Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Advancing irrigation practices for sustainable cotton production: A comprehensive review of methods, models and water use efficiency

DOI
https://doi.org/10.14719/pst.7750
Submitted
15 February 2025
Published
22-07-2025 — Updated on 29-07-2025
Versions

Abstract

Water management plays a vital role in the sustainable cultivation of cotton (Gossypium hirsutum L.), a globally significant cash crop. Effective irrigation practices are essential to enhance water use efficiency (WUE), optimize yield and maintain fiber quality amid challenges like declining water resources and changing climatic conditions. This review critically examines various irrigation methods, including surface irrigation, drip irrigation (surface and subsurface) and advanced systems like Low-Energy Precision Application (LEPA), Low-Elevation Spray Application (LESA) and Mobile Drip Irrigation (MDI). Modernized methods, particularly subsurface drip irrigation, have proven the most efficient in conserving water and increasing yields by minimizing soil evaporation and ensuring precise water delivery to the root zone.  Additionally, the role of irrigation models such as AquaCrop, EPIC, Cotton2K and CROPGRO-Cotton, is discussed in relation to their ability to simulate crop growth and optimize irrigation schedules based on local conditions. The review highlights the importance of understanding crop coefficients (Kc), evapotranspiration and region-specific water requirements in tailoring irrigation strategies.  Future outlooks emphasize the integration of advanced irrigation technologies with precision farming to enhance WUE and promote sustainable cotton production. By focusing on localized solutions and fostering the adoption of modern irrigation systems, farmers can address water scarcity challenges while achieving better yields and fiber quality, ensuring long-term economic and environmental sustainability. 

References

  1. 1. Agarwal N, Ray S, Tripathi K, editors. Enhancing cotton crop yield prediction through principal component analysis and regression modelling. In: International Conference on Innovative Computing and Communication. 2024. https://doi.org/10.1007/978-981-97-3588-4_20
  2. 2. Zhang Z, Huang J, Yao Y, Peters G, Macdonald B, La Rosa AD, et al. Environmental impacts of cotton and opportunities for improvement. Nature Reviews Earth & Environment. 2023;4(10):703-15. https://doi.org/10.1038/s43017-023-00476-z
  3. 3. Fernández JE, Alcon F, Diaz-Espejo A, Hernandez-Santana V, Cuevas M. Water use indicators and economic analysis for on-farm irrigation decision: a case study of a super high density olive tree orchard. Agricultural Water Management. 2020;237:106074. https://doi.org/10.1016/j.agwat.2020.106074
  4. 4. Mishra SK, Kaur V, Singh K. Evaluation of DSSAT-CROPGRO-cotton model to simulate phenology, growth and seed cotton yield in northwestern India. Agronomy Journal. 2021;113(5):3975-90. https://doi.org/10.1002/agj2.20788
  5. 5. Ibragimov N, Evett SR, Esanbekov Y, Kamilov BS, Mirzaev L, Lamers JP. Water use efficiency of irrigated cotton in Uzbekistan under drip and furrow irrigation. Agricultural Water Management. 2007;90(1-2):112-20. https://doi.org/10.1016/j.agwat.2007.01.016
  6. 6. Singh K, Brar A, Singh H. Drip fertigation improves water and nitrogen use efficiency of Bt cotton. Journal of Soil and Water Conservation. 2018;73(5):549-57. https://doi.org/10.2489/jswc.73.5.549
  7. 7. Ben-Gal A, Lazorovitch N, Shani U. Subsurface drip irrigation in gravel-filled cavities. Vadose Zone Journal. 2004;3(4):1407-13. https://doi.org/10.2113/3.4.1407
  8. 8. Singh K, Mishra SK, Singh M, Singh K, Brar AS. Water footprint assessment of surface and subsurface drip fertigated cotton-wheat cropping system- A case study under semi-arid environments of Indian Punjab. Journal of Cleaner Production. 2022;365:132735. https://doi.org/10.1016/j.jclepro.2022.132735
  9. 9. Makkar JS. Weed management for sustainable cotton production in West Texas. 2024.
  10. 10. Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper 56. Fao, Rome. 1998;300(9):D05109.
