Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Direct mechanism of PGPR for promoting plant growth: Current perspective

DOI
https://doi.org/10.14719/pst.7748
Submitted
15 February 2025
Published
24-07-2025 — Updated on 01-08-2025
Versions

Abstract

PGPR, a plant growth-promoting rhizobacterium in the rhizosphere, stimulates growth and development through various mechanisms such as mineral nutrient availability, phytohormone regulation and phytopathogen control. PGPR inoculant’s establishment, survival and persistence depend on these characteristics and a complex chain of interactions in the rhizosphere. Soil is a damp habitat containing decomposed carbon and abundant microorganisms. Agriculture relies heavily on the rhizo-microbiome, as root exudates and plant cell detritus create specific microbial colonization patterns. Secondary metabolites, antibiotics, hormones and signalling chemicals are the extracellular molecules produced and regulated by the rhizomicrobiome. The microbial composition of rhizomes affects soil texture. Research indicates that PGPR inoculates plants, promotes their growth and development. PGPR modifies plant physiology and improves nutrient intake and root activity. The plant biochemical pathways that contribute to this phenomenon are not yet fully understood. New research has revealed how PGPR signaling triggers plant responses at both local and systemic levels. There is limited understanding of how PGPR mechanisms and chemicals affect metabolic pathways in the roots. This review focuses on understanding the PGPR mechanism and the chemicals that affect root-microbe interactions.

References

  1. 1. Hartman K, Tringe SG. Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochem J. 2019;476(19):2705–24. https://doi.org/10.1042/BCJ20180615
  2. 2. Salwan R, Sharma M, Sharma A, Sharma V. Insights into plant beneficial microorganism-triggered induced systemic resistance. Plant Stress. 2019;7:100140. https://doi.org/10.1016/j.stress.2023.100140
  3. 3. Bakker PA, Berendsen RL, Doornbos RF, Wintermans PC, Pieterse CM. The rhizosphere revisited: root microbiomics. Front Plant Sci. 2013;4:165. https://doi.org/10.3389/fpls.2013.00165
  4. 4. Fazeli-Nasab B, Piri R, Rahmani AF. Assessment of the role of rhizosphere in soil and its relationship with microorganisms and element absorption. Plant Prot Chem Biol. 2022;225. http:// doi.org/10.1515/9783110771558-010
  5. 5. Ayilara MS, Adeleke BS, Babalola OO. Bioprospecting and challenges of plant microbiome research for sustainable agriculture, a review on soybean endophytic bacteria. Microbiol Ecol. 2022;85:1113–35. https://doi.org/10.1007/s00248-022-02136-z
  6. 6. Jafari M, Tahmoures M, Ehteram M, Ghorbani M, Panahi F. The role of vegetation in confronting erosion and degradation of soil and land. In: Jafari M, Tahmoures M, Ehteram M, Ghorbani M, Panahi F, editors. Soil erosion control in drylands. Springer; 2022:33–141. http:// doi.org/10.1007/978-3-031-04859-3_2
  7. 7. Bazany KE, Wang JT, Delgado-Baquerizo M, Singh BK, Trivedi P. Water deficit affects inter-kingdom microbial connections in plant rhizosphere. Environ Microbiol. 2022;24:3722–34. https://doi.org/10.1111/1462-2920.16031
  8. 8. Khoso MA, Wagan S, Alam I, Hussain A, Ali Q, Saha S, et al. Impact of plant growth-promoting rhizobacteria (PGPR) on plant nutrition and root characteristics: current perspective. Plant Stress. 2024;11:100341. https://doi.org/10.1016/j.stress.2023.100341
