Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Assessing the effect of various nutrient management practices on Mungbean (Vigna radiata) production in Guava (Psidium guajava) based agri-horti system

DOI
https://doi.org/10.14719/pst.7712
Submitted
12 February 2025
Published
01-08-2025
Versions

Abstract

The field experiment was conducted in the Kharif season spanning 2022-23 to determine the most effective nutrient management practice via foliar application in Mungbean (Vigna radiata L.) in a guava (Psidium guajava L.) cv. Lalit based agri-horti system. The studies were conducted at Agroforestry Research Farm, Banaras Hindu University campus in Randomized Block Design (RBD) with ten treatments and three replications. The guava fruit orchard of size 7x7 m was established in 2007. The orchard had an average height of 5.85 m, canopy diameter of 5.60 m, stem girth of 0.97 cm and crown length of 4.93 m. Mungbean cv. Samrat, a short duration (60-65 days) and yellow mosaic virus resistant variety were used for the study. The plot size was 9 m2 (gross) and 4.80 m2 (net) with an inter-row spacing of 30 cm and an intra-row spacing of 10 cm. The seeds were sown at the rate of 15 kg ha-1. The plants were raised till 64 days and the treatments with different concentrations of recommended fertilizer foliar were given when most of the (80 %) pods turned brown. The results revealed that treatment T₁₀ in which recommended fertilizer dose (18:48:24 kg ha-1 N:P₂O₅: K₂O) along with foliar applications of Nano urea (4 mL L-1), 0.5 % ZnSO₄ and 0.2 % Boron at pre-flowering and pod development stages gave high yield. The plants subjected to this treatment showed significantly low mortality but increased plant height, branching, leaf production, yield and improved economic returns (gross return, net return and benefit-cost ratio). The second most effective treatment was T₉ in which recommended fertilizer dose was supplemented with 0.5 % ZnSO₄ and 0.2 % boron applied twice, at pre-flowering and pod development stages. Integrating optimized fertilization and foliar nutrient applications to enhance mungbean yield while maintaining sustainable practices in agri-horti systems.

References

  1. 1. Nair PKR, Garrity D, editors. Agroforestry - the future of global land use. Dordrecht: Springer; 2012. https://doi.org/10.1007/978-94-007-4676-3
  2. 2. Meijer SS, Catacutan D, Ajayi OC, Sileshi GW, Nieuwenhuis M. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int J Agric Sustain. 2014;13(1):40–54. https://doi.org/10.1080/14735903.2014.912493
  3. 3. Beyene AD, Mekonnen A, Randall B, Deribe R. Household level determinants of agroforestry practices adoption in Rural Ethiopia. For Trees Livelihoods. 2019;28:194–213. https://doi.org/10.1080/14728028.2019.1620137
  4. 4. Kinyili BM, Ndunda E, Kitur E. Agroforestry stand age influence physical and chemical soil parameters. Trees For People. 2024;18:100694. https://doi.org/10.1016/j.tfp.2024.100694
  5. 5. Fisher J, Zerger A, Gibbons P, Stott J, Law BS. Tree decline and the future of Australian farmland biodiversity. Proc Natl Acad Sci U S A. 2010;107:19597–602. https://doi.org/10.1073/pnas.1008476107
  6. 6. Nerlich K, Graeff-Honninger S, Claupein W. Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agroforest Syst. 2013;87:475–92. https://doi.org/10.1007/s10457-012-9560-2
  7. 7. Fleming A, O’Grady AP, Mendham D, England J, Mitchell P, Moroni M, Lyons A. Understanding the values behind farmer perceptions of trees on farms to increase adoption of agroforestry in Australia. Agron Sustain Dev. 2019;39:9. https://doi.org/10.1007/s13593-019-0555-5
