Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Targeted editing of rice genome for enhanced yield: Progress and prospects

DOI
https://doi.org/10.14719/pst.7854
Submitted
21 February 2025
Published
22-04-2025
Versions

Abstract

Rice is a staple food grain and its yield has undergone two major leaps, first during the 1960’s through improving the harvest index by introducing semi-dwarf trait and secondly through the introduction of hybrids during the 1980’s. However, yields have plateaued in the past decade, even as the growing population necessitates doubling rice production by 2050. Hence, genetic enhancement of yield potential in rice has become mandatory in rice-breeding programs, which can be achieved by mining novel yield genes from wild species, manipulating photosynthetic traits (e.g., C4 rice), or creating novel alleles through targeted mutagenesis. The available genome of the Nipponbare rice genome and the 3K Rice Genome Project have identified beneficial alleles and valuable accessions for breeding. Progress towards C4 rice highlights the need for photosynthetic trait manipulation to improve yields. However, the labor and time required stimulate breeders towards new technologies like genome editing. The CRISPR system offers a simpler, faster method to alter desired traits, with numerous candidate genes for grain yield. Rice, with its relatively small genome and strong synteny with other cereals, serves as an ideal model for the development of novel gene editing technologies. This review unveils an up-to-date investigation of rice genome editing for yield-related traits, with a focus on recent advancements, emerging trends and future directions to address the key challenges and opportunities in enhancing rice productivity. Future advancements in CRISPR-based multiplex editing, epigenome engineering and AI-driven predictive breeding will accelerate rice yield improvements, ensuring sustainable production to meet global food security demands by 2050.

References

  1. FAOSTAT. 2024. Food and Agriculture Organization of the United Nations-Statistic Division. https://www.fao.org/faostat/en/
  2. USDA, Foreign Agricultural Service (FAS), International Production Assessment Division (IPAD). 18 March 2025. Rice 2024 World Production. https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=0422110&utm
  3. Xing Y, Zhang Q. Genetic and molecular bases of rice yield. Annual Review of Plant Biology. 2010;61(1):421-42. https://doi.org/10.1146/annurev-arplant-042809-112209
  4. Priya RS, Kalaimagal T, Rajeswari S, Prasanth RA, Raveendran M. Allele mining for the grain number gene An-1 in rice (Oryza sativa L.). Electronic Journal of Plant Breeding. 2021;12(3):772-79. https://www.ejplantbreeding.org/index.php/EJPB/article/view/4029
  5. Li Y, Xiao J, Chen L, Huang X, Cheng Z, Han B, et al. Rice functional genomics research: Past decade and future. Molecular Plant. 2018;11(3):359-80. https://doi.org.10.1016/j.molp.2018.01.007
  6. Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A. Mutagenesis in rice: The basis for breeding a new super plant. Frontiers in Plant Science. 2019;10:1326. https://doi.org/10.3389/fpls.2019.01326
  7. Boettcher M, McManus MT. Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Molecular Cell. 2015;58(4):575-85. http://dx.doi.org/10.1016/j.molcel.2015.04.028
  8. Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, et al. A novel class of gibberellin 2-oxidases control semi dwarfism, tillering and root development in rice. The Plant Cell. 2008;20(10):2603-18. https://doi.org/10.1105/tpc.108.060913
  9. Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nature Genetics. 2008;40(6):761-7. https://doi.org/10.1038/ng.143
  10. Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics. 2009;41(4):494-7. https://doi.org/10.1038/ng.352
  11. Li F, Liu W, Tang J, Chen J, Tong H, Hu B, et al. Rice dense and erect panicle 2 is essential for determining panicle outgrowth and elongation. Cell Research. 2010;20(7):838-49. https://doi.org/10.1038/cr.2010.69