  9. 9. Kaur J, Pandove G. Understanding the beneficial interaction of plant growth promoting rhizobacteria and endophytic bacteria for sustainable agriculture: A bio-revolution approach. J Plant Nutr. 2023;1–29. http://doi.org/10.1080/01904167.2023.2206425
  10. 10. Upadhyay SK, Rajput VD, Kumari A, Saiz DE, Menendez E, Minkina T, et al. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. Environ Geochem Health. 2023;45(12):9321–44. https://doi.org/10.1007/s10653-022-01433-3
  11. 11. Astapati AD, Nath S. The complex interplay between plant-microbe and virus interactions in sustainable agriculture: harnessing phytomicrobiomes for enhanced soil health, designer plants, resource use efficiency and food security. Crop Des. 2023;2(1):100028. https://doi.org/10.1016/j.cropd.2023.100028
  12. 12. Goss MJ, Carvalho M, Brito I, Alho L, Kadir S. Impacts on host plants of interactions between AMF and other soil organisms in the rhizosphere. 2017;81–109. http://doi.org/10.1016/B978-0-12-804244-1.00005-8
  13. 13. Sharma M, Bhardwaj R, Saran M, Prajapat RK, Sharma D, Mathur M. Secondary metabolites and bioprospecting. In: Mawar R, Sayyed RZ, editors. Plant growth promoting microorganisms of arid region. Springer; 2023:229–55. http://doi.org/10.1007/978-981-19-4124-5_12
  14. 14. Weemstra M, Valverde-Barrantes OJ, McCormack ML, Kong D. Root traits and functioning: from individual plants to ecosystems. 2022. http://doi.org/10.1111/oik.09924
  15. 15. Liu Q, Wu K, Song W, Zhong N, Wu Y, Fu X. Improving crop nitrogen use efficiency toward sustainable green revolution. Annu Rev Plant Biol. 2022;73(1):523–51. https://doi.org/10.1146/annurev-arplant-070121-015752
  16. 16. Mashabela MD, Piater LA, Dubery IA, Tugizimana F, Mhlongo MI. Rhizosphere tripartite interactions and PGPR-mediated metabolic reprogramming towards ISR and plant priming: a metabolomics review. Biology. 2022;11(3):346. https://doi.org/10.3390/biology11030346
  17. 17. Naz R, Asif T, Mubeen S, Khushhal S. Seed application with microbial inoculants for enhanced plant growth. In: Seymen M, Kurtar ES, Erdinc C, Kumar A, editors. Sustainable horticulture: microbial inoculants and stress interaction. Academic Press; 2022:333–68. http://doi.org/10.1016/B978-0-323-91861-9.00008-2
  18. 18. Pandita D. Plant growth-promoting bacteria (PGPB): applications and challenges in bioremediation of metal and metalloid contaminated soils. In: Aftab T, Hakeem K, editors. Metals metalloids soil plant water systems: Phytophysiology and remediation techniques. 2022;485-500. http://doi.org/10.1016/B978-0-323-91675-2.00002-0
  19. 19. Kumawat KC, Singh I, Nagpal S, Sharma P, Gupta RK, Sirari A. Co-inoculation of indigenous Pseudomonas oryzihabitans and Bradyrhizobium sp. modulates the growth, symbiotic efficacy, nutrient acquisition and grain yield of soybean. Pedosphere. 2022;32:438-51. http://doi.org/10.1016/S1002-0160(21)60085-1
  20. 20. Bortoloti GA, Baron D. Phytoremediation of toxic heavy metals by brassica plants: a biochemical and physiological approach. Environ Adv. 2022;8:100204. https://doi.org/10.1016/j.envadv.2022.100204
  21. 21. Dasgupta D, Paul A, Acharya K, Minkina T, Mandzhieva S, Gorovtsov AV, et al. Bioinoculant-mediated regulation of signalling cascades in various stress responses in plants. Heliyon. 2023;9(1):e12953. https://doi.org/10.1016/j.heliyon.2023.e12953
  22. 22. Dhole AM, Shelat HN, Patel HK, Jhala YK. Evaluation of the co-inoculation effect of Rhizobium and plant growth promoting non-rhizobial endophytes on Vigna radiata. Curr Microbiol. 2023;80(5):167. http://doi.org/10.1007/s00284-023-03266-4