  11. 11. Allen RG, Pereira LS. Estimating crop coefficients from fraction of ground cover and height. Irrigation Science. 2009;28:17-34. https://doi.org/10.1007/s00271-009-0182-z
  12. 12. Bezerra BG, da Silva BB, Bezerra JR, Sofiatti V, dos Santos CA. Evapotranspiration and crop coefficient for sprinkler-irrigated cotton crop in Apodi Plateau semiarid lands of Brazil. Agricultural Water Management. 2012;107:86-93. https://doi.org/10.1016/j.agwat.2012.01.013
  13. 13. De Azevedo PV, Bezerra JR, da Silva VdP. Evapotranspiration and water-use efficiency of irrigated colored cotton cultivar in semiarid regions. Agricultural Sciences. 2012;3(5):714. https://doi.org/10.4236/as.2012.35086
  14. 14. Kumar V, Udeigwe TK, Clawson EL, Rohli RV, Miller DK. Crop water use and stage-specific crop coefficients for irrigated cotton in the mid-south, United States. Agricultural Water Management. 2015;156:63-9. https://doi.org/10.1016/j.agwat.2015.03.022
  15. 15. Ko J, Piccinni G, Marek T, Howell T. Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat. Agricultural Water Management. 2009;96(12):1691-7. https://doi.org/10.1016/j.agwat.2009.06.023
  16. 16. Grismer M. Regional cotton lint yield, ETc and water value in Arizona and California. Agricultural Water Management. 2002;54(3):227-42. https://doi.org/10.1016/S0378-3774(01)00174-3
  17. 17. Farahani H, Oweis T, Izzi G. Crop coefficient for drip-irrigated cotton in a Mediterranean environment. Irrigation Science. 2008;26:375-83. https://doi.org/10.1007/s00271-007-0101-0
  18. 18. Hribal SA. Crop coefficients for cotton in northeastern Louisiana. Louisiana State University and Agricultural & Mechanical College; 2009.
  19. 19. Hunsaker D. Basal crop coefficients and water use for early maturity cotton. Transactions of the ASAE. 1999;42(4):927-36. https://doi.org/10.13031/2013.13273
  20. 20. Mohan S, Arumugam N. Crop coefficients of major crops in South India. Agricultural Water Management. 1994;26(1-2):67-80. https://doi.org/10.1016/0378-3774(94)90025-6
  21. 21. Evett SR, Schwartz RC, Casanova JJ, Heng LK. Soil water sensing for water balance, ET and WUE. Agricultural Water Management. 2012;104:1-9. https://doi.org/10.1016/j.agwat.2011.12.002
  22. 22. Bezerra JR, Azevedo PVd, Silva BBd, Dias JM. Evapotranspiração e coeficiente de cultivo do algodoeiro BRS-200 Marrom, irrigado. Revista Brasileira de Engenharia Agrícola e Ambiental. 2010;14:625-32. https://doi.org/10.1590/S1415-43662010000600009
  23. 23. Howell T, Meron M, Davis K, Phene C, Yamada H. Water management of trickle and furrow irrigated narrow row cotton in the San Joaquin Valley. Applied Engineering in Agriculture. 1987;3(2):222-7. https://doi.org/10.13031/2013.26678
  24. 24. Colaizzi PD, Evett SR, Howell TA. Cotton production with SDI, LEPA and spray irrigation in a thermally-limited climate. 2005.
  25. 25. Rajak D, Manjunatha M, Rajkumar G, Hebbara M, Minhas P. Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol. Agricultural Water Management. 2006;83(1-2):30-6. https://doi.org/10.1016/j.agwat.2005.11.005
  26. 26. Anac M, UL M, Tüzel I, Anac D, Okur B, Hakerlerler H. Optimum irrigation schedules for cotton under deficit irrigation conditions. To assess irrigation. 1996:225.
