Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

An overview of sulphate reducing bacteria in treating the sulphate-rich wastewater

DOI
https://doi.org/10.14719/pst.7641
Submitted
7 February 2025
Published
31-07-2025 — Updated on 15-08-2025
Versions

Abstract

Efficient removal of pollutants from sewage is essential for maintaining the sustainability of the ecosystem, which means that effective biological methods must be explored. Compared to traditional physical and chemical methods, bioremediation is an attractive alternative method because of its low-cost, maintains ecological balance and helps rebuild the polluted environment. In particular, the sustainable bioremediation technology based on sulphate-reducing bacteria (SRB) is considered to be one of the best treatment schemes to alleviate environmental pollution. The present paper provides a brief summary of the approach used to remove pollutants using sulphate-reducing bacteria, an obligate anaerobic bacterium. SRB are recognized for their capacity to convert sulphate into hydrogen sulfide, which facilitates the precipitation of heavy metals, degradation of organic pollutants and forms a large number of metal sulfides. The analysis delves into the biological processes utilized by SRB, the ideal conditions for their effectiveness and the potential advantages and obstacles associated with integrating SRB into wastewater treatment facilities. Additionally, it confronts challenges such as odor control, hydrogen sulfide mitigation and microbial survival. By examining of current studies and technological progress, this analysis underscores the potential of SRB as a sustainable and effective remedy for enhancing wastewater treatment and mitigating environmental contamination.

References

  1. 1. Neethu B, Khandelwal A, Ghangrekar MM, Ihjas K, Swaminathan J. Microbial fuel cells-challenges for commercialization and how they can be addressed. In: Scaling Up of Microbial Electrochemical Systems. 2022:393–418. https://doi.org/10.1016/B978-0-323-90765-1.00021-6
  2. 2. Patel B, Saxena S, Sandhwar VK, Yadav AR, Joshi U. Activasted sludge process followed by catalytic treatment of sewage: Optimization of process. AIP Conf Proc. 2024;3107(1). https://doi.org/10.1063/5.0208995
  3. 3. Jeong TY, Cha GC, Seo YC, Jeon C, Choi SS. Effect of COD/sulfate ratios on batch anaerobic digestion using waste activated sludge. J Ind Eng Chem. 2008;14(5):693–7. https://doi.org/10.1016/j.jiec.2008.05.006
  4. 4. Akoh F, Bouchoum H, El Bouchti M, Cherkaoui O, Jada A, Tahiri M. Sulfate removal from aqueous solutions using esterified wool fibers: isotherms, kinetic and thermodynamic studies. Desalination Water Treat. 2020;194:417–28. https://doi.org/10.5004/dwt.2020.25461
  5. 5. Gkika DA, Mitropoulos AC, Kyzas GZ. Why reuse spent adsorbents? The latest challenges and limitations. Sci Total Environ. 2022;822:153612. https://doi.org/10.1016/j.scitotenv.2022.153612
  6. 6. Van Den Brand TP, Roest K, Chen GH, Brdjanovic D, Van Loosdrecht MC. Potential for beneficial application of sulfate reducing bacteria in sulfate containing domestic wastewater treatment. World J Microbiol Biotechnol. 2015;31:1675–81. https://doi.org/10.1007/s11274-015-1935-x
  7. 7. Najib T, Solgi M, Farazmand A, Heydarian SM, Nasernejad B. Optimization of sulfate removal by sulfate reducing bacteria using response surface methodology and heavy metal removal in a sulfidogenic UASB reactor. J Environ Chem Eng. 2017;5(4):3256–65. https://doi.org/10.1016/j.jece.2017.06.016
  8. 8. Colleran E, Finnegan S, Lens P. Anaerobic treatment of sulphate-containing waste streams. Antonie van Leeuwenhoek. 1995;67:29–46. https://doi.org/10.1007/BF00872194
  9. 9. Visser A. The anaerobic treatment of sulfate containing wastewater. Wageningen University and Research; 1995.