  12. Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, et al. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield. Nature Communications. 2010;1(1):132. https://doi.org/10.1038/ncomms1132
  13. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nature Genetics. 2011;43(12):1266-9. https://doi.org/10.1038/ng.977
  14. Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, et al. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nature Communications. 2013;4(1):1566. https://doi.org/10.1038/ncomms2542
  15. Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics. 2013;45(6):707-11. https://doi.org/10.1038/ng.2612
  16. Luo J, Liu H, Zhou T, Gu B, Huang X, Shangguan Y, et al. An-1 encodes a basic helix-loop-helix protein that regulates awn development, grain size and grain number in rice. The Plant Cell. 2013;25(9):3360-76. https://doi.org/10.1105/tpc.113.113589
  17. Li Y, Fan C, Xing Y, Yun P, Luo L, Yan B, et al. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice. Nature Genetics. 2014;46(4):398-404. https://doi.org/10.1038/ng.2923
  18. Duan P, Ni S, Wang J, Zhang B, Xu R, Wang Y, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nature Plants. 2015;2(1):1-5. https://doi.org/10.1038/nplants.2015.203
  19. Gao S, Fang J, Xu F, Wang W, Chu C. Rice HOX12 regulates panicle exsertion by directly modulating the expression of elongated uppermost internode1. The Plant Cell. 2016;28(3):680-95. https://doi.org/10.1105/tpc.15.01021
  20. Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, et al. OsSPL13 controls grain size in cultivated rice. Nature Genetics. 2016;48(4):447-56. https://doi.org/10.1038/ng.3518
  21. Usman B, Nawaz G, Zhao N, Liao S, Qin B, Liu F, et al. Programmed editing of rice (Oryza sativa L.) OsSPL16 gene using CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins. International Journal of Molecular Sciences. 2020;22(1):249. https://doi.org/10.3390/ijms22010249
  22. Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang SK, et al. Mutation of the plastidial ?-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. The Plant Cell. 2008;20(7):1833-49. https://doi.org/10.1105/tpc.107.054007
  23. Du B, Zhang W, Liu B, Hu J, Wei Z, Shi Z, et al. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice. Proceedings of the National Academy of Sciences. 2009;106(52):22163-8. https://doi.org/10.1073/pnas.0912139106
  24. Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, et al. The rice TAL effector–dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. The Plant Cell. 2014;26(1):497-515. https://doi.org/10.1105/tpc.113.119255
  25. Nagano M, Ishikawa T, Fujiwara M, Fukao Y, Kawano Y, Kawai-Yamada M, et al. Plasma membrane microdomains are essential for Rac1-RbohB/H-mediated immunity in rice. The Plant Cell. 2016;28(8):1966-83. https://doi.org/10.1105/tpc.16.00201
  26. Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, et al. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature. 2009;460(7258):1026-30. https://doi.org/10.1038/nature08258
  27. Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, et al. MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. The Plant Cell. 2016;28(9):2161-77. https://doi.org/10.1105/tpc.16.00171
  28. Zhao Y, Chan Z, Gao J, Xing L, Cao M, Yu C, et al. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences. 2016;113(7):1949-54. https://doi.org/10.1073/pnas.1522840113
  29. Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF. A bacterial-type ABC transporter is involved in aluminum tolerance in rice. The Plant Cell. 2009;21(2):655-67. https://doi.org/10.1105/tpc.108.064543
  30. Fang Z, Xia K, Yang X, Grotemeyer MS, Meier S, Rentsch D, et al. Altered expression of the PTR/NRT 1 homologue Os PTR 9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnology Journal. 2013;11(4):446-58. https://doi.org/10.1111/pbi.12031
