Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Seed invigouration in pulses: More vigour, more yield

DOI
https://doi.org/10.14719/pst.7871
Submitted
22 February 2025
Published
25-06-2025 — Updated on 01-07-2025
Versions

Abstract

Pulses must play a very important role in eliminating malnutrition due to high protein content, presence of vitamins, minerals and dietary fibre. Considering the importance of pulses in human nutrition, FAO celebrated year 2016 as “International Year of Pulses”. Pulse production faces several significant challenges that hinder its growth and productivity, which mainly includes poor germination and seedling establishment. Seed invigouration can overcome these constraints by ensuring fast and uniform emergence, impart higher seedling vigour and enhance stand establishment and productivity. Hydro priming, Osmo conditioning, hormonal priming, nutri-priming, nano priming, biopriming etc. are the improved seed invigouration strategies commonly adopted in agricultural crops. Seed priming enhanced the superoxide dismutase and catalase activity in seeds. Botanical priming proved to be a low-cost and eco-friendly technique which improves the seed emergence, seedling growth and enzyme activity in pulses. Nutri-priming provides fast and synchronized germination and assures better performance of pulse crops in the field and provides faster and synchronized germination. Nano priming can be advocated as a seed enhancement tool to improve crop growth and yield. Seed pelleting can integrate nutrients, biofertilizers, plant protection products and growth stimulators which can provide conditions favourable for the germination of seeds. Physiological, biochemical, cellular and molecular changes take place in seed because of seed invigouration resulting in increased vigour and germination. Ultimately, seed invigouration holds the key to unlocking the full genetic potential of pulses and contributing to a more resilient and productive agricultural system.

References

  1. 1. Curran J. The nutritional value and health benefits of pulses in relation to obesity, diabetes, heart disease and cancer. Br J Nutr. 2012;108(S1):S1-2. https://doi.org/10.1017/S0007114512003534
  2. 2. Yang LH, Bastow JL, Spence KO, Wright AN. What can we learn from resource pulses. Ecol. 2008;89(3):621-34. https://doi.org/10.1890/07-0175.1
  3. 3. Mitchell DC, Webster A, Garrison B. Terminology matters: Advancing science to define an optimal pulse intake. Nutr. 2022;14(3):655. https://doi.org/10.3390/nu14030655
  4. 4. Robinson GH, Balk J, Domoney C. Improving pulse crops as a source of protein, starch and micronutrients. Nutr Bull. 2019;44(3):202-15. https://doi.org/10.1111/nbu.12399
  5. 5. Kissinger G. Pulse crops and sustainability: A framework to evaluate multiple benefits. Rome, Italy: FAO. 2016.
  6. 6. Agarwal A. Value addition of pulse products in India. J Nutr Health Food Eng 2016;5(2):590-2. https://doi.org/10.15406/jnhfe.2016.05.00166
  7. 7. Sivasankar S, Ellis N, Buruchara R, Henry C, Rubiales D, Sandhu J, et al. Celebrate the International Year of Pulses. Rome, Italy: FAO. 2016.