  8. 8. Tsonkova P, Bohm C, Quinkenstein A, Freese D. Ecological benefits provided by alley cropping systems for production of woody biomass in the temperate region: a review. Agroforest Syst. 2012;85:133–52. https://doi.org/10.1007/s10457-012-9494-8
  9. 9. Wolz JK, DeLucia EH. Alley cropping: global patterns of species composition and function. Agric Ecosyst Environ. 2018;252:61–8. https://doi.org/10.1016/j.agee.2017.10.005
  10. 10. Belete T, Yadete E. Effect of mono cropping on soil health and fertility management for sustainable agriculture practices: a review. J Plant Sci. 2023;11(6):192–7. https://doi.org/10.11648/j.jps.20231106.13
  11. 11. Akdemir E, Anderson SH, Udawatta RP. Influence of agroforestry buffers on soil hydraulic properties relative to row crop management. Soil Sci. 2016;181:368–76. https://doi.org/10.1097/SS.0000000000000170
  12. 12. Liu C, Jin Y, Liu C, Tang J, Wang Q, Xu M. Phosphorous fractions in soils of rubber-based agroforestry systems: influence of season, management and stand age. Sci Total Environ. 2018;616:1576–88. https://doi.org/10.1016/j.scitotenv.2017.10.156
  13. 13. Feliciano D, Ledo A, Hillier J, Nayak DR. Which agroforestry options give the greatest soil and above ground carbon benefits in different world regions? Agric Ecosyst Environ. 2018;254:117–29. https://doi.org/10.1016/j.agee.2017.11.032
  14. 14. Kunhamu TK, Aneesh S, Kumar BM, Jamaludheen V, Raj AK, Niyas P. Biomass production, carbon sequestration and nutrient characteristics of 22-year-old support trees in black pepper (Piper nigrum L) production systems in Kerala, India. Agroforest Syst. 2016;90(5):1–13. https://doi.org/10.1007/S10457-016-0054-5
  15. 15. Torralba M, Fagerholm N, Burgess PJ, Moreno G, Plieninger T. Do European agroforestry systems enhance biodiversity and ecosystem services? A meta-analysis. Agric Ecosyst Environ. 2016;230:150–61. https://doi.org/10.1016/j.agee.2016.06.002
  16. 16. Buyer JS, Baligar VC, He Z, Arévalo-Gardini E. Soil microbial communities under cacao agroforestry and cover crop systems in Peru. Appl Soil Ecol. 2017;120:273–80. https://doi.org/10.1016/j.apsoil.2017.09.009
  17. 17. Hasselquist NJ, Benegas L, Roupsard O, Malmer A, Ilstedt U. Canopy cover effects on local soil water dynamics in a tropical agroforestry system: evaporation drives soil water isotopic enrichment. Hydrol Process. 2018;32:994–1004. https://doi.org/10.1002/hyp.11482
  18. 18. Nair PKR, Nair VD, Kumar BM, Showalter JM. Carbon sequestration in agroforestry systems. Adv Agron. 2010;108:237–307. https://doi.org/10.1016/S0065-2113(10)08005-3
  19. 19. Fahad S, Chavan SB, Chichaghare AR, Uthappa AR, Kumar M, Kakade V, et al. Agroforestry systems for soil health improvement and maintenance. Sustainability. 2022;14:14877. https://doi.org/10.3390/su142214877
  20. 20. Kumar V. Multifunctional agroforestry systems in tropics region. Nature Environ Pollut Technol. 2016;15(2):365–76.
  21. 21. Kaushik N, Kumari S, Singh S, Kaushik JC. Productivity and economics of different agri–silvi–horti systems under drip irrigation. Ind J Agric Sci. 2014;84(10):1166–71. https://doi.org/10.56093/ijas.v84i10.44096
  22. 22. Kunhamu TK, Niyas P, Anwar MF, Jamaludheen V, Raj AK. Understorey productivity of selected medicinal herbs in major land management systems in humid tropical Kerala. Ind J Agrofores. 2015;17(2):1–8. https://doi.org/10.56093/ijas.v90i12.110346
  23. 23. Minz SD, Singh AK, Kumar NM, Singh BK. Effect of crop geometry and nitrogen management on growth attributes of pearl millet (Pennisetum glaucum L.) under guava-based agri-horti system. Pharma Innov J. 2021;10(9):2191–5.
  24. 24. Lehmann J, Schroth G. Nutrient leaching. In: Trees, crops and soil fertility. Wallingford: CABI Publishing; 2003:151–66.