  23. 23. Jampílek J, Králová K. Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng. 2015;22(3):321. http://doi.org/10.1515/eces-2015-0018
  24. 24. Velasco-Jimenez A, Castellanos-Hernandez O, Acevedo-Hernandez G, Aarland RC, Rodríguez-Sahagún A. Rhizospheric bacteria with potential benefits in agriculture. Adv Agri Mod. 2022;3(1):1-17. http://doi.org/10.54517/ama.v3i1.2040
  25. 25. Benizri E, Lopez S, Durand A, Kidd PS. Diversity and role of endophytic and rhizosphere microbes associated with hyperaccumulator plants during metal accumulation. In: van der Ent A, Baker AJM, Echevarria G, Simonnot M, Morel JL, editors. Agromining farming for metals: extracting unconventional resources using plants. 2021;239-79. http://doi.org/10.1007/978-3-030-58904-2_12
  26. 26. Mudgal V, Raninga M, Patel D, Ankoliya D, Mudgal A. A review on phytoremediation: sustainable method for removal of heavy metals. Mater Today Proc. 2022;77:201-8. http://doi.org/10.1016/j.matpr.2022.11.261
  27. 27. Noman M, Ahmed T, Shahid M, Niazi MB, Qasim M, Kouadri F, et al. Biogenic copper nanoparticles produced by using the Klebsiella pneumoniae strain NST2 curtailed salt stress effects in maize by modulating the cellular oxidative repair mechanisms. Ecotoxicol Environ Saf. 2021;217:112264. https://doi.org/10.1016/j.ecoenv.2021.112264
  28. 28. Lyu D, Backer R, Smith DL. Three plant growth-promoting rhizobacteria alter morphological development, physiology and flower yield of Cannabis sativa L. Ind Crops Prod. 2022;178:114583. http://doi.org/10.1016/j.indcrop.2022.114583
  29. 29. Boyer H. Effectiveness of mycorrhizae and vermiculture seed inoculation for germination, vegetative growth, cannabinoid content and cured flower weight of CBD-rich hemp (Cannabis sativa L.). 2023;1:60. https://doi.org/10.61611/2688-5182.1021
  30. 30. Peng J, Ma J, Wei X, Zhang C, Jia N, Wang X, et al. Accumulation of beneficial bacteria in the rhizosphere of maize (Zea mays L.) grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria. Ann Microbiol. 2021;71:1-12. https://doi.org/10.1186/s13213-021-01650-8
  31. 31. Vora SM, Joshi P, Belwalkar M, Archana G. Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea-maize intercropping system. Rhizosphere. 2021;18:100331. http://doi.org/10.1016/j.rhisph.2021.100331
  32. 32. Ramírez-Carino HF, Morales I, Guadarrama-Mendoza PC, González-Terreros E, Martínez-Gutiérrez GA, Dunlap CA, et al. Biofertilizing effect of putative plant growth promoting rhizobacteria in vitro and in tomatillo seedlings (Physalis ixocarpa Brot.). Sci Hortic. 2023;308:111567. http://doi.org/10.1016/j.scienta.2022.111567
  33. 33. Farhaoui A, Adadi A, Tahiri A, El Alami N, Khayi S, Mentag R, et al. Biocontrol potential of plant growth-promoting rhizobacteria (PGPR) against Sclerotiorum rolfsii diseases on sugar beet (Beta vulgaris L.). Physiol Mol Plant Pathol. 2022;119:101829. https://doi.org/10.1016/j.pmpp.2022.101829
  34. 34. Jalal A, da Silva Oliveira CE, Galindo FS, Rosa PA, Gato IM, de Lima BH, et al. Regulatory mechanisms of plant growth-promoting rhizobacteria and plant nutrition against abiotic stresses in Brassicaceae family. Life. 2023;13(1):211. https://doi.org/10.3390/life13010211
  35. 35. Mccully M, Harper J, An M, Wu H, Kent JH. The rhizosphere: the key functional unit in plant/soil/microbial interactions in the field. Implications for the understanding of allelopathic effects. In: Proceedings of the 4th World Congress on Allelopathy, "Establishing the Scientific Base". 2005:43-9.