  8. 8. McVicar R, Slinkard AE, Vandenberg A, Clancey B. Trends in pulse crop diversification in western Canada and effects on world trade. In: Linking research and marketing opportunities for pulses in the 21st Century: Proceedings of the third international food legumes research conference. Springer. 2000;243-9. https://doi.org/10.1007/978-94-011-4385-1_21
  9. 9. Kelley TG, Parthasarathy Rao P, Grisko-Kelley H. The pulse economy in the mid-1990s: A review of global and regional developments. In: Linking research and marketing opportunities for pulses in the 21st century: Proceedings of the third international food legumes research conference. Springer. 2000:1-29. https://doi.org/10.1007/978-94-011-4385-1_1
  10. 10. Joshi PK, Rao PP. Global pulses scenario: status and outlook. Ann N Y Acad Sci. 2017;1392(1):6-17. https://doi.org/10.1111/nyas.13298
  11. 11. Geda NR, Nosworthy MG, Tyler R, Henry CJ. Women-led pulse Agriculture for enhanced household nutrition security in east African countries. J Agric Sci. 2024;16(7):1-0. https://doi.org/10.5539/jas.v16n7p10
  12. 12. Inbasekar K. Pulses production in India: challenges and strategies. Economic Affairs. 2014;59(3):403-14. https://doi.org/10.5958/0976-4666.2014.00008.4
  13. 13. Rajmohan A, Prasad VBR, Senthil A, Manivannan N, Arul L, Sumathi A. Abiotic stress responses in pulses: Impact of drought and high temperature. Plant Sci Today. 2025; 12(1): 1-11. https://doi.org/10.14719/pst.3784
  14. 14. Ramakrishna A and Gowda C L L and Johansen C. Management factors affecting legumes production in the Indo-Gangetic Plain. In: Legumes in rice and wheat cropping systems of the Indo-Gangetic Plain - constraints and opportunities. International Crops Research Institute for the Semi-Arid Tropics. 2000:156-65. http://oar.icrisat.org/id/eprint/3452
  15. 15. Reddy AA. Pulses production technology: Status and way forward. Econ Polit Wkly. 2009;26:73-80. https://www.jstor.org/stable/25663942
  16. 16. Vasanthakumar J. Constraints to productivity of black gram (Vigna mungo L.) and green gram (Vigna radiata L.) in Tamil Nadu. Indian J Nat Sci. 2016;7(38):16-21.
  17. 17. Narayan P, Kumar S. Constraints of growth in area production and productivity of pulses in India: An analytical approach to major pulses. Indian J Agric Res. 2015;49(2):114-24. https://doi.org/10.5958/0976-058X.2015.00017.7
  18. 18. Sundaram IS. India needs a pulses revolution. Facts For You (New Delhi). 2010; 31(3):10-2.
  19. 19. Farooq M, Wahid A, Kobayashi NS, Fujita DB, Basra SM. Plant drought stress: Effects, mechanisms and management. Sustain Agric. 2009;153-88. https://doi.org/10.1007/978-90-481-2666-8_12
  20. 20. Kumar K, Solanki S, Singh SN, Khan MA. Abiotic constraints of pulse production in India. Disease of pulse crops and their sustainable management. 2016:23-39.
  21. 21. Pande S, Sharma M, Ghosh R. Climate change: potential impact on chickpea and pigeonpea diseases in the rainfed semi-arid tropics (SAT). In: Proceedings of the 5th international food legumes research conference (IFLRC V) and 7th European conference on grain legumes (AEP VII), Antalya, Turkey. 2010.
  22. 22. Hasanuzzaman M, Nahar K, Fujita M. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ecophysiology and responses of plants under salt stress. 2013:25-87. https://doi.org/10.1007/978-1-4614-4747-4_2
  23. 23. Sehrawat N, Yadav M, Bhat KV, Sairam RK, Jaiwal PK. Effect of salinity stress on mung bean [Vigna radiata (L.) Wilczek] during consecutive summer and spring seasons. J Agric Sci. Belgrade. 2015;60(1):23-32. https://doi.org/10.2298/JAS1501023S
  24. 24. Saxena KB, Sultana R, Bhatnagar-Mathur P, Saxena RK, Chauhan YS, Kumar RV, et al. Accomplishments and challenges of pigeon pea breeding research in India. Indian J Genet Plant Breed. 2016;76(04):467-82. https://doi.org/10.5958/0975-6906.2016.00065.1
  25. 25. Taylor AG, Allen PS, Bennett MA, Bradford KJ, Burris JS, Misra MK. Seed enhancements. Seed Sci Res. 1998;8(2):245-56. https://doi.org/10.1017/S0960258500004141
  26. 26. Varier A, Vari AK, Dadlani M. The subcellular basis of seed priming. Curr Sci. 2010; 25:450-6. http://www.jstor.org/stable/24109568
  27. 27. Ashraf M, Foolad MR. Pre-sowing seed treatment: A shotgun approach to improve germination, plant growth and crop yield under saline and non-saline conditions. Adv Agron. 2005;88:223-71. https://doi.org/10.1016/S0065-2113(05)88006-X
  28. 28. Kang JumSoon KJ, Choi YoungWhan CY, Son BeungGu SB, Ahn ChongKil AC, Cho JeoungLai CJ. Effect of hydropriming to enhance the germination of gourd seeds. 2000;559-64. https://www.cabidigitallibrary.org/doi/full/10.5555/20013048414
  29. 29. Pill WG, Necker AD. The effects of seed treatments on germination and establishment of Kentucky bluegrass (Poa pratensis L.). Seed Sci Technol. 2001:65-72.