  27. 27. Baker JT, Gitz DC, Stout JE, Lascano RJ. Cotton water use efficiency under two different deficit irrigation scheduling methods. Agronomy. 2015;5(3):363-73. https://doi.org/10.3390/agronomy5030363
  28. 28. Howell TA, Evett S, Tolk J, Schneider A. Evapotranspiration of full-, deficit-irrigated and dryland cotton on the Northern Texas high plains. Journal of Irrigation and Drainage Engineering. 2004;130(4):277-85. https://doi.org/10.1061/(ASCE)0733-9437(2004)130:4(277)
  29. 29. Kang J, Hao X, Zhou H, Ding R. An integrated strategy for improving water use efficiency by understanding physiological mechanisms of crops responding to water deficit: present and prospect. Agricultural Water Management. 2021;255:107008. https://doi.org/10.1016/j.agwat.2021.107008
  30. 30. Roth G, Harris G, Gillies M, Montgomery J, Wigginton D. Water-use efficiency and productivity trends in Australian irrigated cotton: a review. Crop and Pasture Science. 2013;64(12):1033-48. https://doi.org/10.1071/CP13315
  31. 31. Briggs LJ, Shantz HL. The water requirement of plants. US Government Printing Office; 1913.
  32. 32. Hatfield JL, Dold C. Water-use efficiency: advances and challenges in a changing climate. Frontiers in Plant Science. 2019;10:103. https://doi.org/10.3389/fpls.2019.00103
  33. 33. Quisenberry J, McMichael B. Genetic variation among cotton germplasm for water-use efficiency. Environmental and Experimental Botany. 1991;31(4):453-60. https://doi.org/10.1016/0098-8472(91)90044-O
  34. 34. Fish DA, Earl HJ. Water-use efficiency is negatively correlated with leaf epidermal conductance in cotton (Gossypium spp.). Crop Science. 2009;49(4):1409-15. https://doi.org/10.2135/cropsci2008.08.0490
  35. 35. Saranga Y, Menz M, Jiang C-X, Wright RJ, Yakir D, Paterson AH. Genomic dissection of genotype × environment interactions conferring adaptation of cotton to arid conditions. Genome Research. 2001;11(12):1988-95. https://doi.org/10.1101/gr.157201
  36. 36. Snowden C, Ritchie G, Thompson T. Water use efficiency and irrigation response of cotton cultivars on subsurface drip in West Texas. Journal of Cotton Science. 2013;17(1):1-9.
  37. 37. Fan Y, Wang C, Nan Z. Determining water use efficiency of wheat and cotton: a meta-regression analysis. Agricultural Water Management. 2018;199:48-60. https://doi.org/10.1016/j.agwat.2017.12.006
  38. 38. Çetin O, Kara A. Assessment of water productivity using different drip irrigation systems for cotton. Agricultural Water Management. 2019;223:105693. https://doi.org/10.1016/j.agwat.2019.105693
  39. 39. Dağdelen N, Yılmaz E, Sezgin F, Gürbüz T. Water-yield relation and water use efficiency of cotton (Gossypium hirsutum L.) and second crop corn (Zea mays L.) in western Turkey. Agricultural Water Management. 2006;82(1-2):63-85. https://doi.org/10.1016/j.agwat.2005.05.006
  40. 40. Bange M, Caton J, Hodgson D. Assessment of the degree of impact of factors affecting micronaire in cotton. 2012.
  41. 41. Aujla M, Thind H, Buttar G. Cotton yield and water use efficiency at various levels of water and N through drip irrigation under two methods of planting. Agricultural Water Management. 2005;71(2):167-79. https://doi.org/10.1016/j.agwat.2004.06.010
  42. 42. Cetin O, Bilgel L. Effects of different irrigation methods on shedding and yield of cotton. Agricultural Water Management. 2002;54(1):1-15. https://doi.org/10.1016/S0378-3774(01)00138-X
  43. 43. Kanber R, Onder S, Unlu M, Koksal H, Ozekici B, Sezen S, et al. Optimization of surface irrigation methods for cotton and comparison with sprinkler irrigation. Cukurova University, Adana, Turkey. 1996:148.
  44. 44. Ertek A, Kanber R. Water-use efficiency (WUE) and change in the yield-response factor (Ky) of cotton irrigated by an irrigation drip system. Turkish Journal of Agriculture and Forestry. 2001;25(2):111-8.
