Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp4 (2025): Recent Advances in Agriculture by Young Minds - III

Comparative evaluation of manual and robotic grafting in brinjal (Solanum melongena L.)

DOI
https://doi.org/10.14719/pst.7755
Submitted
15 February 2025
Published
17-10-2025

Abstract

The proposed research work introduces robotic and manual grafting methods of eggplant seedlings of same genetic characteristics with their keen observative comparisons for precision and optimum production. The manual and mechanical grafting process using a semi-automated ultra precision grafting robot AFGR-800CS. These experiments were conducted at NAHEP-CAAST-DFSRDA under Agri-bot division in 2021 in collaboration with College of Agriculture, Department of Horticulture, VNMKV, Parbhani (Maharashtra) for varieties of brinjal such as Krishna, Phule Arjun, Manjari Gota and Phule Harit. The purpose of the comparative evaluation is to observe an impact of automation technology in comparison with manual method for Solanum torvum and arranged in a CRBD (Completely Randomised Block Design). Considerable differences were identified in the experimental results for the many attributes. The lowest days for healing (4.258 days) with the highest grafting success (96.285 %) and leaf count per plant (6.503) detected in Phule Arjun joined on Solanum torvum using robotic grafting technique. The least days to emergent was noted for Krishna (6.705 days) attached on Solanum torvum through robotic technique. While, the supreme diameter of rootstock (2.898 mm) and diameter of scion (2.880 mm) noted in Phule Harit joined on Solanum torvum through physical grafting technique. Meaningfully, the highest height of plant (16.225 cm) and grafts per hour (689.50) were noticed in Phule Harit united on Solanum torvum through using robotic attaching technique. Based on the findings, it can be inferred that grafting technology shows a positive effect when Solanum torvum Sw. was used as rootstock.