  25. 25. El Karamany MF, Sadak MS, Bakry BA. Improving quality and quantity of mungbean plant via foliar application of plant growth regulators in sandy soil conditions. Bull Natl Res Cent. 2019;43(1):1–7. https://doi.org/10.1186/s42269-019-0099-5
  26. 26. Boradkar SG, Adsul PB, Shelke MS, Khule YR. Effect of iron and zinc application on soil properties, nutrient uptake and yield of green gram (Vigna radiata L.) in Inceptisol. Pharma Innov J. 2023;12(3): 1663–9.
  27. 27. Tripathi PK, Singh MK, Singh JP, Singh ON. Effect of rhizobial strains and sulphur nutrition on mungbean (Vigna radiata (L.) Wilczek) cultivars under dryland agro-ecosystem of Indo-Gangetic plain. Afr J Agric Res. 2012;7:34–42. https://doi.org/10.5897/AJAR11.868
  28. 28. Shivran OP, Singh MK, Singh NK. Weed flora dynamics and growth response of green gram (Vigna radiata (L.) R. Wilczek) under varied agri-horti system and weed management practices. J Appl Nat Sci. 2017;9(3):1848–53. https://doi.org/10.31018/jans.v9i3.1451
  29. 29. Chauhan BS, Florentine SK, Ferguson JC, Chechetto RG. Implications of narrow crop row spacing in managing weeds in mungbean (Vigna radiata). Crop Prot. 2017;95:116–9. https://doi.org/10.1016/j.cropro.2016.07.004
  30. 30. Matloob A, Mobli A, Chauhan BS. Suppressive effects of increasing mungbean density on growth and reproduction of jungle rice and feather fingergrass. Sci Rep. 2023;13:5451. https://doi.org/10.1038/s41598-023-32320-1
  31. 31. Hou D, Zhao Q, Yousaf L, Khan J, Xue Y, Shen Q. Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet. J Funct Foods. 2020;64:103687. https://doi.org/10.1016/j.jff.2019.103687
  32. 32. Chauhan K, Singh RS, Pandey SK, Singh P, Chandrakar AK, Kamlesh. Effect of tree leaf mulch on growth and yield of pearl millet (Pennisetum glaucum L.) in guava (Psidium guajava L.) based agri-horti system in Vindhyan region. Plant Arch. 2024;24:393–400. https://doi.org/10.51470/PLANTARCHIVES.2024.v24.SPGABELS.057
  33. 33. Sushma M, Singh JP, Rajpoot SK, Bhushan C, Verma SK, Singh NK, et al. Effect of integrated nutrient management on the growth and yield of yellow sarson (Brassica rapa var. yellow sarson) under guava (Psidium guajava) based agri-horti system. Indian J Agron. 2024;69(3):352–5. https://doi.org/10.59797/ija.v69i3.5535
  34. 34. Srivastava KK, Barman P, Patil P, Kumar D, Sharma NK. Effect of raised bed, mulching and fertigation on productivity and quality of guava (Psidium guajava L.) under high density planting system. J Environ Biol. 2021;42:1387–94. http://doi.org/10.22438/jeb/42/5/MRN-1642
  35. 35. Kumar S, Meena RS, Kumar P, Dadhich R, Singh A. Effect of different spacing and fertilizer levels on yield parameters of mungbean under guava based agri-horti system. J Prog Agric. 2013;4(2):14–6.
