recycling of organic wastes in agriculture: an environmental perspective. Int J Environ Res. 2019;13:409–29. http://dx.doi.org/10.1007/s41742-019-00175-y
  50. 50. Adugna G. A review on the impact of compost on soil properties, water use and crop productivity. Acad Res J Agric Sci Res. 2016;4(3):93–104. http://dx.doi.org/10.14662/ARJASR2016.010
  51. 51. Lazcano C, Domínguez J. The use of vermicompost in sustainable agriculture: impact on plant growth and soil fertility. In: Miransari M, editor. Soil Nutrients. New York:. Nova Science Publishers. 2011;1–23.
  52. 52. Verma NS, Yadav D, Chouhan M, Bhagat C, Kochale P. Understanding potential impact of green manuring on crop and soil: a comprehensive review. Biol Forum Int J. 2023;15(10):832–9.
  53. 53. Koudahe K, Allen SC, Djaman K. Critical review of the impact of cover crops on soil properties. Int Soil Water Conserv Res. 2022;10(3):343–54. https://doi.org/10.1016/j.iswcr.2022.03.003
  54. 54. Brassard P, Godbout S, Lévesque V, Palacios JH, Raghavan V, Ahmed A, et al. Biochar for soil amendment. In: Mejdi J and Lionel L, editors. Char and carbon materials derived from biomass. Elsevier; 2019. p. 109–46. http://dx.doi.org/10.1016/B978-0-12-814893-8.00004-3
  55. 55. Lemma DT. Determination of optimum farmyard manure rates for growth, yield and yield components of roselle (Hibiscus sabdariffa L.). Int J Res Agric Sci. 2020;7(5):243–50.
  56. 56. Agbede T, Ojeniyi S, Adeyemo A. Effect of poultry manure on soil physical and chemical properties, growth and grain yield of sorghum in southwest, Nigeria. Am-Eurasian J Sustain Agric. 2008;2(1):72–7. https://doi.org/10.1016/j.still.2008.12.014
  57. 57. Atemni I, Hjouji K, Barnossi AE, Ainane A, Ainane T, Taleb M, et al. Effect of bone meal application on soil properties, heavy metal accumulation and agronomic traits of Pelargonium graveolens. J Soil Sci Plant Nutr. 2023;23(4):6584–95. https://doi.org/10.1007/s42729-023-01512-z
  58. 58. Yunta F, Di Foggia M, Bellido-Díaz V, Morales-Calderón M, Tessarin P, López-Rayo S, et al. Blood meal-based compound: a good choice as an iron fertilizer for organic farming. J Agric Food Chem. 2013;61(17):3995–4003. https://doi.org/10.1021/jf305563b
  59. 59. Vaisvalavicius R, Dromantiene R, Pranckietiene I, Aleinikoviene J, editors. Impact of fish processing by-product amendment on soil properties. In: Rural Development: Proceedings of the International Scientific Conference; 2021. https://doi.org/10.15544/RD.2021.010
  60. 60. Schaetzl RJ, Thompson ML. Soils. Cambridge: Cambridge University Press; 2015. https://doi.org/10.1017/cbo9781139061803
  61. 61. Behera KK, Alam A, Vats S, Sharma HP, Sharma V. Organic farming history and techniques. In: Agroecology and strategies for climate change. 2012. p. 287–328. https://doi.org/10.1007/978-94-007-1905-7_12
  62. 62. Mallikarjun H, Kumar R, Meena R, Kumar U, Manjunath S. Nutritional quality of Baby corn (Zea mays L.) fodder as influenced by tillage practices and nitrogen management. Indian J Anim Sci. 2019;89:889–93. https://doi.org/10.56093/ijans.v89i8.93026.
  63. 63. Willer H. Organic agriculture in Europe: overview. In: The world of organic agriculture. 2011. https://doi.org/10.4324/9781849775991
  64. 64. Aulakh CS, Sharma S, Thakur M, Kaur P. A review of the influences of organic farming on soil quality, crop productivity and produce quality. J Plant Nutr. 2022;45(12):1884–905. https://doi.org/10.1080/01904167.2022.2027976.
  65. 65. Seufert V, Ramankutty N, Foley JA. Comparing the yields of organic and conventional agriculture. Nature. 2012;485(7397):229–32. https://doi.org/10.1038/nature11069.
  66. 66. Das S, Ghosh G, Kaleem M, Bahadur V, editors. Effect of different levels of nitrogen and crop geometry on the growth, yield and quality of baby corn (Zea mays L.) cv.' Golden Baby'. Acta Hortic. 2009;809:161–66. https://doi.org/10.17660/ActaHortic.2009.809.14
  67. 67. Thavaprakaash N, Velayudham K. Effect of crop geometry, intercropping systems and INM practices on cob yield and nutrient uptake of baby corn. Asian J Agric Res. 2007;1(1):10–6. https://doi.org/10.3923/ajar.2007.10.16
  68. 68. Wailare AT. Effect of integrated nutrient management on Baby corn (Zea mays L.)–A review. Int J Sci Res. 2014;3(6):2218–22.