  10. 10. Cunha MP, Ferraz RM, Sancinetti GP, Rodriguez RP. Long-term performance of a UASB reactor treating acid mine drainage: Effects of sulfate loading rate, hydraulic retention time and COD/SO₄2- ratio. Biodegradation. 2019;30:47–58. https://doi.org/10.1007/s10532-018-9863-8
  11. 11. Brahmacharimayum B, Mohanty MP, Ghosh PK. Theoretical and practical aspects of biological sulfate reduction: a review. Glob NEST J. 2019;21(2):222–44. https://doi.org/10.30955/gnj.002577
  12. 12. Environmental Protection Agency (EPA). Detection, control and correction of hydrogen sulfide corrosion in existing wastewater system.
  13. 13. World Health Organization. Guidelines for drinking-water quality. Geneva: World Health Organization; 2002.
  14. 14. MoEF. Gazette of India in Environment (Protection) Rules. New Delhi; 1986.
  15. 15. Bureau of Indian Standards. Indian standard drinking water–specification (second revision). IS10500. New Delhi: BIS; 2012: 1–11.
  16. 16. Mathews ER, Barnett D, Petrovski S, Franks AE. Reviewing microbial electrical systems and bacteriophage biocontrol as targeted novel treatments for reducing hydrogen sulfide emissions in urban sewer systems. Rev Environ Sci Biotechnol. 2018;17:749–64. https://doi.org/10.1007/s11157-018-9483-0
  17. 17. Odumbe E, Murunga S, Ndiiri J. Heavy metals in wastewater effluent: causes, effects and removal technologies. Trans Met Environ. 2023. https://doi.org/10.5772/intechopen.1001452
  18. 18. Zhang L, Qiu YY, Sharma KR, Shi T, Song Y, Sun J, et al. Hydrogen sulfide control in sewer systems: a critical review of recent progress. Water Res. 2023;240:120046. https://doi.org/10.1016/j.watres.2023.120046
  19. 19. ElSayed EE. Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study). Water Sci. 2018;32(1):32–43. https://doi.org/10.1016/j.wsj.2018.02.001
  20. 20. Hassanpoor S, Dehghanpour M. Fabrication of magnetically engineered nanosorbent for separation and determination of organic sulfur containing oil pollution in environmental water samples. Microchem J. 2024;196:109620. https://doi.org/10.1016/j.microc.2023.109620
  21. 21. Alemu A, Gabbiye N, Lemma B. Evaluation of tannery wastewater treatment by integrating vesicular basalt with local plant species in a constructed wetland system. Front Environ Sci. 2021;9:721014. https://doi.org/10.3389/fenvs.2021.721014
  22. 22. Ho QN, Anam GB, Kim J, Park S, Lee TU, Jeon JY, et al. Fate of sulfate in municipal wastewater treatment plants and its effect on sludge recycling as a fuel source. Sustainability. 2022;15(1):311. https://doi.org/10.3390/su15010311
  23. 23. Runtti H, Tolonen ET, Tuomikoski S, Luukkonen T, Lassi U. How to tackle the stringent sulfate removal requirements in mine water treatment—a review of potential methods. Environ Res. 2018;167:207–22. https://doi.org/10.1016/j.envres.2018.07.018
  24. 24. Laltha M, Sewsynker-Sukai Y, Kana EG. Simultaneous saccharification and citric acid production from paper wastewater pretreated banana pseudostem: optimization of fermentation medium formulation and kinetic assessment. Bioresour Technol. 2022;361:127700. https://doi.org/10.1016/j.biortech.2022.127700
  25. 25. Hülsen T, Hsieh K, Batstone DJ. Saline wastewater treatment with purple phototrophic bacteria. Water Res. 2019;160:259–67. https://doi.org/10.1016/j.watres.2019.05.060
  26. 26. Araújo S, Damianovic M, Foresti E, Florencio L, Kato MT, Gavazza S. Biological treatment of real textile wastewater containing sulphate, salinity and surfactant through an anaerobic–aerobic system. Water Sci Technol. 2022;85(10):2882–98. https://doi.org/10.2166/9781789064346_ch2
  27. 27. Liang X, Xu Y, Yin L, Wang R, Li P, Wang J, et al. Sustainable utilization of pulp and paper wastewater. Water. 2023;15(23):4135. https://doi.org/10.3390/w15234135
  28. 28. Tripathi S, Purchase D, Al-Rashed S, Chandra R. Microbial community dynamics and their relationships with organic and metal pollutants of sugarcane molasses-based distillery wastewater sludge. Environ Pollut. 2022;292:118267. https://doi.org/10.1016/j.envpol.2021.118267
  29. 29. Li X, Dai L, Zhang C, Zeng G, Liu Y, Zhou C, et al. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. J Hazard Mater. 2017;324:340–7. https://doi.org/10.1016/j.jhazmat.2016.10.067
  30. 30. Li X, Wu Y, Zhang C, Liu Y, Zeng G, Tang X, et al. Immobilizing of heavy metals in sediments contaminated by nonferrous metals smelting plant sewage with sulfate reducing bacteria and micro zero valent iron. Chem Eng J. 2016;306:393–400. https://doi.org/10.1016/j.cej.2016.07.079
  31. 31. Beijerinck MW. Über Spirillum desulfuricans als ursache von sulfatreduktion. Zentralbl Bakteriol. 1895;1:1–9.