References

  1. 1. De Candolle A. Origin of cultivated plants. London: Kegan Paul, Trench and Co.; 1984. p. 287-8.
  2. 2. Vavilov NI. The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica. 1951;13:20-46. https://doi.org/10.1097/00010694-195112000-00018
  3. 3. Anonymous. Indian Horticulture Database. Gurgaon, Haryana, India: National Horticulture Board; 2022.
  4. 4. Hegde MS, Patil JV. Nutritional and health benefits of eggplant (Solanum melongena L.): A review. J Food Sci Technol. 2022;59(9):3751-63. https://doi.org/10.1007/s11483-022-04322-7
  5. 5. Shukla V, Naik LB. Agro techniques of solanaceous vegetables. In: Chadha KL, Kalloo G, editors. Advances in horticulture. Vol. 5, Vegetable crops, Part 1. New Delhi: Malhotra Publishing House; 1993. p. 365.
  6. 6. Colla G, Rouphael Y, Leonardi C, Bie Z, et al. Role of grafting in vegetable crops grown under saline conditions. Sci Hortic. 2010;127(2):147-55. https://doi.org/10.1016/j.scienta.2010.08.004
  7. 7. Flowers TJ. Improving crop salt tolerance. J Exp Bot. 2004;55:307-19. https://doi.org/10.1093/jxb/erh003
  8. 8. Davis AR, Perkins-Veazie P, Hassell R, Levi A, King SR, Zhang X. Grafting effects on vegetable quality. HortScience. 2008;43(6):1670-2. https://doi.org/10.21273/HORTSCI.43.6.1670
  9. 9. Savvas D, Colla G, Rouphael Y, Schwarz D. Amelioration of heavy metal and nutrient stress in fruit vegetables by grafting. Sci Hortic. 2010;127:156-61. https://doi.org/10.1016/j.scienta.2010.09.011
  10. 10. Crino P, Bianco CL, Rouphael Y, Colla G, Saccardo F, Paratore A. Evaluation of rootstock resistance to fusarium wilt and gummy stem blight and effect on yield and quality of grafted ‘Inodorus’ melon. HortScience. 2007;42(3):521-5. https://doi.org/10.21273/HORTSCI.42.3.521
  11. 11. Rouphael Y, Schwarz D, Krumbein A, Colla G. Impact of grafting on product quality of fruit vegetables. Sci Hortic. 2010;127(2):172-9. https://doi.org/10.1016/j.scienta.2010.09.001
  12. 12. Feng M, Augstein F, Kareem A, Melnyk CW. Plant grafting: Molecular mechanisms and applications. Mol Plant. 2023;16(12):1-20. https://doi.org/10.1016/j.molp.2023.12.006
  13. 13. King SR, Davis AR, Zhang K, Crosby K. Genetics, breeding and selection of rootstocks for solanaceae and cucurbitaceae. Sci Hortic. 2010;127(2):106-11. https://doi.org/10.1016/j.scienta.2010.08.001
  14. 14. Kawaguchi M, Taji A, Backhouse D, Oda M. Anatomy and physiology of graft incompatibility in solanaceous plants. J Hortic Sci Biotechnol. 2008;83(5):581-8. https://doi.org/10.1080/14620316.2008.11512427
  15. 15. Bulder HAM, Den Nijs APM, Speek EJ, Van Hasselt PR, Kuiper PJC. The effect of low root temperature on growth and lipid composition of low temperature tolerant rootstock genotypes for cucumber. J Plant Physiol. 1991;138(6):661-6. https://doi.org/10.1016/S0176-1617(11)81312-X
  16. 16. Rivero RM, Ruiz JM, Sanchez E, Romero L. Does grafting provide tomato plants an advantage against H2O2 production under conditions of thermal shock? Physiol Plant. 2003;117(1):44-50. https://doi.org/10.1034/j.1399-3054.2003.1170105.x
  17. 17. Santa Cruz MM, Martinez-Rodriguez F, Perez-Alfocea R, Romero-Aranda R, Bolarin MC. The rootstock effect on the tomato salinity response depends on the shoot genotype. Plant Sci. 2002;162(5):825-31. https://doi.org/10.1016/S0168-9452(02)00030-4
  18. 18. Proebsting WM, Hedden P, Lewis MJ, Croker SJ, Proebsting LN. Gibberellin concentration and transport in genetic lines of pea. Plant Physiol. 1992;100(3):1354-60. https://doi.org/10.1104/pp.100.3.1354
  19. 19. Cohen S, Naor A. The effect of three rootstocks on water use, canopy conductance and hydraulic parameters of apple trees and predicting canopy from hydraulic conductance. Plant Cell Environ. 2002;25(1):17-28. https://doi.org/10.1046/j.1365-3040.2002.00795.x
  20. 20. Colla G, Rouphael Y, Cardarelli M, Rea E. Effect of salinity on yield, fruit quality, leaf gas exchange and mineral composition of grafted watermelon plants. HortScience. 2006;41(3):622-7. https://doi.org/10.1016/j.envexpbot.2009.12.005
  21. 21. Ulas F, Kılıç FN, Ulas A. Alleviate the influence of drought stress by using grafting technology in vegetable crops: a review. J Crop Health. 2025;77:51. https://doi.org/10.1007/s10343-025-01120-0
  22. 22. Lee JM, Oda M. Grafting of herbaceous vegetable and ornamental crops. Hortic Rev. 2003;28:61-124. https://doi.org/10.1002/9780470650851.ch2
  23. 23. Jinyuan Z, Yunsheng T. Development status of internal and external graft machinery. Council Agric For. 2015:99-106. https://book.tndais.gov.tw/Other/2015seedling/speech10.pdf