  31. Fan X, Tang Z, Tan Y, Zhang Y, Luo B, Yang M, et al. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proceedings of the National Academy of Sciences. 2016;113(26):7118-23. https://doi.org/10.1073/pnas.1525184113
  32. Demirci Y, Zhang B, Unver T. CRISPR/Cas9: an RNA-guided highly precise synthetic tool for plant genome editing. Journal of Cellular Physiology. 2018;233(3):1844-59. https://doi.org/10.1002/jcp.25970
  33. Romero FM, Gatica-Arias A. CRISPR/Cas9: Development and application in rice breeding. Rice Science. 2019;26(5):265-81. https://doi.org/10.1016/j.rsci.2019.08.001
  34. Wang F, Lin J, Yang F, Chen X, Liu Y, Yan L, et al. The OsMAPK5–OsWRKY72 module negatively regulates grain length and grain weight in rice. Journal of Integrative Plant Biology. 2024;66(12):2648-63. https://doi.org/10.1111/jipb.13786
  35. Xie Z, Sun Y, Zhan C, Qu C, Jin N, Gu X, et al. The E3 ligase OsPUB33 controls rice grain size and weight by regulating the OsNAC120–BG1 module. The Plant Cell. 2025;37(1):koae297. https://doi.org/10.1093/plcell/koae297
  36. Yang Q, Tang X, Wu Y, Zhu W, Zhang T, Zhang Y. CRISPR- based modulation of uORFs in DEP1 and GIF1 for enhanced rice yield traits. Rice. 2024;17(1):67. https://doi.org/10.1186/s12284-024-00743-7
  37. Shanthinie A, Vignesh P, Kumar KK, Arul L, Varanavasiappan S, Manonmani S, et al. Enhancing rice grain quality through the knock-out of the OsSPL16 gene. Plant Physiology Reports. 2024;29(2):308-15. https://doi.org/10.1007/s40502-024-00790-8
  38. Hu J, Huang L, Chen G, Liu H, Zhang Y, Zhang R, et al. The elite alleles of OsSPL4 regulate grain size and increase grain yield in rice. Rice. 2021;14:1-8. https://doi.org/10.1186/s12284-021-00531-7
  39. Xu R, Yang Y, Qin R, Li H, Qiu C, Li L, et al. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. Journal of Genetics and Genomics Yi chuan xue bao. 2016;43(8):529-32. https://doi.org/10.1016/j.jgg.2016.07.003
  40. Zhou J, Xin X, He Y, Chen H, Li Q, Tang X, et al. Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Reports. 2019;38:475-85. https://doi.org/10.1007/s00299-018-2340-3
  41. Rathnasamy SA, Kambale R, Elangovan A, Mohanavel W, Shanmugavel P, Ramasamy G, et al. Altering stomatal density for manipulating transpiration and photosynthetic traits in rice through CRISPR/Cas9 mutagenesis. Current Issues in Molecular Biology. 2023;45(5):3801-14. https://doi.org/10.3390/cimb45050245
  42. Ashokkumar S, Jaganathan D, Ramanathan V, Rahman H, Palaniswamy R, Kambale R, et al. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing. PloS One. 2020;15(8):e0237018. https://doi.org/10.1371/journal.pone.0237018
  43. Yin X, Biswal AK, Dionora J, Perdigon KM, Balahadia CP, Mazumdar S, et al. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice. Plant cell reports. 2017;36:745-57. https://doi.org/10.1007/s00299-017-2118-z
  44. Li X, Zhou W, Ren Y, Tian X, Lv T, Wang Z, et al. High-efficiency breeding of early-maturing rice cultivars via CRISPR/Cas9-mediated genome editing. Journal of Genetics and Genomics Yi chuan xue bao. 2017;44(3):175-8. https://doi.org/10.1016/j.jgg.2017.02.001
  45. Tun W, Vo KT, Derakhshani B, Yoon J, Cho LH, Win KT, et al. OsWRKY26 negatively regulates bacterial blight resistance by suppressing OsXa39 expression. Frontiers in Plant Science. 2025 Jan 9;15:1519039. https://doi.org/10.3389/fpls.2024.1519039
  46. Hong Y, Liu Q, Cao Y, Zhang Y, Chen D, Lou X, et al. The OsMPK15 negatively regulates Magnaporthe oryza and Xoo disease resistance via SA and JA signaling pathway in rice. Frontiers in Plant Science. 2019;10:752. https://doi.org/10.3389/fpls.2019.00752
  47. Ma J, Chen J, Wang M, Ren Y, Wang S, Lei C, et al. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. Journal of Experimental Botany. 2018;69(5):1051-64. https://doi.org/10.1093/jxb/erx458