  36. 36. Bonanomi G, Chirico GB, Palladino M, Gaglione S, Crispo DG, et al. Combined application of photo-selective mulching films and beneficial microbes affects crop yield and irrigation water productivity in intensive farming systems. Agric Water Manag. 2017;184:104–13. https://doi.org/10.1016/j.agwat.2017.01.011
  37. 37. Ampofo EA. Influence of organic mulches on soil physico-chemical properties and maize (Zea mays L.) crop performance. J Agric Stud. 2018;6(2):1–16. https://doi.org/10.5296/jas.v6i2.12771
  38. 38. El-Beltagi HS, Basit A, Mohamed HI, Ali I, Ullah S, Kamel EAR, et al. Mulching as a sustainable water and soil saving practice in agriculture: a review. Agronomy. 2022;12:1881. https://doi.org/10.3390/agronomy12081881
  39. 39. Kun Á, Simon B, Zalai M, Kolozsvári I, Bozán C, Jancsó M, et al. Effect of mulching on soil quality in an agroforestry system irrigated with reused water. Agronomy. 2023;13:1622. https://doi.org/10.3390/agronomy13061622
  40. 40. Wahidurromdloni F, Budiastuti MTS, Supriyono. Enhancing soybean productivity through agroforestry, organic waste fertilization and mulching: a review about climate change. BIO Web Conf. 2025;155:01021. https://doi.org/10.1051/bioconf/202515501021
  41. 41. Sida TS, Baudron F, Ndoli A, Tirfessa D, Giller KE. Should fertilizer recommendations be adapted to parkland agroforestry systems? Case studies from Ethiopia and Rwanda. Plant Soil. 2019;453:173–88. https://doi.org/10.1007/s11104-019-04271-y
  42. 42. Thoumazeau A, Bessou C, Renevier MS, Trap J, Marichal R, Mareschal L, et al. Biofunctool: A new framework to assess the impact of land management on soil quality: Part A: Concept and validation of the set of indicators. Ecol Indic. 2019;97:100–10. https://doi.org/10.1016/j.ecolind.2018.09.023
  43. 43. Cárceles Rodríguez B, Durán-Zuazo VH, Soriano Rodríguez M, García-Tejero IF, Gálvez Ruiz B, Cuadros Tavira S. Conservation agriculture as a sustainable system for soil health: a review. Soil Syst. 2022;6:87. https://doi.org/10.3390/soilsystems6040087
  44. 44. Dhaliwal SS, Sharma V, Shukla AK, Kaur M, Kaur J, Verma V, et al. Biofortification of mungbean (Vigna radiata L. (Wilczek)) with boron, zinc and iron alters its grain yield and nutrition. Sci Rep. 2023;13(1):3506. https://doi.org/10.1038/s41598-023-30539-6
  45. 45. Saitheja V, Senthivelu M, Prabukumar G, Prasad V. Maximizing the productivity and profitability of summer irrigated greengram (Vigna radiata L.) by combining basal nitrogen dose and foliar nutrition of nano and normal urea. Int J Plant Soil Sci. 2022;34(22):109–16. https://doi.org/10.9734/ijpss/2022/v34i2231362
  46. 46. Praveena R, Ghosh G, Singh V. Effect of foliar spray of boron and different zinc levels on growth and yield of kharif greengram (Vigna radiata). Int J Curr Microbiol Appl Sci. 2018;7(8):1422–8. https://doi.org/10.20546/ijcmas.2018.708.163
  47. 47. Soni J, Kushwaha HS. Effect of foliar spray of zinc and iron on productivity of mungbean [Vigna radiata (L.) Wilczek]. J Pharmacogn Phytochem. 2020;9(1):108–11.
  48. 48. Haider MU, Farooq M, Nawaz A, Hussain M. Foliage applied zinc ensures better growth, yield and grain biofortification of mungbean. Int J Agric Biol. 2018;20(12):2817–22. https://doi.org/10.17957/IJAB/15.0840
  49. 49. slam MZA, Alim SMA, Hoque MM, Islam MM, Adhikary S. Effect of nano urea foliar spray on yield and yield attributes of black gram (Vigna mungo L.). J Agrofor Environ. 2023;16(1):64–6. https://doi.org/10.55706/jae1609
  50. 50. Adhithya G, Siddarju R, Ramanapa TM, Mahadevu P, Vishwanath K, Sowjanya S, et al. Response of popular varieties on foliar application of micronutrients on growth, seed yield and quality in greengram. Int J Environ Clim Change. 2022;12(10):290–304. https://doi.org/10.9734/ijecc/2022/v12i1030798
  51. 51. Kiruthika K, Hemalatha M, Dhamodharan P, Tamilarasan C. Impact of foliar micronutrients on growth and yield of blackgram: a review. Int J Res Agron. 2024;7(12):210–6. https://doi.org/10.33545/2618060X.2024.v7.i12c.2133
  52. 52. Adhithya G, Siddarju R, Ramanapa TM, Mahadevu P, Vishwanath K, Sowjanya S, et al. Response of popular varieties on foliar application of micronutrients on growth, seed yield and quality in greengram. Int J Environ Clim Change. 2022;12(10):290–304. https://doi.org/10.9734/ijecc/2022/v12i1030798
  53. 53. Abdo FA. The response of two mungbean cultivars to zinc, manganese and boron I. Morphological, physiological and anatomical aspects. Bull Fac Agric Cairo Univ. 2001;52(3):445–66.