  32. 32. Postgate JR. The sulphate-reducing bacteria. Cambridge: CUP Archive; 1979.
  33. 33. Vainshtein M, Hippe H, Kroppenstedt RM. Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulfate-reducing bacteria. Syst Appl Microbiol. 1992;15(4):554–66. https://doi.org/10.1016/S0723-2020(11)80115-3
  34. 34. Daly K, Sharp RJ, McCarthy AJ. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiology. 2000;146(7):1693–705. https://doi.org/10.1099/00221287-146-7-1693
  35. 35. Wu B, Liu F, Fang W, Yang T, Chen GH, He Z, et al. Microbial sulfur metabolism and environmental implications. Sci Total Environ. 2021;778:146085. https://doi.org/10.1016/j.scitotenv.2021.146085
  36. 36. Jørgensen BB. Unravelling the sulphur cycle of marine sediments. Environ Microbiol. 2019;21(10):3533–8. https://doi.org/10.1111/1462-2920.14721
  37. 37. Favas PJ, Martino LE, Prasad MN. Abandoned mine land reclamation—Challenges and opportunities (holistic approach). In: Bio-geotechnologies for Mine Site Rehabilitation. 2018:3–1. https://doi.org/10.1016/B978-0-12-812986-9.00001-4
  38. 38. Ren NQ, Wang AJ, Zhao YG. Ecology of sulfate-reducing bacteria in anaerobic biotreatment processes. Beijing: SciencePress; 2009:132–3.
  39. 39. Babu PG, Subramanyam P, Sreenivasulu B, Paramageetham C. Isolation and identification of sulfate reducing bacterial strains indigenous to sulphur rich barite mines. Int J Curr Microbiol Appl Sci. 2014;3(7):788–93. http://www.ijcmas.com/vol-3-7/G.Prasada%20Babu,%20et%20al.pdf
  40. 40. Hansen TA. Carbon metabolism of sulfate-reducing bacteria. In: The Sulfate-Reducing Bacteria: Contemporary Perspectives. New York: Springer; 1993:21–40. https://doi.org/10.1007/978-1-4613-9263-7_2
  41. 41. Sass A, Rütters H, Cypionka H, Sass H. Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides. Arch Microbiol. 2002;177:468–74. https://doi.org/10.1007/s00203-002-0415-5
  42. 42. Bak F, Pfennig N. Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol. 1987;147(2):184–9. https://doi.org/10.1007/BF00415282
  43. 43. Reeburgh WS. Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett. 1976;28(3):337–44. https://doi.org/10.1016/0012-821X(76)90195-3
  44. 44. Badziong W, Thauer RK, Zeikus JG. Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol. 1978;116:41–9. https://doi.org/10.1007/BF00408732
  45. 45. Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics and regulation. Appl Environ Microbiol. 1994;60(1):291–7. https://doi.org/10.1128/aem.60.1.291-297.1994
  46. 46. Moloantoa K, Khetsha Z, Mochane M, Unuofin J, Atangana A, Cason E, et al. Evaluating the effects of pH and temperature on sulphate-reducing bacteria and modelling of their effects in stirred bioreactors. Environ Pollut Bioavailab. 2023;35(1):225–388. https://doi.org/10.1080/26395940.2023.2257388
  47. 47. Sharma K, Derlon N, Hu S, Yuan Z. Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm. Water Res. 2014;49:175–85. https://doi.org/10.1016/j.watres.2013.11.019
  48. 48. Janyasuthiwong S, Rene ER, Esposito G, Lens PN. Effect of pH on the performance of sulfate- and thiosulfate-fed sulfate reducing inverse fluidized bed reactors. J Environ Eng. 2016;142(9):C4015012. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001004
  49. 49. Xu YN, Chen Y. Advances in heavy metal removal by sulfate-reducing bacteria. Water Sci Technol. 2020;81(9):1797–827. https://doi.org/10.2166/wst.2020.227
  50. 50. Nancucheo I, johnson DB. Removal of sulfate from extremely acidic mine waters using low pH sulfidogenic bioreactors. Hydrometallurgy. 2014;150:222–6. https://doi.org/10.1016/j.hydromet.2014.04.025