  36. 36. Jha CK, Saraf M. Plant growth promoting rhizobacteria (PGPR): a review. J Agric Res Dev. 2015;5:108-19. http://doi.org/10.13140/RG.2.1.5171.2164
  37. 37. Kloepper JW, Schroth MN. Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the IV International Conference on Plant Pathogenic Bacteria. France; 1978:879-82. https://www.researchgate.net/publication/284682983
  38. 38. Bhat BA, Tariq L, Nissar S, et al. The role of plant-associated rhizobacteria in plant growth, biocontrol and abiotic stress management. J Appl Microbiol. 2022;133:2717-41. https://doi.org/10.1111/jam.15796
  39. 39. Saghafi D, Ghorbanpour M, Shirafkan Ajirloo H, Asgari Lajayer B. Enhancement of growth and salt tolerance in Brassica napus L. seedlings by halotolerant Rhizobium strains containing ACC-deaminase activity. Plant Physiol Rep. 2019;24:225-35. http://doi.org/10.1007/s40502-019-00444-0
  40. 40. Sulieman S. Complex dynamics and synchronization of N-feedback and C alteration in the nodules of Medicago truncatula under abundant N or sub-optimal P supply. In: The model legume Medicago truncatula. 2019:674-80. http://doi.org/10.1002/9781119409144.ch83
  41. 41. Tafaroji SH, Abtahi A, Jafarinia M, Ebadi M. The effect of plant growth-promoting rhizobacteria producing ACC-deaminase, IAA, siderophore and phosphate solubilization on growth indices, chlorophyll, proline and protein in alfalfa at different levels of salinity. Plant Prod. 2022;45. https://doi.org/10.22055/ppd.2022.40265.2018
  42. 42. Hawkins JP, Oresnik IJ. The Rhizobium-legume symbiosis: co-opting successful stress management. Front Plant Sci. 2022;3:796045. https://doi.org/10.3389/fpls.2021.796045
  43. 43. Zahran HH. Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol. 2001;91(2):143-53. https://doi.org/10.1016/s0168-1656(01)00342-x
  44. 44. Yasuda M, Dastogeer KMG, Sarkodee-Addo E, Tokiwa C, Isawa T, Shinozaki S, et al. Impact of Azospirillum sp. B510 on the rhizosphere microbiome of rice under field conditions. Agronomy. 2022;12:1367. https://doi.org/10.3390/agronomy12061367
  45. 45. Vessey JK. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil. 2003;255(2):571-86. http://doi.org/10.1023/A:1026037216893
  46. 46. Mpanga IK, Office ME, Erratum, et al. The form of N supply determines plant growth promotion by P-solubilizing microorganisms in maize. Microorganisms. 2019;7:38. https://doi.org/10.3390/microorganisms7020038
  47. 47. Ding W, Cong W-F, Lambers H. Plant phosphorus acquisition and use strategies affect soil carbon cycling. Trends Ecol Evol. 2021;36:899-906. https://doi.org/10.1016/j.tree.2021.06.005
  48. 48. Dhole AM, Shelat HN, Patel HK, Jhala YK. Evaluation of the co-inoculation effect of Rhizobium and plant growth promoting non-rhizobial endophytes on Vigna radiata. Curr Microbiol. 2023;80:167. https://doi.org/10.1007/s00284-023-03266-4
  49. 49. Díaz M, Bach T, Anta GG, et al. Agronomic efficiency and genome mining analysis of the wheat-biostimulant rhizospheric bacterium Pseudomonas pergaminensis sp. nov. strain 1008T. Front Plant Sci. 2022;13. https://doi.org/10.3389/fpls.2022.894985
  50. 50. Tang A, Haruna AO, Majid NMA, Jalloh MB. Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms. 2020;8:442. https://doi.org/10.3390/microorganisms8030442
  51. 51. Yadav M, Dwibedi V, Sharma S, George N. Biogenic silica nanoparticles from agro-waste: properties, mechanism of extraction and applications in environmental sustainability. J Environ Chem Eng. 2022;108550. http://doi.org/10.1016/j.jece.2022.108550