  30. 30. Kumar S. Effect of seed priming duration on seed quality in Urd bean. Int J Pharma Biol Sci. 2014;4(3):138-42.
  31. 31. Singh S, Lal GM, Bara BM, Mishra SN. Effect of hydropriming and osmopriming on seed vigour and germination of Pea (Pisum sativum L.) seeds. J Pharmacog Phytochemi. 2017;6(3):820-4.
  32. 32. Farooq M, Barsa SM, Wahid A. Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Grow Reg. 2006;49:285-94. https://doi.org/10.1007/s10725-006-9138-y
  33. 33. Krishnasamy V, Srimathi P. Seed management of rainfed agriculture. In: Land and use planning and watershed management in rainfed agriculture. Balusamy M, Chinnamuthu CR, Velayutham A, editors. Centre of Advanced Studies, Department of Agronomy, Tamil Nadu Agricultural University, Coimbatore. 2001:140.
  34. 34. Prajapati KR, Patel DB, Patil K, Bhadane RS. Effect of seed hardening on morpho-physiological and yield parameters in black gram (Vigna mungo L.). Int J Chem Stud. 2017;5(4):439-41.
  35. 35. Paparella S, Araújo SS, Rossi G, Wijayasinghe MA, Carbonera D, Balestrazzi A. Seed priming: state of the art and new perspectives. Plant Cell Rep. 2015;34:1281-93. https://doi.org/10.1007/s00299-015-1784-y
  36. 36. Mehta DK, Thakur C, Thakur KS, Thakur S. Effect of solid matrix priming of seed on emergence, growth and yield of cucumber. Green Farm. 2013;4(3):364-6.
  37. 37. Jisha KC, Vijayakumari K, Puthur JT. Seed priming for abiotic stress tolerance: An overview. Acta Physiologiae Plantarum. 2013;35:1381-96. https://doi.org/10.1007/s11738-012-1186-5
  38. 38. Taiz L, Lazar T, Zeiger E. Plant physiology. Ann Bot. 2006; 91(6):750–1.
  39. 39. Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat. Environ Exp Bot. 2008;63(1-3):224-31. https://doi.org/10.1016/j.envexpbot.2007.10.018
  40. 40. Barsa SM, Muhammad Farooq MF, Abdul Wahid AW. Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Grow Reg. 2006;49 (2):285-94. https://doi.org/10.1007/s10725-006-9138-y
  41. 41. Nawaz J, Hussain M, Jabbar A, Nadeem GA, Sajid M, Subtain MU, et al. Seed priming a technique. Int J Agric Crop Sci. 2013;6:1373-81.
  42. 42. Saha BN, Islam W, Khan AR. Effect of Azadirachtin on the growth and development of the pulse beetle, Callosobruchus chinensis L. J Asiat Soc Bangladesh Sci. 2006;32(1):69-5.