  45. 45. Koech R, Smith R, Gillies M. A real-time optimisation system for automation of furrow irrigation. Irrigation Science. 2014;32:319-27. https://doi.org/10.1007/s00271-014-0432-6
  46. 46. Ahmad HS, Imran M, Ahmad F, Rukh S, Ikram RM, Rafique HM, et al. Improving water use efficiency through reduced irrigation for sustainable cotton production. Sustainability. 2021;13(7):4044. https://doi.org/10.3390/su13074044
  47. 47. Sui R, Byler R, Delhom C, Sui R. Effect of nitrogen application rates on yield and quality in irrigated and rainfed cotton. Journal of Cotton Science. 2017;21(2):113-21. https://doi.org/10.56454/XZQP5457
  48. 48. Basal H, Dagdelen N, Unay A, Yilmaz E. Effects of deficit drip irrigation ratios on cotton (Gossypium hirsutum L.) yield and fibre quality. Journal of Agronomy and Crop Science. 2009;195(1):19-29. https://doi.org/10.1111/j.1439-037X.2008.00340.x
  49. 49. Bordovsky JP. Low-energy precision application (LEPA) irrigation: a forty-year review. Transactions of the ASABE. 2019;62(5):1343-53. https://doi.org/10.13031/trans.13117
  50. 50. Segarra E, Almas L, Bordovsky J, editors. Adoption of advanced irrigation technology: LEPA vs. drip in the Texas High Plains. Proc Beltwide Cotton Conf; 1999.
  51. 51. Bordovsky JP, Porter D, editors. Cotton response to pre-plant irrigation level and irrigation capacity using spray, LEPA and subsurface drip irrigation. 2003 ASAE Annual Meeting; 2003: American Society of Agricultural and Biological Engineers.
  52. 52. Choudhary KK, Dahiya R, Phogat V. Effect of drip and furrow irrigation methods on yield and water use efficiency in cotton. Research on Crops. 2016;17(4):823-8. https://doi.org/10.5958/2348-7542.2016.00139.X
  53. 53. Tari I, Laskay G, Takács Z, Poór P. Response of sorghum to abiotic stresses: A review. Journal of Agronomy and Crop Science. 2013;199(4):264-74. https://doi.org/10.1111/jac.12017
  54. 54. Ünlü M, Kanber R, Koç DL, Tekin S, Kapur B. Effects of deficit irrigation on the yield and yield components of drip irrigated cotton in a Mediterranean environment. Agricultural Water Management. 2011;98(4):597-605. https://doi.org/10.1016/j.agwat.2010.10.020
  55. 55. Wang J, Du G, Tian J, Zhang Y, Jiang C, Zhang W. Effect of irrigation methods on root growth, root-shoot ratio and yield components of cotton by regulating the growth redundancy of root and shoot. Agricultural Water Management. 2020;234:106120. https://doi.org/10.1016/j.agwat.2020.106120
  56. 56. Wang R, Kang Y, Wan S, Hu W, Liu S, Jiang S, et al. Influence of different amounts of irrigation water on salt leaching and cotton growth under drip irrigation in an arid and saline area. Agricultural Water Management. 2012;110:109-17. https://doi.org/10.1016/j.agwat.2012.04.005
  57. 57. Karlberg L, de Vries FWP. Exploring potentials and constraints of low-cost drip irrigation with saline water in sub-Saharan Africa. Physics and Chemistry of the Earth. 2004;29(15-18):1035-42. https://doi.org/10.1016/j.pce.2004.08.004
  58. 58. Fereres E, Soriano MA. Deficit irrigation for reducing agricultural water use. Journal of Experimental Botany. 2007;58(2):147-59. https://doi.org/10.1093/jxb/erl165
  59. 59. Mateos L, Berengena J, Orgaz F, Diz J, Fereres E. A comparison between drip and furrow irrigation in cotton at two levels of water supply. Agricultural Water Management. 1991;19(4):313-24. https://doi.org/10.1016/0378-3774(91)90024-D
  60. 60. Ward FA, Pulido-Velazquez M. Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences. 2008;105(47):18215-20. https://doi.org/10.1073/pnas.0805554105
  61. 61. Colaizzi PD, Gowda PH, Marek T, Porter DO. Irrigation in the Texas High Plains: A brief history and potential reductions in demand. Irrigation and Drainage. 2009;58(3):257-74. https://doi.org/10.1002/ird.418
  62. 62. Yavuz M. Effects of different irrigation methods on the cotton yield and water use efficiency: PhD Thesis. Çukurova University, Institute of Basic and Applied Science; 1993.