  52. 52. Li L, Wang J, Xu S, Li C, Dong B. Recent progress in fluorescent probes for metal ion detection. Front Chem. 2022:10. https://doi.org/10.3389/fchem.2022.875241
  53. 53. Dhankhar R, Gupta S, Gulati P. Insights on plant-microbe interactions in soil in relation to iron dynamics. Vegetos. 2022:1-18. https://doi.org/10.1007/s42535-022-00467-3
  54. 54. Verma JP, Yadav J, Tiwari KN, Kumar A. Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng. 2013;51:282-6. http://doi.org/10.1016/j.ecoleng.2012.12.022
  55. 55. Tamariz-Angeles C, Huaman GD, Palacios-Robles E, Olivera-Gonzales P, Castaneda-Barreto A. Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal-polluted soil from Callejon de Huaylas (Ancash, Perú). Microbiol Res. 2021;250:126811. https://doi.org/10.1016/j.micres.2021.126811
  56. 56. Ghosh UD, Saha C, Maiti M, Lahiri S, Ghosh S, Seal A, Mitra Ghosh M. Root associated iron-oxidizing bacteria increase phosphate nutrition and influence root to shoot partitioning of iron in tolerant plant Typha angustifolia. Plant Soil. 2014;381:279-95. http://doi.org/10.1007/s11104-014-2085-x
  57. 57. Rubio-Santiago J, Hernandez-Morales A, Rolon-Cardenas GA, et al. Characterization of endophytic bacteria isolated from Typha latifolia and their effect in plants exposed to either Pb or Cd. Plants. 2023;12:498. https://doi.org/10.3390/plants12030498
  58. 58. Viana G, Scharwies W, Dinneny JD. Deconstructing the root system of grasses through an exploration of development, anatomy and function. Plant Cell Environ. 2022;45:602-19. https://doi.org/10.1111/pce.14270
  59. 59. Korínkova N, Fontana IM, Nguyen TD, et al. Enhancing cereal productivity by genetic modification of root architecture. Biotechnol J. 2022;17:2100505. https://doi.org/10.1002/biot.202100505
  60. 60. Nile SH, Thiruvengadam M, Wang Y, et al. Nano-priming as emerging seed priming technology for sustainable agriculture-recent developments and future perspectives. J Nanobiotechnol. 2022;20:1-31. http:// doi.org/10.1186/s12951-022-01423-8
  61. 61. Noori F, Etesami H, Zarini HN, et al. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotoxicol Environ Saf. 2018;162:129–38. https://doi.org/10.1016/j.ecoenv.2018.06.092
  62. 62. Park S, Kim A-L, Hong Y-K, Shin J-H, Joo S-H. A highly efficient auxin-producing bacterial strain and its effect on plant growth. J Genet Eng Biotechnol. 2021;19:1–9. https://doi.org/10.1186/s43141-021-00252-w
  63. 63. Bag S, Mondal A, Banik A. Exploring tea (Camellia sinensis) microbiome: insights into the functional characteristics and their impact on tea growth promotion. Microbiol Res. 2022;254:126890. https://doi.org/10.1016/j.micres.2021.126890
  64. 64. Chai C, Subudhi PK. Comprehensive analysis and expression profiling of the OsLAX and OsABCB auxin transporter gene families in rice (Oryza sativa) under phytohormone stimuli and abiotic stresses. Front Plant Sci. 2016;7:593. https://doi.org/10.3389/fpls.2016.00593
  65. 65. Pantoja-Guerra M, Burkett-Cadena M, Cadena J, Dunlap CA, Ramírez CA. Lysinibacillus spp.: an IAA-producing endospore forming-bacteria that promotes plant growth. Antonie van Leeuwenhoek. 2023:1-16. https://doi.org/10.1007/s10482-023-01828-x
  66. 66. Bargaz A, Elhaissoufi W, Khourchi S, et al. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiol Res. 2021;252:126842. https://doi.org/10.1016/j.micres.2021.126842