  43. 43. Bowers JH, Locke JC. Effect of botanical extracts on the population density of Fusarium oxysporum in soil and control of Fusarium wilt in the greenhouse. Plant Dis. 2000;84(3):300-5. https://doi.org/10.1094/PDIS.2000.84.3.300
  44. 44. Borsani O, Valpuesta V, Botella MA. Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol. 2001;126(3):1024-30. https://doi.org/10.1104/pp.126.3.1024
  45. 45. Pérez-Jaramillo JE, Mendes R, Raaijmakers JM. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol. 2016;90:635-44. https://doi.org/10.1007/s11103-015-0337-7
  46. 46. Jurado MM, Suárez-Estrella F, Toribio AJ, Martínez-Gallardo MR, Estrella-González MJ, López-González JA, et al. Biopriming of cucumber seeds using actinobacterial formulas as a novel protection strategy against Botrytis cinerea. Front Sustain Food Syst. 2023
  47. 4;7:1158722. https://doi.org/10.3389/fsufs.2023.1158722
  48. 47. Usmanova A, Brazhnikova Y, Omirbekova A, Kistaubayeva A, Savitskaya I, Ignatova L. Biopolymers as seed-coating agent to enhance microbially induced tolerance of barley to phytopathogens. Polymers. 2024;16(3):376. https://doi.org/10.3390/polym16030376
  49. 48. Behera S, Priyadarshanee M, Das S. Polyhydroxyalkanoates, the bioplastics of microbial origin: Properties, biochemical synthesis and their applications. Chemosphere. 2022;294:133723. https://doi.org/10.1016/j.chemosphere.2022.133723
  50. 49. Ma Y. Seed coating with beneficial microorganisms for precision agriculture. Biotechnol Adv. 2019;37(7):107423. https://doi.org/10.1016/j.biotechadv.2019.107423
  51. 50. Ignatova L, Usmanova A, Brazhnikova Y, Omirbekova A, Egamberdieva D, Mukasheva T, et al. Plant probiotic endophytic Pseudomonas flavescens D5 strain for protection of barley plants from salt stress. Sustain. 2022;14(23):15881. https://doi.org/10.3390/su142315881
  52. 51. Reddy AS, Madhavi GB, Reddy KG, Yellareddygari SK, Reddy MS. Effect of seed biopriming with Trichoderma viride and Pseudomonas fluorescens in chickpea (Cicer arietinum) in Andhra Pradesh, India. In: Plant growth promoting rhizobacteria (PGPR) for sustainable agriculture: Proceedings of the 2 nd Asian PGPR Conference, Beijing. China. 2011:324-429.
  53. 52. Ahmad M, Zahir ZA, Asghar HN, Arshad M. The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol. 2012;62:1321-30. https://doi.org/10.1007/s13213-011-0380-9
  54. 53. Abadeh RM, Sharif SR, Alikabar I. Influence of nitrogen and seed biopriming with PGPR on yield and agronomic characteristics of red lentil. J Appl Environ Biol Sci. 2013;3:117-23.
  55. 54. Anitha, Munmigath UV, Madhusudhan, Kumar P. Effect of organic, inorganic seed bio-priming on soybean germination and yield parameter. Biolife 2013;1:223-30. https://doi.org/10.5281/zenodo.7193638
  56. 55. Choudhary M, Patel BA, Meena VS, Yadav RP, Ghasal PC. Seed bio-priming of green gram with Rhizobium and levels of nitrogen and sulphur fertilization under sustainable agriculture. Legume Res-An Int J. 2019;42(2):205-10. http://doi.org/10.18805/LR-3837
  57. 56. Chakraborty A, Bordolui SK. Impact of seed priming with Ag-nanoparticle and GA3 on germination and vigour in green gram. Int J Curr Microbiol Appl Sci. 2021;10(03):1499-506. https://doi.org/10.20546/ijcmas.2021.1003.119
  58. 57. Kaiser BN, Gridley KL, Ngaire Brady J, Phillips T, Tyerman SD. The role of molybdenum in agricultural plant production. Ann Bot. 2005;96(5):745-54. https://doi.org/10.1093/aob/mci226
  59. 58. Mohandas S. Effect of presowing seed treatment with molybdenum and cobalt on growth, nitrogen and yield in bean (Phaseolus vulgaris L.). Plant Soil. 1985:86:283-5. https://doi.org/10.1007/BF02182905
  60. 59. Choudhury A, Bordolui SK. Seed invigouration treatment with sodium molybdate (Na2MoO4) Nutri-priming for improvement of quality performance of Bengal gram (Cicer arietinum L.). Pharma Innov J. 2022;11(12):3381-6.