  48. Kumam Y, Rajadurai G, Kumar KK, Varanavasiappan S, Raveendran M, Manonmani S, et al. Adenine base editor creates novel substitution mutations in eIF4G gene of rice. Madras Agricultural Journal. 2021;108(special):1. https://doi.org/10.29321/MAJ.10.000544
  49. Li LL, Xiao Y, Wang B, Zhuang Y, Chen Y, Lu J, et al. A frameshift mutation in JAZ10 resolves the growth versus defense dilemma in rice. Proceedings of the National Academy of Sciences. 2024;121(52):e2413564121. https://www.pnas.org/doi/10.1073/pnas.2413564121
  50. Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nature Biotechnology. 2017;35(5):441-3. https://doi.org/10.1038/nbt.3833
  51. Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, et al. Gene replacements and insertions in rice by intron targeting using CRISPR–Cas9. Nature Plants. 2016;2(10):1-6. https://doi.org/10.1038/nplants.2016.139
  52. Morita S, Tanaka S, Tani Y, Nakamura JI, Sato MH, Satoh S, et al. The rice ethylene receptor OsERS1 negatively regulates the shoot growth and salt tolerance in rice seedlings. bioRxiv. 2025:1. https://doi.org/10.1101/2025.01.15.633154
  53. Chen T, Pu N, Ni M, Xie H, Zhao Z, Hu J, et al. Development of fragrant thermosensitive genic male sterile line rice using CRISPR/Cas9. Agronomy. 2025;15(2):411. https://doi.org/10.3390/agronomy15020411
  54. Shen C, Que Z, Xia Y, Tang N, Li D, He R, et al. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. Journal of Plant Biology. 2017;60:539-47. https://doi.org/10.1007/s12374-016-0400-1
  55. Abe K, Araki E, Suzuki Y, Toki S, Saika H. Production of high oleic/low linoleic rice by genome editing. Plant Physiology and Biochemistry. 2018;131:58-62. https://doi.org/10.1016/j.plaphy.2018.04.033
  56. Li J, Zhang X, Sun Y, Zhang J, Du W, Guo X, et al. Efficient allelic replacement in rice by gene editing: a case study of the NRT1. 1B gene. Journal of Integrative Plant Biology. 2018;60(7):536-40. https://doi.org/10.1111/jipb.12650
  57. Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature. 2019:91–95. https://doi.org/10.1038/s41586-018-0785-8
  58. Thiruppathi A, Salunkhe SR, Ramasamy SP, Palaniswamy R, Rajagopalan VR, Rathnasamy SA, et al. Unleashing the potential of CRISPR/Cas9 genome editing for yield-related traits in rice. Plants. 2024;13(21):2972. https://doi.org/10.3390/plants13212972
  59. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, et al. Cytokinin oxidase regulates rice grain production. Science. 2005;309(5735):741-5. https://doi.org/ 10.1126/science.111337
  60. Yeh SY, Chen HW, Ng CY, Lin CY, Tseng TH, Li WH, et al. Down- regulation of cytokinin oxidase 2 expression increases tiller number and improves rice yield. Rice. 2015;8:1-3. https://doi.org/10.1186/s12284-015-0070-5
  61. He Z, Zeng J, Ren Y, Chen D, Li W, Gao F, et al. OsGIF1 positively regulates the sizes of stems, leaves and grains in rice. Frontiers in Plant Science. 2017;8:1730. https://doi.org/10.3389/fpls.2017.01730
  62. Zhou Y, Tao Y, Zhu J, Miao J, Liu J, Liu Y, et al. GNS4, a novel allele of DWARF11, regulates grain number and grain size in a high-yield rice variety. Rice. 2017;10:1-1.https://doi.org/10.1186/s12284-017-0171-4
  63. Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice aberrant panicle organization 1, encoding an F-box protein, regulates meristem fate. The Plant Journal. 2007;51(6):1030-40. https://doi.org/10.1111/j.1365-313X.2007.03200.x
  64. Zheng S, Ye C, Lu J, Liufu J, Lin L, Dong Z, et al. Improving the rice photosynthetic efficiency and yield by editing OsHXK1 via CRISPR/Cas9 system. International Journal of Molecular Sciences. 2021;22(17):9554. https://doi.org/10.3390/ijms22179554
  65. Zhao HY, Shan JX, Ye WW, Dong NQ, Kan Y, Yang YB, et al. A QTL GN1. 1, encoding FT-L1, regulates grain number and yield by modulating polar auxin transport in rice. Journal of Integrative Plant Biology. 2024;66(10):2158-74. https://doi.org/10.1111/jipb.13749