  51. 51. Mukwevho MJ, Maharajh D, Chirwa EM. Evaluating the effect of pH, temperature and hydraulic retention time on biological sulphate reduction using response surface methodology. Water. 2020;12(10):2662. https://doi.org/10.3390/w12102662
  52. 52. Hart OE, Halden RU. Modeling wastewater temperature and attenuation of sewage-borne biomarkers globally. Water Res. 2020;172:115473. https://doi.org/10.1016/j.watres.2020.115473
  53. 53. Hao TW, Xiang PY, Mackey HR, Chi K, Lu H, Chui HK, et al. A review of biological sulfate conversions in wastewater treatment. Water Res. 2014;65:1–21. https://doi.org/10.1016/j.watres.2014.06.043
  54. 54. Krukenberg V, Harding K, Richter M, Glöckner FO, Gruber-Vodicka HR, Adam B, et al. Candidatus Desulfofervidus auxilii, a hydrogenotrophic sulfate-reducing bacterium involved in the thermophilic anaerobic oxidation of methane. Environ Microbiol. 2016;18(9):3073–91. https://doi.org/10.1111/1462-2920.13283
  55. 55. Nielsen G, Hatam I, Abuan KA, Janin A, Coudert L, Blais JF, et al. Semi-passive in-situ pilot scale bioreactor successfully removed sulfate and metals from mine impacted water under subarctic climatic conditions. Water Res. 2018;140:268–79. https://doi.org/10.1016/j.watres.2018.04.035
  56. 56. Vinçon-Laugier A, Cravo-Laureau C, Mitteau I, Grossi V. Temperature-dependent alkyl glycerol ether lipid composition of mesophilic and thermophilic sulfate-reducing bacteria. Front Microbiol. 2017;8:1532. https://doi.org/10.3389/fmicb.2017.01532
  57. 57. Kieu TQ, Nguyen TY, Dang TY, Nguyen TB, Vuong TN, Horn H. Optimization of sulfide production by an indigenous consortium of sulfate-reducing bacteria for the treatment of lead-contaminated wastewater. Bioprocess Biosyst Eng. 2015;38:2003–11. https://doi.org/10.1007/s00449-015-1441-4
  58. 58. Van den Brand TP, Roest K, Chen GH, Brdjanovic D, van Loosdrecht MC. Effects of chemical oxygen demand, nutrients and salinity on sulfate-reducing bacteria. Environ Eng Sci. 2015;32(10):858–64. https://doi.org/10.1089/ees.2014.0307
  59. 59. Kushkevych I, Dordević D, Vítězová M. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Arch Microbiol. 2019;201:389–97. https://doi.org/10.1007/s00203-019-01625-z
  60. 60. Lu X, Zhen G, Ni J, Hojo T, Kubota K, Li YY. Effect of influent COD/SO₄²⁻ ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor. Bioresour Technol. 2016;214:175–83. https://doi.org/10.1016/j.biortech.2016.04.100
  61. 61. Lens PN, Visser A, Janssen AJ, Pol LH, Lettinga G. Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol. 1998;28(1):41–88. https://doi.org/10.1080/10643389891254160
  62. 62. Chanda C, Gogoi M, Mukherjee I, Ray Chaudhuri S. Minimal medium optimization for soluble sulfate removal by tailor-made sulfate reducing bacterial consortium. Bioremediation J. 2020;24(4):251–64. https://doi.org/10.1080/10889868.2020.1811633
  63. 63. Habe H, Sato Y, Aoyagi T, Inaba T, Hori T, Hamai T, et al. Design, application and microbiome of sulfate-reducing bioreactors for treatment of mining-influenced water. Appl Microbiol Biotechnol. 2020;104:6893–903. https://doi.org/10.1007/s00253-020-10737-2
  64. 64. Nghiem LD, Manassa P, Dawson M, Fitzgerald SK. Oxidation reduction potential as a parameter to regulate micro-oxygen injection into anaerobic digester for reducing hydrogen sulphide concentration in biogas. Bioresour Technol. 2014;173:443–7. https://doi.org/10.1016/j.biortech.2014.09.052
  65. 65. Wellinger L, Linberg A. Biogas upgrading and utilization-IEA Bioenergy Task 24. International Energy Association, Paris, France; 2000.