  67. 67. Grover M, Bodhankar S, Sharma A, et al. PGPR mediated alterations in root traits: way toward sustainable crop production. Front Sustain Food Syst. 2021;4:618230. https://doi.org/10.3389/fsufs.2020.618230
  68. 68. Pantoja-Guerra M, Valero-Valero N, Ramírez CA. Total auxin level in the soil–plant system as a modulating factor for the effectiveness of PGPR inocula: a review. Chem Biol Technol Agric. 2023;10:6. http:// doi.org/10.1186/s40538-022-00370-8
  69. 69. Mohanty M, Mohapatra S. Synergistic effect of PGPR and PSB for alleviation of chromium toxicity in Vigna radiata (L.) R. Wilczek seedlings. Int J Phytoremediation. 2023;1-10. https://doi.org/10.1080/15226514.2023.2189479
  70. 70. Bartolini S, Pappalettere L, Toffanin A. Azospirillum baldaniorum Sp245 induces anatomical changes in cuttings of olive (Olea europaea L., cultivar Leccino): preliminary results. Agronomy. 2023;13:301. https://doi.org/10.3390/agronomy13020301
  71. 71. Rosier A. Interactions of the plant growth promoting rhizobacterium Bacillus subtilis UD1022 with Medicago root microbes. University of Delaware. 2022. https://doi.org/10.58088/xztt-ff77
  72. 72. Mann A, Mirza S, Chandra P, et al. Root system architecture and phenotyping for improved resource use efficiency in crops. In: Translating physiological tools to augment crop breeding. Springer. 2023:229–55. http:// doi.org/10.1007/978-981-19-7498-4_11
  73. 73. Amara U, Khalid R, Hayat R. Soil bacteria and phytohormones for sustainable crop production. In: Bacterial metabolites in sustainable agroecosystem. Springer. 2015:87–103. http:// doi.org/10.1007/978-3-319-24654-3_5
  74. 74. Kieber JJ, Schaller GE. Cytokinin signaling in plant development. Development. 2018;145:dev149344. https://doi.org/10.1242/dev.149344
  75. 75. Chen L, Jameson GB, Guo Y, Song J, Jameson PE. The LONELY GUY gene family: from mosses to wheat, the key to the formation of active cytokinins in plants. Plant Biotechnol J. 2022;20:625. https://doi.org/10.1111/pbi.13783
  76. 76. Wang Q, Xue N, Sun C, et al. Cytokinin signaling are required for multi-main stems development in Brassica napus L. 2023. http:// doi.org/10.20944/preprints202304.0586.v1
  77. 77. Patel T, Saraf M. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J Plant Interact. 2017;12:480–7. http:// doi.org/10.1080/17429145.2017.1392625
  78. 78. Hussain S, Nanda S, Zhang J. Auxin and cytokinin interplay during leaf morphogenesis and phyllotaxy. Plants. 2021;10:1732. https://doi.org/10.3390/plants10081732
  79. 79. Vaghela N, Gohel S. Medicinal plant-associated rhizobacteria enhance the production of pharmaceutically important bioactive compounds under abiotic stress conditions. J Basic Microbiol. 2023;63:308–25. https://doi.org/10.1002/jobm.202200361
  80. 80. Kaur J, Pandove G. Understanding the beneficial interaction of plant growth promoting rhizobacteria and endophytic bacteria for sustainable agriculture: a bio-revolution approach. J Plant Nutr. 2023:1–29. http:// doi.org/10.1080/01904167.2023.2206425
  81. 81. Burr CA, Sun J, Yamburenko, et al. The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice. Development. 2020;147:dev191734. https://doi.org/10.1242/dev.191734
  82. 82. Сhetverikov S, Feoktistova A, Timergalin M, et al. Mitigation of the negative effect of auxinic herbicide by bacterial suspension of Pseudomonas protegens DA1.2 in wheat plants under drought conditions. Acta Agric Slov. 2023;119:1–7. http://doi.org/10.14720/aas.2023.119.1.2764