  66. Usman B, Nawaz G, Zhao N, Liao S, Qin B, Liu F, et al. Programmed editing of rice (Oryza sativa L.) OsSPL16 gene using CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins. International Journal of Molecular Sciences. 2020;22(1):249. https://doi.org/10.3390/ijms22010249
  67. Ji X, Du Y, Li F, Sun H, Zhang J, Li J, et al. The basic helix-loop-helix transcription factor, Os PIL 15, regulates grain size via directly targeting a purine permease gene Os PUP 7 in rice. Plant Biotechnology Journal. 2019;17(8):1527-37. https://doi.org/10.1111/pbi.13075
  68. Yamaguchi K, Yamamoto T, Segami S, Horikawa M, Chaya G, Kitano H, et al. gw2 mutation increases grain width and culm thickness in rice (Oryza sativa L.). Breeding Science. 2020;70(4):456-61. https://doi.org/10.1270/jsbbs.20018
  69. Tian P, Liu J, Mou C, Shi C, Zhang H, Zhao Z, et al. GW5-Like, a homolog of GW5, negatively regulates grain width, weight and salt resistance in rice. Journal of Integrative Plant Biology. 2019;61(11):1171-85. https://doi.org/10.1111/jipb.12745
  70. Lin Y, Zhu Y, Cui Y, Chen R, Chen Z, Li G, et al. De repression of specific miRNA-target genes in rice using CRISPR/Cas9. Journal of Experimental Botany. 2021;72(20):7067-77. https://doi.org/10.1093/jxb/erab336
  71. Wang Y, Geng L, Yuan M, Wei J, Jin C, Li M, et al. Deletion of a target gene in Indica rice via CRISPR/Cas9. Plant Cell Reports. 2017;36:1333-43. https://doi.org/10.1007/s00299-017-2158-4
  72. Piao R, Jiang W, Ham TH, Choi MS, Qiao Y, Chu SH, et al. Map-based cloning of the erect panicle 3 gene in rice. Theoretical and Applied Genetics. 2009;119:1497-506. https://doi.org/10.1007/s00122-009-1151-x
  73. Komatsu M, Maekawa M, Shimamoto K, Kyozuka J. The lax1 and frizzy panicle 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development. Developmental Biology. 2001;231(2):364-73. https://doi.org/10.1006/dbio.2000.9988
  74. Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nature Genetics. 2010;42(6):541-4. https://doi.org/10.1038/ng.591
  75. Butt H, Jamil M, Wang JY, Al-Babili S, Mahfouz M. Engineering plant architecture via CRISPR/Cas9-mediated alteration of strigolactone biosynthesis. BMC Plant Biology. 2018;18:1-9. https://doi.org/10.1186/s12870-018-1387-1
  76. Santoso TJ, Trijatmiko KR, Char SN, Yang B, Wang K. Targeted mutation of GA20ox-2 gene using CRISPR/Cas9 system generated semi-dwarf phenotype in rice. InIOP Conference Series: Earth and Environmental Science. IOP Publishing. 2020;482(1):012027. https://doi.org/10.1088/1755-1315/482/1/012027
  77. Yuan H, Qin P, Hu L, Zhan S, Wang S, Gao P, et al. OsSPL18 controls grain weight and grain number in rice. Journal of Genetics and Genomics. 2019;46(1):41-51. https://doi.org/10.1016/j.jgg.2019.01.003
  78. Lu G, Coneva V, Casaretto JA, Ying S, Mahmood K, Liu F, et al. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. The Plant Journal. 2015;83(5):913-25. https://doi.org/10.1111/tpj.12939
  79. Jia L, Dai Y, Peng Z, Cui Z, Zhang X, Li Y, et al. The auxin transporter OsAUX1 regulates tillering in rice (Oryza sativa). Journal of Integrative Agriculture. 2024;23(05):1454-467. https://doi.org/10.1016/j.jia.2023.05.041
  80. Yunyan F, Jie Y, Fangquan W, Fangjun F, Wenqi LI, Jun W, et al. Production of two elite glutinous rice varieties by editing Wx gene. Rice Science. 2019;26(2):118-24. https://doi.org/10.1016/j.rsci.2018.04.007
  81. Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, et al. Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Frontiers in Plant Science. 2017;8:298. https://doi.org/10.3389/fpls.2017.00298
  82. Tan W, Miao J, Xu B, Zhou C, Wang Y, Gu X, et al. Rapid production of novel beneficial alleles for improving rice appearance quality by targeting a regulatory element of SLG7. Plant Biotechnology Journal. 2023;21(7):1305-7. https://doi.org/10.1111/pbi.14041
  83. She KC, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, et al. A novel factor floury endosperm 2 is involved in regulation of rice grain size and starch quality. The Plant Cell. 2010;22(10):3280-94. https://doi.org/10.1105/tpc.109.070821