  66. 66. Wang M, Zhu J, Mao X. Removal of pathogens in onsite wastewater treatment systems: a review of design considerations and influencing factors. Water. 2021;13(9):119. https://doi.org/10.3390/w13091190
  67. 67. van den Brand T, Snip L, Palmen L, Weij P, Sipma J, van Loosdrecht M. Sulfate reducing bacteria applied to domestic wastewater. Water Pract Technol. 2018;13(3):542–54. https://doi.org/10.2166/wpt.2018.068
  68. 68. Zhou Q, Chen Y, Yang M, Li W, Deng L. Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper–iron bimetallic particles support. Bioresour Technol. 2013;136:413–7. https://doi.org/10.1016/j.biortech.2013.03.047
  69. 69. Barbosa LD, Costa PF, Bertolino SM, Silva JC, Guerra-Sá R, Leão VA, et al. Nickel, manganese and copper removal by a mixed consortium of sulfate reducing bacteria at a high COD/sulfate ratio. World J Microbiol Biotechnol. 2014;30:2171–80. https://doi.org/10.1007/s11274-013-1592-x
  70. 70. Zhang D, Wang J, Zhao J, Cai Y, Lin Q. Comparative study of nickel removal from synthetic wastewater by a sulfate-reducing bacteria filter and a zero valent iron—sulfate-reducing bacteria filter. Geomicrobiol J. 2016;33(3–4):318–24. https://doi.org/10.1080/01490451.2015.1052116
  71. 71. Wang J, Hong Y, Lin Z, Zhu C, Da J, Chen G, et al. A novel biological sulfur reduction process for mercury-contaminated wastewater treatment. Water Res. 2019;160:288–95. https://doi.org/10.1016/j.watres.2019.05.066
  72. 72. Li X, Fan M, Liu L, Chang J, Zhang J. Treatment of high-concentration chromium-containing wastewater by sulfate-reducing bacteria acclimated with ethanol. Water Sci Technol. 2019;80(12):2362–72. https://doi.org/10.2166/wst.2020.057
  73. 73. Peng W, Li X, Liu T, Liu Y, Ren J, Liang D, et al. Biostabilization of cadmium contaminated sediments using indigenous sulfate reducing bacteria: efficiency and process. Chemosphere. 2018;201:697–707. https://doi.org/10.1016/j.chemosphere.2018.02.182
  74. 74. Liu F, Zhang G, Liu S, Fu Z, Chen J, Ma C. Bioremoval of arsenic and antimony from wastewater by a mixed culture of sulfate-reducing bacteria using lactate and ethanol as carbon sources. Int Biodeterior Biodegrad. 2018;126:152–9. https://doi.org/10.1016/j.ibiod.2017.10.011
  75. 75. Lee CS, Lee SA, Ko SR, Oh HM, Ahn CY. Effects of photoperiod on nutrient removal, biomass production and algal-bacterial population dynamics in lab-scale photobioreactors treating municipal wastewater. Water Res. 2015;68:680–91. https://doi.org/10.1016/j.watres.2014.10.029
  76. 76. Cruz H, Luckman P, Seviour T, Verstraete W, Laycock B, Pikaar I. Rapid removal of ammonium from domestic wastewater using polymer hydrogels. Sci Rep. 2018;8(1):2912. https://doi.org/10.1038/s41598-018-21204-4
  77. 77. Omar A, Almomani F, Qiblawey H, Rasool K. Advances in nitrogen-rich wastewater treatment: a comprehensive review of modern technologies. Sustainability. 2024;16(5):2112. https://doi.org/10.3390/su16052112
  78. 78. Morello R, Di Capua F, Esposito G, Pirozzi F, Fratino U, Spasiano D. Sludge minimization in mainstream wastewater treatment: mechanisms, strategies, technologies and current development. J Environ Manag. 2022;319:115756. https://doi.org/10.1016/j.jenvman.2022.115756
  79. 79. Di Capua F, Adani F, Pirozzi F, Esposito G, Giordano A. Air side-stream ammonia stripping in a thin film evaporator coupled to high-solid anaerobic digestion of sewage sludge: process performance and interactions. J Environ Manag. 2021;295:113075. https://doi.org/10.1016/j.jenvman.2021.113075