  63. 63. Whitaker JR, Ritchie GL, Bednarz CW, Mills CI. Cotton subsurface drip and overhead irrigation efficiency, maturity, yield and quality. Agronomy Journal. 2008;100(6):1763-8. https://doi.org/10.2134/agronj2008.0036
  64. 64. Yazar A, Sezen SM, Sesveren S. LEPA and trickle irrigation of cotton in the Southeast Anatolia Project (GAP) area in Turkey. Agricultural Water Management. 2002;54(3):189-203. https://doi.org/10.1016/S0378-3774(01)00179-2
  65. 65. Inamullah, Isoda A. Adaptive responses of soybean and cotton to water stress: I. Transpiration changes in relation to stomatal area and stomatal conductance. Plant Production Science. 2005;8(1):16-26. https://doi.org/10.1626/pps.8.16
  66. 66. Rehman A, Azhar MT, Shakeel A, Basra SMA. Breeding potential of upland cotton for water stress tolerance. Pakistan Journal of Agricultural Sciences. 2017;54(3). https://doi.org/10.21162/PAKJAS/17.6324
  67. 67. Rehman M, Bakhsh A, Zubair M, Rehmani MIA, Shahzad A, Nayab S, et al. Effects of water stress on cotton (Gossypium spp.) plants and productivity. Egyptian Journal of Agronomy. 2021;43(3):307-15.
  68. 68. Siddiqui M, Oad F, Buriro U. Response of cotton cultivars to varying irrigation regimes. 2007. https://doi.org/10.3923/ajps.2007.153.157
  69. 69. Pettigrew W. Moisture deficit effects on cotton lint yield, yield components and boll distribution. Agronomy Journal. 2004;96(2):377-83. https://doi.org/10.2134/agronj2004.0377
  70. 70. Bellaloui N, Stetina SR, Turley RB. Cottonseed protein, oil and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions. Frontiers in Plant Science. 2015;6:137. https://doi.org/10.3389/fpls.2015.00137
  71. 71. Shamim Z, Rashid B, Rahman S, Husnain T. Expression of drought tolerance in transgenic cotton. Science Asia. 2013;39:1-11. https://doi.org/10.2306/scienceasia1513-1874.2013.39.001
  72. 72. Kar M, Patro B, Sahoo C, Hota B. Traits related to drought resistance in cotton hybrids. 2005.
  73. 73. Mert M. Irrigation of cotton cultivars improves seed cotton yield, yield components and fibre properties in the Hatay region, Turkey. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science. 2005;55(1):44-50. https://doi.org/10.1080/09064710510008658
  74. 74. Lokhande S, Reddy KR. Reproductive and fiber quality responses of upland cotton to moisture deficiency. Agronomy Journal. 2014;106(3):1060-9. https://doi.org/10.2134/agronj13.0537
  75. 75. Mitchell-McCallister D, Williams RB, Bordovsky J, Mustian J, Ritchie G, Lewis K. Maximizing profits via irrigation timing for capacity-constrained cotton production. Agricultural Water Management. 2020;229:105932. https://doi.org/10.1016/j.agwat.2019.105932
  76. 76. Onder D, Akiscan Y, Onder S, Mert M. Effect of different irrigation water level on cotton yield and yield components. African Journal of Biotechnology. 2009;8(8).