  84. Peng B, Kong H, Li Y, Wang L, Zhong M, Sun L, et al. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nature Communications. 2014;5(1):4847. https://doi.org/10.1038/ncomms5847
  85. Endo A, Saika H, Takemura M, Misawa N, Toki S. A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower orange mutation via genome editing. Rice. 2019;12:1-5. https://doi.org/10.1186/s12284-019-0345-3
  86. Zhu Y, Lin Y, Chen S, Liu H, Chen Z, Fan M, et al. CRISPR/Cas9-mediated functional recovery of the recessive rc allele to develop red rice. Plant Biotechnology Journal. 2019;17(11):2096-105. https://doi.org/10.1111/pbi.13125
  87. Endo-Higashi N, Izawa T. Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant and Cell Physiology. 2011;52(6):1083-94. https://doi.org/10.1093/pcp/pcr059
  88. Xu Q, Saito H, Hirose I, Katsura K, Yoshitake Y, Yokoo T, et al. The effects of the photoperiod-insensitive alleles, se13, hd1 and ghd7, on yield components in rice. Molecular Breeding. 2014;33:813-9. https://doi.org/10.1007/s11032-013-9994-x
  89. Zhou S, Cai L, Wu H, Wang B, Gu B, Cui S, et al. Fine-tuning rice heading date through multiplex editing of the regulatory regions of key genes by CRISPR-Cas9. Plant Biotechnology Journal. 2024;22(3):751-8. https://doi.org/10.1111/pbi.14221
  90. Akram R, Fahad S, Masood N, Rasool A, Ijaz M, Ihsan MZ, et al. Plant growth and morphological changes in rice under abiotic stress. In Advances in Rice Research for Abiotic Stress Tolerance 2019:69-85. Woodhead Publishing. https://doi.org/10.1016/B978-0-12-814332-2.00004-6
  91. Santosh Kumar VV, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, et al. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiology and Molecular Biology of Plants. 2020;26:1099-110. https://doi.org/10.1007/s12298-020-00819-w
  92. Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, et al. Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding. 2019;39:1-0. https://doi.org/10.1007/s11032-019-0954-y
  93. Zeng X, Luo Y, Vu NT, Shen S, Xia K, Zhang M. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biology. 2020;20:1-1. https://doi.org/10.1186/s12870-020-02524-y
  94. Wang F, Wang C, Liu P, Lei C, Hao W, Gao Y, et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PloS One. 2016;11(4):e0154027. https://doi.org/10.1371/journal.pone.0154027
  95. Macovei A, Sevilla NR, Cantos C, Jonson GB, Slamet-Loedin I, ?ermák T, et al. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal. 2018;16(11):1918-27. https://doi.org/10.1111/pbi.12927
  96. Lu HP, Luo T, Fu HW, Wang L, Tan YY, Huang JZ, et al. Resistance of rice to insect pests mediated by suppression of serotonin biosynthessi. Nature Plants. 2018;4(6):338-44. https://doi.org/10.1038/s41477-018-0152-7
  97. Han Y, Luo D, Usman B, Nawaz G, Zhao N, Liu F, et al. Development of high yielding glutinous cytoplasmic male sterile rice (Oryza sativa L.) lines through CRISPR/Cas9 based mutagenesis of Wx and TGW6 and proteomic analysis of anther. Agronomy. 2018;8(12):290. https://doi.org/10.3390/agronomy8120290
  98. Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, et al. Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Scientific Reports. 2016;6(1):37395. https://doi.org/10.1038/srep37395
  99. Pak H, Wang H, Kim Y, Song U, Tu M, Wu D, et al. Creation of male-sterile lines that can be restored to fertility by exogenous methyl jasmonate for the establishment of a two-line system for the hybrid production of rice (Oryza sativa L.). Plant Biotechnology Journal. 2021 Feb;19(2):365-74. https://doi.org/10.1111/pbi.13471
  100. Gu W, Zhang D, Qi Y, Yuan Z. Generating photoperiod-sensitive genic male sterile rice lines with CRISPR/Cas9. Plant Genome Editing with CRISPR Systems: Methods and Protocols. 2019:97-107. https://doi.org/10.1007/978-1-4939-8991-1_8

Downloads

Download data is not yet available.