  80. 80. Giordano A, Di Capua F, Esposito G, Pirozzi F. Long-term biogas desulfurization under different microaerobic conditions in full-scale thermophilic digesters co-digesting high-solid sewage sludge. Int Biodeter Biodegrad. 2019;142:131-6. https://doi.org/10.1016/j.ibiod.2019.05.017
  81. 81. Deng QG, Liu M, Cui X, Wen J. A study of hydrogen sulfide genesis in coal mine of southeastern margin of Junggar basin. J Earth Sci Front. 2017;24(5):395-401. https://doi.org/10.15666/AEER/1701_683697
  82. 82. Engelbrektson A, Hubbard CG, Tom LM, Boussina A, Jin YT, Wong H, et al. Inhibition of microbial sulfate reduction in a flow-through column system by (per)chlorate treatment. Front Microbiol. 2014;5:315. https://doi.org/10.3389/fmicb.2014.00315
  83. 83. Okpala GN, Voordouw G. Comparison of nitrate and perchlorate in controlling sulfidogenesis in heavy oil-containing bioreactors. Front Microbiol. 2018;9:2423. https://doi.org/10.3389/fmicb.2018.02423
  84. 84. Okoro CC. The biocidal efficacy of chlorine dioxide (ClO₂) in the control of oil field reservoir souring and bio-corrosion in the oil and gas industries. Pet Sci Technol. 2015;33(2):170-7. https://doi.org/10.1080/10916466.2014.908913
  85. 85. Li Y, Wu X, Wang Y, Gao Y, Li K. A microbial flora with superior pollutant removal efficiency and its fermentation process optimization. AMB Express. 2023;13(1):113. https://doi.org/10.1186/s13568-023-01604-0
  86. 86. Cao Z, Yan W, Ding M, Yuan Y. Construction of microbial consortia for microbial degradation of complex compounds. Front Bioeng Biotechnol. 2022;10:1051233. https://doi.org/10.3389/fbioe.2022.1051233
  87. 87. Ismail M, Yahaya N, Bakar AA, Noor NN. Cultivation of sulphate reducing bacteria in different media. Malays J Civ Eng. 2014;26(3). https://doi.org/10.11113/mjce.v26.15903
  88. 88. Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev. 2002;66(3):506–77. https://doi.org/10.1128/MMBR.66.3.506-577.2002
  89. 89. Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008;6(6):441–54. https://doi.org/10.1038/nrmicro1892
  90. 90. Schink B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek. 2002;81:257–61.
  91. 91. Novair SB, Biglari Z, Lajayer BA, Shu W, Price GW. The role of sulphate-reducing bacteria (SRB) in bioremediation of sulphate-rich wastewater: focus on the source of electron donors. Process Saf Environ Prot. 2024;184:190–207. https://doi.org/10.1016/j.psep.2024.01.103
  92. 92. Sánchez-Andrea I, Sanz JL, Bijmans MF, Stams AJ. Sulfate reduction at low pH to remediate acid mine drainage. J Hazard Mater. 2014;269:98–109. https://doi.org/10.1016/j.jhazmat.2013.12.032
  93. 93. Johnson DB, Sánchez-Andrea I. Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery. Adv Microb Physiol. 2019;75:205–31. https://doi.org/10.1016/bs.ampbs.2019.07.002
  94. 94. Bounaga A, Alsanea A, Lyamlouli K, Zhou C, Zeroual Y, Boulif R, et al. Microbial transformations by sulfur bacteria can recover value from phosphogypsum: a global problem and a possible solution. Biotechnol Adv. 2022;57:107949. https://doi.org/10.1016/j.biotechadv.2022.107949
  95. 95. Melgaço LA, Quites NC, Leão VA. Phosphogypsum as sulfate source for sulphate-reducing bacteria in a continuous fluidized-bed reactor. Eng Sanit Ambient. 2020;25:157–65. https://doi.org/10.1590/s1413-4152202020180007

Downloads

Download data is not yet available.