  77. 77. Masasi B, Taghvaeian S, Boman R, Moriasi DN, Starks PJ. Impacts of variable irrigation regimes on cotton yield and fiber quality. Agricultural & Environmental Letters. 2020;5(1):e20031. https://doi.org/10.1002/ael2.20031
  78. 78. Zhan D, Zhang C, Yang Y, Luo H, Zhang Y, Zhang W. Water deficit alters cotton canopy structure and increases photosynthesis in the mid-canopy layer. Agronomy Journal. 2015;107(5):1947-57. https://doi.org/10.2134/agronj14.0426
  79. 79. Chen Z, Niu Y, Zhao R, Han C, Han H, Luo H. The combination of limited irrigation and high plant density optimizes canopy structure and improves the water use efficiency of cotton. Agricultural Water Management. 2019;218:139-48. https://doi.org/10.1016/j.agwat.2019.03.037
  80. 80. Feng L, Mathis G, Ritchie G, Han Y, Li Y, Wang G, et al. Optimizing irrigation and plant density for improved cotton yield and fiber quality. Agronomy Journal. 2014;106(4):1111-8. https://doi.org/10.2134/agronj13.0503
  81. 81. Geerts S, Raes D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management. 2009;96(9):1275-84. https://doi.org/10.1016/j.agwat.2009.04.009
  82. 82. Chen X, Qi Z, Gui D, Sima MW, Zeng F, Li L, et al. Evaluation of a new irrigation decision support system in improving cotton yield and water productivity in an arid climate. Agricultural Water Management. 2020;234:106139. https://doi.org/10.1016/j.agwat.2020.106139
  83. 83. Milroy S, Bange M, Hearn A. Row configuration in rainfed cotton systems: modification of the OZCOT simulation model. Agricultural Systems. 2004;82(1):1-16. https://doi.org/10.1016/j.agsy.2003.12.001
  84. 84. Hussein F, Janat M, Yakoub A. Simulating cotton yield response to deficit irrigation with the FAO AquaCrop model. Spanish Journal of Agricultural Research. 2011;9(4):1319-30. https://doi.org/10.5424/sjar/20110904-358-10
  85. 85. Attia A, Rajan N, Nair SS, DeLaune PB, Xue Q, Ibrahim AM, et al. Modeling cotton lint yield and water use efficiency responses to irrigation scheduling using Cotton2K. Agronomy Journal. 2016;108(4):1614-23. https://doi.org/10.2134/agronj2015.0437
  86. 86. Yu Y, Zhao C. Modelling soil and root respiration in a cotton field using the DNDC model. Journal of Plant Nutrition and Soil Science. 2015;178(5):787-91. https://doi.org/10.1002/jpln.201500271
  87. 87. Han M, Zhao C, Šimůnek J, Feng G. Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-1D coupled with a crop growth model. Agricultural Water Management. 2015;160:64-75. https://doi.org/10.1016/j.agwat.2015.06.028
  88. 88. Wang J, Li J, Guan H. Evaluation of drip irrigation system uniformity on cotton yield in an arid region using a two-dimensional soil water transport and crop growth coupling model. Irrigation and Drainage. 2017;66(3):351-64. https://doi.org/10.1002/ird.2105
  89. 89. Adhikari P, Gowda P, Marek G, Brauer D, Kisekka I, Northup B, et al. Calibration and validation of CSM-CROPGRO-Cotton model using lysimeter data in the Texas High Plains. Journal of Contemporary Water Research & Education. 2017;162(1):61-78. https://doi.org/10.1111/j.1936-704X.2017.03260.x
  90. 90. Li M, Du Y, Zhang F, Bai Y, Fan J, Zhang J, et al. Simulation of cotton growth and soil water content under film-mulched drip irrigation using modified CSM-CROPGRO-cotton model. Agricultural Water Management. 2019;218:124-38. https://doi.org/10.1016/j.agwat.2019.03.041
  91. 91. Tan S, Wang Q, Zhang J, Chen Y, Shan Y, Xu D. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in southern Xinjiang, China. Agricultural Water Management. 2018;196:99-113. https://doi.org/10.1016/j.agwat.2017.11.001
  92. 92. Dzotsi K, Basso B, Jones J. Parameter and uncertainty estimation for maize, peanut and cotton using the SALUS crop model. Agricultural Systems. 2015;135:31-47. https://doi.org/10.1016/j.agsy.2014.12.003
  93. 93. McCarthy AC, Hancock NH, Raine SR. Simulation of irrigation control strategies for cotton using model predictive control within the VARIwise simulation framework. Computers and Electronics in Agriculture. 2014;101:135-47. https://doi.org/10.1016/j.compag.2013.12.004
  94. 94. Linker R, Ioslovich I, Sylaios G, Plauborg F, Battilani A. Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato. Agricultural Water Management. 2016;163:236-43. https://doi.org/10.1016/j.agwat.2015.09.011
  95. 95. Tsakmakis I, Kokkos N, Gikas G, Pisinaras V, Hatzigiannakis E, Arampatzis G, et al. Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns. Agricultural Water Management. 2019;213:419-32. https://doi.org/10.1016/j.agwat.2018.10.029

Downloads

Download data is not yet available.