  69. 69. Shahid Rasool SR, Kanth R, Shabana Hamid SH, Raja W, Alie B, Dar Z. Influence of integrated nutrient management on growth and yield of sweet corn (Zea mays L. saccharata) under temperate conditions of Kashmir Valley. 2015;7(5):315–25. https://doi.org/10.9734/AJEA/2015/16159
  70. 70. Lone AA, Allai B, Nehvi F. Growth, yield and economics of Baby corn (Zea mays L.) as influenced by Integrated Nutrient Management (INM) practices. Afr J Agric Res. 2013;8(37):4537–40. http://dx.doi.org/10.5897/AJAR08.335
  71. 71. Singh R, Singh A, Sontakki BS. Innovations in knowledge sharing and technology application. Extended Summaries. 2016:4;190.
  72. 72. Thavaprakaash N, Velayudham K, Muthukumar V. Response of crop geometry, intercropping systems and INM practices on yield and fodder quality of Baby corn (Zea mays L.). Asian J Sci Res. 2008;1(3):153–9. https://doi.org/10.3923/ajsr.2008.153.159
  73. 73. Siddeswaran K, Shanmugam P. Organic nutrient management in chillies-Bengal gram-Baby corn (Zea mays L.) sequence. Int J Agrl Sci Vet Med. 2013;1:123–6.
  74. 74. Kar P, Barik K, Mahapatra P, Garnayak L, Rath B, Bastia D, et al. Effect of planting geometry and nitrogen on yield, economics and nitrogen uptake of sweet corn (Zea mays). Indian J Agron. 2006;51(1):43–5. https://doi.org/10.59797/ija.v51i1.4964.
  75. 75. Lodh P, Saha A, Hedayetullah M, Saha D. Effect of integrated nutrient management on growth, yield, nutrient uptake, nutrient use efficiencies and economics of Baby corn (Zea mays L): A review. J Sci Res Rep. 2024;30(4):16–25. https://doi.org/10.9734/jsrr/2024/v30i41885
  76. 76. Ranjan JK, Ahmed N, Das B, Ranjan PR, Mishra BK. Green technology for production of baby corn (Zea mays L) under north-west Himalayan conditions. J Green Sustain Environ Eng. 2013;1:880–5.
  77. 77. Shanmugam PM, Devasenapathy P, Siddeswaran K. Organic farming packages on yield and soil characters under Chillies - Bengal gram - Baby corn (Zea mays L.) cropping system. J Farming Syst Res Dev. 2014;20(1):145–9.
  78. 78. Gonal RM, Sharanappa, Jayadeva H, Basavaraja P. Quality, yield and economics of Baby corn (Zea mays L.) as influenced by organic nutrient management. Mysore J Agri Sci. 2021; 55(4):262–7. https://doi.org/10.5555/20220081115
  79. 79. Garg K, Dhar S, Azman EA, Sharma V, Meena RP, Hashim M, et al. Exploring the potential of enhanced organic formulations for boosting crop productivity, nutrient utilization efficiency and profitability in Baby corn (Zea mays L.), kabuli gram-vegetable cowpea cropping system. Front Sustain Food Syst. 2024;8:1380279. https://doi.org/10.3389/fsufs.2024.1380279
  80. 80. Bhatt R, Singh P, Kaur G. Soil management vis-à-vis carbon sequestration in relation to land use cover/change in terrestrial ecosystem—A review. In: Hasanuzzaman M, Ahammed GJ, Nahar K, editors. Managing plant production under changing environment. Singapore: Springer Nature Singapore; 2022. p. 43–78. https://doi.org/10.1007/978-981-16-5059-8_3.
  81. 81. Mishra AK, Mayorga J, Kumar A. Technology and managerial gaps in contract farming: The case of speciality crop production. J Agric Resour Econ. 2021;47(1):77–96. https://dx.doi.org/10.22004/ag.econ.307460
  82. 82. Singh S, Neupane M, Sravan US, Kumar S, Yadav T, Choudhary S. Nitrogen management in baby corn (Zea mays L.): A review. Curr J Appl Sci Technol. 2019;35(5):1–11. https://doi.org/10.9734/cjast/2019/v34i530147.
  83. 83. Rani R, Sheoran R, Soni PG, Kaith S, Sharma A. Baby corn (Zea mays L.): a wonderful vegetable. Int J Sci Environ Technol. 2017;6(2):1407–12.
  84. 84. Bhat JS, Patil B. The story of baby corn (Zea mays L.). Indian Farming. 2014;63(12).Available from: https://epubs.icar.org.in/index.php/IndFarm/article/view/49516.
  85. 85. Rathika S. Influence of crop geometry, intercropping and topping practices on green cob yield and fodder quality of baby corn (Zea mays L.). J Agric Sci. 2014;10(1):182–5.
  86. 86. Solo M, Joseph P, Rajendran K, Katharine SP, Hena JV. Baby corn (Zea mays L.) Yield performance on silty clay loam soil as impacted by organic nutrient management practices of Coimbatore. Int J Environ Clim Change. 2023;13(8):1412–7. https://doi.org/10.9734/ijecc/2023/v13i82087

Downloads

Download data is not yet available.