  54. 54. Pandey N, Gupta B. The impact of foliar boron sprays on reproductive biology and seed quality of black gram. J Trace Elem Med Biol. 2013;27(1):58–64. https://doi.org/10.1016/j.jtemb.2012.07.003
  55. 55. Zafar M, Ahmed S, Munir MK, Zafar N, Saqib M, Sarwar MA, et al. Application of zinc, iron and boron enhances productivity and grain biofortification of mungbean. Phyton. 2023;92(4):983–99. https://doi.org/10.32604/phyton.2023.025813
  56. 56. Debata NM, Satapathy MR, Paikaray RK, Jena SN. Effect of foliar application of nutrients on yield, nutrient uptake and economics of prewinter blackgram (Vigna mungo). Indian J Agron. 2022;67(1):97–100. https://doi.org/10.59797/ija.v67i1.96
  57. 57. Meena D, Bhushan C, Shukla A, Chaudhary S, Semwal MP, Kumar K. Effect of foliar application of nutrients on growth parameter, nutrient content and uptake of urdbean (Vigna mungo L. Hepper). Eco Env Cons. 2016;22(4):537–42.
  58. 58. Elayaraja D, Jawahar S. Influence of zinc and silicon fertilization on the growth, yield and nutrients uptake of blackgram in coastal saline soil. Purakala. 2020;31(26):232–45.
  59. 59. Guo S, Zhou Y, Shen Q, Zhang F. Effect of ammonium and nitrate nutrition on some physiological processes in higher plants - growth, photosynthesis, photorespiration and water relations. Plant Biol. 2007;9(1):21–9. https://doi.org/10.1055/s-2006-924541
  60. 60. Kumari VV, Banerjee P, Verma VC, Sukumaran S, Chandran MAS, Gopinath KA, et al. Plant nutrition: an effective way to alleviate abiotic stress in agricultural crops. Int J Mol Sci. 2022;23(15):8519. https://doi.org/10.3390/ijms23158519
  61. 61. Khan F, Siddique AB, Shabala S, Zhou M, Zhao C. Phosphorus plays key roles in regulating plants' physiological responses to abiotic stresses. Plants (Basel). 2023;12(15):2861. https://doi.org/10.3390/plants12152861
  62. 62. Ashraf MA, Archana HA, Kumar NMR, Iqshanullah MA, Rajasekaran R, Dhinesh KS, et al. Potential foliar chemicals for enhancing yield and drought tolerance in leguminous crops: a review. Legume Res. 2024;47(8):1251–7. https://doi.org/10.18805/LR-5127
  63. 63. Nandhakumar MR, Muthukrishnan R, Nivethadevi P, Kiruthika K, Tamilarasan C. Influence of nano urea on growth yield and nutrient uptake of blackgram. Legume Res. 2024;1–7. https://doi.org/10.18805/LR-5384
  64. 64. Dhaliwal SS, Sharma V, Shukla AK, Kaur M, Kaur J, Verma V, et al. Biofortification of mungbean (Vigna radiata L. (Wilczek)) with boron, zinc and iron alters its grain yield and nutrition. Sci Rep. 2023;13(1):3506. https://doi.org/10.1038/s41598-023-30539-6
  65. 65. Reza MS, Adhikary S, Mandal MMA, Nadim MKA, Akter MB. Foliar application of different levels of zinc and boron on the growth and yield of mungbean (Vigna radiata L.). Turk J Agric Food Sci Technol. 2023;11(8):1415–21. https://doi.org/10.24925/turjaf.v11i8.1415-1421.6107
  66. 66. Ramesh T, Rathika S, Nandhini DU, Jagadeesan R. Effect of organic foliar nutrition on performance and production potential of mungbean [Vigna radiata L.]. Legume Res. 2024;47(6):984–9. https://doi.org/10.18805/LR-5081
  67. 67. Saini L, Kumar P, Upadhyay H. Zinc and boron foliar application effects on primed mung bean (Vigna radiata L.) growth and productivity. Nature Environ Pollut Technol. 2024;23(3):1407–18. https://doi.org/10.46488/NEPT.2024.v23i03.012

Downloads

Download data is not yet available.