  24. 24. Kubota C, McClure MA, Kokalis-Burelle N, Baushe MG, Rosskopf EN. Vegetable grafting: history, use and current technology status in North America. HortScience. 2008;43(6):1664-9. https://doi.org/10.21273/HORTSCI.43.6.1664
  25. 25. Cohen R, Burger Y, Horev C, Koren A. Introducing grafted cucurbits to modern agriculture: the Israeli experience. Plant Dis. 2007;91(8):916-23. https://doi.org/10.1094/PDIS-91-8-0916
  26. 26. Lee JM, Kubota C, Tsao SJ, Bie Z, Echevarria PH, Morra L, et al. Current status of vegetable grafting: diffusion, grafting techniques, automation. Sci Hortic. 2010;127(2):93-105. https://doi.org/10.1016/j.scienta.2010.08.003
  27. 27. Brogardh T. Present and future robot control development - an industrial perspective. Annu Rev Control. 2007;31(1):69-79. https://doi.org/10.1016/j.arcontrol.2007.01.002
  28. 28. Yan G, Feng M, Lin W, Huang Y, Tong R, Cheng Y. Review and prospect for vegetable grafting robot and relevant key technologies. Agriculture. 2022;12(10):1578. https://doi.org/10.3390/agriculture12101578
  29. 29. Chang CY, Hung YC, Chen WL, Huang YI. Mechanism optimization of the clamping and cutting arrangement device for Solanaceae scion and stock seedlings. Appl Sci. 2023;13(3):1548. https://doi.org/10.3390/app13031548
  30. 30. Yin R, Fu P, Wang K. A novel grafting machine for Solanaceae based on big data and deep learning technologies. Int J Front Eng Technol. 2025;7(2):34-9. https://doi.org/10.25236/IJFET.2025.070205
  31. 31. Panse VG, Sukhatme PV. Statistical methods for agriculture workers. New Delhi: ICAR; 1985.
  32. 32. Johnson SJ, Miles CA, Kreider P, Roozen J. Vegetable grafting: the healing chamber. HortTechnology. 2016;26(2):160-5.
  33. 33. Onduso JN. Management of bacterial wilt of tomato by use of resistant rootstock [MSc thesis]. Nairobi: University of Nairobi; 2014.
  34. 34. Sherly J. Studies on grafting of brinjal accessions (Solanum melongena L.) with wild Solanum rootstocks [PhD dissertation]. Coimbatore: Tamil Nadu Agricultural University; 2011.
  35. 35. Lacasa CM, Cantó-Tejero M, Martínez V, Lacasa A, Guirao P. Performance of aubergine rootstocks against Verticillium dahliae isolates in Southeastern Spain. Agronomy. 2024;14(5):998. https://doi.org/10.3390/agronomy14050998
  36. 36. Parthasarathi T, Ephrath JE, Lazarovitch N. Grafting of tomato (Solanum lycopersicum L.) onto potato (Solanum tuberosum L.) to improve salinity tolerance. Sci Hortic. 2021;281:110050. https://doi.org/10.1016/j.scienta.2021.110050
  37. 37. Sabatino L, Iapichino G, Rotino GL, Palazzolo E, Mennella G, D’Anna F. Solanum aethiopicum gr. gilo and its interspecific hybrid with S. melongena as alternative rootstocks for eggplant: effects on vigor, yield and fruit physicochemical properties of cultivar Scarlatti. Agronomy. 2019;9(5):223. https://doi.org/10.3390/agronomy9050223
  38. 38. Musa I, Rafii MY, Ahmad K, Ramlee SI, Md Hatta MA, Oladosu Y, et al. Effects of grafting on morphophysiological and yield characteristic of eggplant (Solanum melongena L.) grafted onto wild relative rootstocks. Plants. 2020;9(11):1583. https://doi.org/10.3390/plants9111583
  39. 39. Rathod T. Evaluation of rootstock and scion in brinjal (Solanum melongena L.) for growth, yield and fruit quality [MSc thesis]. Andhra Pradesh: Dr. Y. S. R. Horticultural University; 2017.
  40. 40. Bizhen H, Jennifer M, Stephanie S, Sonia W, Matthew D, Kleinhenz. Eighteen rootstock and five scion tomato varieties: seedling growth rates before grafting and success in grafting the ninety variety combinations. Midwest Vegetable Trial Rep. 2014.
  41. 41. Khah EM, Kakava E, Mavromatis A, Chachalis D, Goulas C. Effect of grafting on growth and yield of tomato (Lycopersicon esculentum Mill.) in greenhouse and open field. J Appl Hortic. 2006;8(1):3-7. https://doi.org/10.37855/jah.2006.v08i01.01
  42. 42. Alan O, Ozdemir N, Gunen Y. Effect of grafting on watermelon plant growth, yield and quality. J Agron. 2007;6(2):362-5. https://doi.org/10.13031/2013.32055
  43. 43. Chen S, Chiu YC, Chang YC. Development of a tubing grafting robotic system for fruit-bearing vegetable seedlings. Appl Eng Agric. 2010;26(4):707-14.
  44. 44. Chiu YC, Chen S, Chang YC. Development of a circular grafting robotic system for watermelon seedlings. Appl Eng Agric. 2010;26(6):1077-84. https://doi.org/10.13031/2013.35904
  45. 45. Xie Z, Gu S, Chu Q, Li B, Fan K, Yang Y, et al. Development of a high productivity grafting robot for Solanaceae. Int J Agric Biol Eng. 2020;13(1):82-90.
  46. 46. Lee JM. Cultivation of grafted vegetables I: current status, grafting methods and benefits. HortScience. 1994;29:235-9.

Downloads

Download data is not yet available.