  61. 60. Raja K, Chinnasamy G, Albert VA, Parameswari K, Vijayageetha V, Pradeep D. ZnO nanoparticles seed invigouration for the maintenance of seed vigour and viability in black gram. Legume Res- An Int J. 2024;1:1-9. https://doi.org/10.18805/LR-5267
  62. 61. Rehman AU, Farooq M, Ali H, Sarwar N, Qamar R. Thermal hardening improves germination and early seedling growth of chickpea. Asian J Agric Biol. 2014;2(1):51-8.
  63. 62. Sarraf M, Deamici KM, Taimourya H, Islam M, Kataria S, Raipuria RK, et al. Effect of magnetopriming on photosynthetic performance of plants. Int J Mol Sci. 2021;22:9353. https://doi.org/10.3390/ijms22179353
  64. 63. de Faria RQ, dos Santos ARP, Batista TB, Gariepy Y, da Silva EAA, Sartori MMP et al. The effect of magneto-priming on the physiological quality of soybean seeds. Plants. 2023;12(7):1477. https://doi.org/10.3390/plants12071477
  65. 64. Araújo SD, Paparella S, Dondi D, Bentivoglio A, Carbonera D, Balestrazzi A. Physical methods for seed invigouration: Advantages and challenges in seed technology. Front Plant Sci. 2016;7:646. https://doi.org/10.3389/fpls.2016.00646
  66. 65. Anand A, Nagarajan S, Verma APS, Joshi DK, Pathak PC, Bhardwaj J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian J Biochem Biophys. 2012;49(1):63–70.
  67. 66. De Souza A, Garcí D, Sueiro L, Gilart F, Porras E, Licea L. Pre sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics. 2006;27(4):247–57. https://doi.org/10.1002/bem.20206
  68. 67. Baby SM, Narayanaswamy GK, Anand A. Superoxide radical production and performance index of photosystem II in leaves from magneto-primed soybean seeds. Plant Signal Behav. 2011;6:1635–7. https://doi.org/10.4161/psb.6.11.17720
  69. 68. Reddy KV, Reshma SR, Jareena S, Nagaraju M. Exposure of green gram seeds (Vigna radiata var. radiata) to static magnetic fields: Effects on germination and α-amylase activity. Res J Seed Sci. 2012;5(3):106-14. http://scialert.net/fulltext/?doi=rjss.2012.106.114&org=10
  70. 69. Rajendra P, Sujatha Nayak H, Sashidhar RB, Subramanyam C, Devendranath D, Gunasekaran B, et al. Effects of power frequency electromagnetic fields on growth of germinating Vicia faba L., the broad bean. Electromagn Biol Med. 2005;24(1):39-54. https://doi.org/10.1081/JBC-200055058
  71. 70. Maity JP, Mishra D, Chakraborty A, Saha A, Santra SC, Chanda S. Modulation of some quantitative and qualitative characteristics in rice (Oryza sativa L.) and mung (Phaseolus mungo L.) by ionizing radiation. Radiat Phys Chem. 2005;74(5):391-4. https://doi.org/10.1016/j. radphyschem.2004.08.005
  72. 71. Guajardo-Flores D, Serna-Guerrero D, Serna-Saldívar SO, Jacobo-Velázquez DA. Effect of germination and UV-C radiation on the accumulation of flavonoids and saponins in black bean seed coats. Cereal Chem. 2014;91(3):276-9. https://doi.org/10.1094/CCHEM-08-13-0172-R
  73. 72. Hamid N, Jawaid F. Influence of seed pre-treatment by UV-A and UV-C radiation on germination and growth of Mung beans. Pak J Chem. 2011;1(4):164-7. https://doi.org/10.15228/2011.v01.i04.p04
  74. 73. Shaukat SS, Farooq MA, Siddiqui MF, Zaidi SA. Effect of enhanced UV-B radiation on germination, seedling growth and biochemical responses of Vigna mungo (L.) Hepper. Pak J Bot. 2013;45(3):779-85.