  83. 83. Sibponkrung S, Kondo T, Tanaka K, et al. Co-inoculation of Bacillus velezensis strain S141 and Bradyrhizobium strains promotes nodule growth and nitrogen fixation. Microorganisms. 2020;8:678. https://doi.org/10.3390/microorganisms8050678
  84. 84. Akhtar SS, Mekureyaw MF, Pandey C, Roitsch T. Role of cytokinins for interactions of plants with microbial pathogens and pest insects. Front Plant Sci. 2020;10:17–77. https://doi.org/10.3389/fpls.2019.01777
  85. 85. Karnwal A, Shrivastava S, Al-Tawaha ARMS, et al. PGPR-mediated breakthroughs in plant stress tolerance for sustainable farming. J Plant Growth Regul. 2023:1–17. http://doi.org/10.1007/s00344-023-11013-z
  86. 86. Mariotti L, Scartazza A, Curadi M, Picciarelli P, Toffanin A. Azospirillum baldaniorum Sp245 induces physiological responses to alleviate the adverse effects of drought stress in purple basil. Plants. 2021;10:1141. https://doi.org/10.3390/plants10061141
  87. 87. Kang S-M, Khan AL, Waqas M, et al. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J Plant Interact. 2014;9:673–82. http://doi.org/10.1080/17429145.2014.894587
  88. 88. Pal P, Ansari SA, Jalil SU, Ansari MI. Regulatory role of phytohormones in plant growth and development. In: Plant hormones in crop improvement. Elsevier. 2023:1–13. http://doi.org/10.1016/B978-0-323-91886-2.00016-1
  89. 89. Nagel R, Bieber JE, Schmidt-Dannert MG, Nett RS, Peters RJ. A third class: functional gibberellin biosynthetic operon in beta-proteobacteria. Front Microbiol. 2018;9:2916. https://doi.org/10.3389/fmicb.2018.02916
  90. 90. Keswani C, Singh SP, García-Estrada C, et al. Biosynthesis and beneficial effects of microbial gibberellins on crops for sustainable agriculture. J Appl Microbiol. 2022;132:1597–615. https://doi.org/10.1111/jam.15348
  91. 91. Mia MB. Enhanced root morphogenesis in non-legumes as induced by rhizobacteria Bacillus spp. In: Bacilli in agrobiotechnology: plant stress tolerance, bioremediation and bioprospecting. Springer. 2022;151–68. http:// doi.org/10.1007/978-3-030-85465-2_7
  92. 92. Kang S-M, Khan AL, Waqas M, et al. Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J Plant Interact. 2019;14:416–23. https://doi.org/10.1080/17429145.2019.1640294
  93. 93. Dehghanian Z, Habibi K, Sardrodi MM, et al. Revivification of rhizobacteria-promoting plant growth for sustainable agricultural development. In: New and future developments in microbial biotechnology and bioengineering. Elsevier. 2022;353–68. http://doi.org/10.1016/B978-0-323-85163-3.00008-9
  94. 94. Gupta A, Rai S, Bano A, et al. ACC deaminase produced by PGPR mitigates the adverse effect of osmotic and salinity stresses in Pisum sativum through modulating the antioxidants activities. Plants. 2022;11:3419. https://doi.org/10.3390/plants11243419
  95. 95. Rafique HM, Khan MY, Asghar HN, et al. Converging alfalfa (Medicago sativa L.) and petroleum hydrocarbon acclimated ACC-deaminase-containing bacteria for phytoremediation of petroleum hydrocarbon-contaminated soil. Int J Phytoremediation. 2023;25:717–27. https://doi.org/10.1080/15226514.2022.2104214
  96. 96. Shahid M, Singh UB, Khan MS, et al. Bacterial ACC deaminase: insights into enzymology, biochemistry, genetics and potential role in amelioration of environmental stress in crop plants. 2023. https://doi.org/10.3389/fmicb.2023.1132770
  97. 97. Gupta S, Pandey S. ACC deaminase-producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French bean (Phaseolus vulgaris) plants. Front Microbiol. 2019;10:1506. https://doi.org/10.3389/fmicb.2019.01506

Downloads

Download data is not yet available.