  75. 74. Dubey UK, Padmavathi S, Kumar A. Effect of seed pelleting on growth, yield and seed quality parameters of black gram. J Food Legumes 2023;36(4):273-7. https://doi.org/10.59797/jfl.v36.i4.163
  76. 75. Raj B Anju, Raj K Sheeja. Effect of seed invigouration treatments on physiological parameters and nodulation of grain cowpea [Vigna unguiculata (L.) Walp]. Legume Res-An Int J. 2021;44(8):962-6. https://doi.org/10.18805/LR-4204
  77. 76. Hussain S, Khan F, Hussain HA, Nie L. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci. 2016;7:116. https://doi.org/10.3389/fpls.2016.00116
  78. 77. Pandita VK, Anand A, Nagarajan S. Enhancement of seed germination in hot pepper following presowing treatments. Seed Sci Technol. 2007;35(2):282-90. https://doi.org/10.15258/sst.2007.35.2.04
  79. 78. Chen K, Fessehaie A, Arora R. Dehydrin metabolism is altered during seed osmopriming and subsequent germination under chilling and desiccation in Spinacia oleracea L. cv. Bloomsdale: possible role in stress tolerance. Plant Sci. 2012;183:27-36. https://doi.org/10.1016/j.plantsci.2011.11.002
  80. 79. Bewley JD, Bradford KJ, Hilhorst HW, Nonogaki H, Bewley JD, Bradford KJ, et al. Seeds: Physiology of development, germination and dormancy. Germination. 3rd Edition. 2013.
  81. 80. Biswas S, Ghosh A, Paul A, Biswas AK. Isolation, purification and partial characterization of low molecular weight peptides from non-primed and haloprimed seedlings of Vigna mungo L. and Cajanus cajan L. and their impact on physiological aspects under NaCl exposure. J Exp Biol Agric Sci. 2019;7(1):12-24.
  82. 81. Kubala S, Garnczarska M, Wojtyla Ł, Clippe A, Kosmala A, Żmieńko A, et al. Deciphering priming-induced improvement of rapeseed (Brassica napus L.) germination through an integrated transcriptomic and proteomic approach. Plant Sci. 2015;231:94-113. https://doi.org/10.1016/j.plantsci.2014.11.008
  83. 82. Thomas DT, Puthur JT. Amplification of abiotic stress tolerance potential in rice seedlings with a low dose of UV-B seed priming. Funct Plant Biol. 2019;46(5):455-66.
  84. 83. Alzahrani O, Abouseadaa H, Abdelmoneim TK, Alshehri MA, Mohamed EM, El-Beltagi HS, et al. Agronomical, physiological and molecular evaluation reveals superior salt-tolerance in bread wheat through salt-induced priming approach. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2021;49(2):12310. https://doi.org/10.15835/nbha49212310
  85. 84. Biswas S, Seal P, Majumder B, Biswas AK. Efficacy of seed priming strategies for enhancing salinity tolerance in plants: An overview of the progress and achievements. Plant Stress. 2023;100186.
  86. 85. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, et al. Trichoderma: The genomics of opportunistic success. Nat Rev Microbiol. 2011;9(10):749-59.
  87. 86. Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res. 2020;238:126486. https://doi.org/10.1016/j.micres.2020.126486
  88. 87. Ghassemi-Golezani K, Aliloo AA, Valizadeh M, Moghaddam M. Effects of hydro and osmo-priming on seed germination and field emergence of lentil (Lens culinaris Medik.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 2008;36(1):29-33. https://doi.org/10.15835/nbha36186
  89. 88. Raj AB, Raj SK, Prathapan K, Radhakrishnan NV. Nutri-priming with zinc sulphate and borax for early growth and seedling vigour in grain cowpea [Vigna unguiculata (L.) Walp]. Legume Res-An Int J. 2020;43(2):258-62.
  90. 89. Mrinali MM, Singh KK, Datta SP, Meena MC, Dikshit HS, Sherry Rachel Jacob, et al. Zn-seed treatments to enhance seedling vigour of mungbean (Vigna radiata L.). Biol Forum - An Int J. 2022;14(3):647-52.
  91. 90. Maroufi K, Farahani HA, Moradi O. Evaluation of nano priming on germination percentage in green gram (Vigna radiata L.). Adv Environ Biol. 2011;5 (11):3659-64.
  92. 91. Das G, Dutta P. Effect of nano-priming with zinc oxide and silver nanoparticles on storage of chickpea seeds and management of wilt disease. J Agric Sci Technol. 2022;24(1):213-26.
  93. 92. Masuthi, DA, Vyakaranahal BS Deshpande VK. Influence of pelleting with micronutrients and botanical on growth, seed yield and quality of vegetable cowpea. Karnataka J Agric Sci. 2009;22(4):898-900.
  94. 93. Dugesar V, Chaurasia AK, Bara BM, Sahi VP. Enhancement of seed germination and seedling vigour through different seed priming treatments in black gram (Vigna mungo L.). Legume Res- An Int J. 2022.
  95. 94. El-Mohamedy RS, Abd El-Baky MM. Evaluation of different types of seed treatment on control of root rot disease, improvement growth and yield quality of pea plant in Nobaria province. Res J Agric Biol Sci. 2008;4:611-22.
  96. 95. Tiwari TN, Patel SK, Maurya DP, Katiyar PK. Efficacy of various priming treatments on seed quality, germination enzymes and growth of mung bean cultivars under normal and deficit moisture conditions. J Food Legumes. 2019;32(4):231-5.
  97. 96. Farooq M, Rehman A, Al-Alawi AK, Al-Busaidi WM, Lee DJ. Integrated use of seed priming and biochar improves salt tolerance in cowpea. Scientia Horticulturae. 2020;272:109507.
  98. 97. Biscaro GA, Goulart Junior SA, Soratto RP, Freitas Júnior NA, Motomiya AV, Calado Filho GC. Molybdenum applied to seeds and side dressing nitrogen on irrigated common bean in Cerrado soil. Sci Agrotechnol. 2009;33:1280-7. https://doi.org/10.1590/S1413-70542009000500012
  99. 98. Dubey A, Malla MA, Kumar A, Khan ML, Kumari S. Seed bio-priming with ACC deaminase producing bacterial strains alleviates impact of drought stress in Soybean (Glycine max (L.) Merr.). Rhizosphere. 2024;30:100873. https://doi.org/10.1016/j.rhisph.2024.100873
  100. 99. Johnson SE, Lauren JG, Welch RM, Duxbury JM. A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (Cicer arietinum), lentil (Lens culinaris), rice (Oryza sativa) and wheat (Triticum aestivum) in Nepal. Exp Agric. 2005;41(4):427-48.
  101. 100. Khan A, Khalil SK, Khan AZ, Marwat KB, Afzal A. The role of seed priming in semi-arid area for mung bean phenology and yield. Pak J Bot. 2008;40(6):2471-80.
  102. 101. Gour L, Ramakrishnan RS, Panwar NK, Sharma R, Pathak N, Koutu GK. Seed priming: An old empirical technique with new contemporary perspectives in respect to Pisum sativum L: A review. Agric Rev. 2019;40(2):136-42.
  103. 102. Abdel-Aziz H. Effect of priming with chitosan nanoparticles on germination, seedling growth and antioxidant enzymes of broad beans. Catrina: Int J Environ Sci. 2019 1;18(1):81-6.
  104. 103. Sharma P, Gautam A, Kumar V, Guleria P. MgO nanoparticles priming promoted the growth of black chickpea. J Agric Food Res. 2022;10:100435.

Downloads

Download data is not yet available.