Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Plant toxicity of four HMs: Arsenate, cadmium, chromium and lead: A mini review

DOI
https://doi.org/10.14719/pst.7926
Submitted
25 February 2025
Published
13-07-2025 — Updated on 21-07-2025
Versions

Abstract

The presence of heavy metals (HMs) in agricultural soils plays a crucial role in plant life, as these elements are necessary for plant growth and development. However, they can also have detrimental effects on plants and the environment. In recent years, research on HMs has gained significant attention and is expected to become a dominant field due to their harmful impact on humans, animals and plants. The phytotoxicity of HMs is influenced by several factors, including the specific metal type, exposure route, dosage, plant age, nutritional status and environmental conditions. Among the most toxic metals to plants, arsenic, cadmium, chromium and lead are considered priority contaminants due to their severe impact on plant health. The current review discusses important HMs, their toxicity mechanisms to the plants and their interactions with special emphasis on the arsenate, cadmium, chromium and lead.

References

  1. 1. Al-Aradi HJ, Al-Najjar MA, Awad KM, Abass, MH. Combination effect between lead and salinity on anatomical structure of date palm Phoenix dactylifera L. seedlings. Agrivita. 2020;42(3):487–98. https://doi.org/10.17503/agrivita.v42i3.2511
  2. 2. Gabash HM, Resan AZ, Awad KM, Suhim AA, Abdulameer AH. Biochemical responses of date palm Phoenix dactylifera L. to combined stress of salinity and nickel. Basrah Journal of Agricultural Sciences. 2024;37(1):236-46. http://doi.org/10.37077/25200860.2024.37.1.18
  3. 3. Razak NJ, Mohammed HA, Awad KM. Assessment of HMs phytotoxicity on seed germination and seedling growth of tomato plants (Solanum Lycopersicum L.). Natural and Engineering Sciences. 2024;9(3):163-76. https://doi.org/10.28978/nesciences.1606578
  4. 4. Chukwu EC, Gulser C. Morphological, physiological and anatomical effects of HMs on soil and plant health and possible remediation technologies. Soil Security. 2025;18:100178. https://doi.org/10.1016/j.soisec.2025.100178
  5. 5. Duffus JH. HMs-a meaningless term? Pure Appl Chem. 2002;74(5):793–807. https://doi.org/10.1351/pac200274050793
  6. 6. Rajendran S, Rathinam V, Sharma A, Vallinayagam, S, Muthusamy M. Arsenic and Environment: A systematic review on arsenic sources, uptake mechanism in plants, health hazards and remediation strategies. Top Catal. 2024;67:325–41. https://doi.org/10.1007/s11244-023-01901-9
  7. 7. Ahmed DAEA, Slima DF, Al-Yasi HM, Hassan LM, Galal TM. Risk assessment of trace metals in Solanum lycopersicum L. (tomato) grown under wastewater irrigation conditions. Environmental Science and Pollution Research. 2023;30(14):42255–66. https://doi.org/10.1007/s11356-023-25157-8
  8. 8. Aslam H, Umar A, Khan MU, Honey S, Ullah A, Ashraf MA, et al. A review on HMs in ecosystems, their sources, roles and impact on plant life. J Genet Med Gene Ther. 2024; 7(1):20-34. https://dx.doi.org/10.29328/journal.jgmgt.1001012
  9. 9. Seneviratne M, Rajakaruna N, Rizwan M, MadawalaHMsP, Ok YS, Vithanage M. Heavy metal-induced oxidative stress on seed germination and seedling development: A critical review. Environmental Geochemistry and Health. 2019;41(4):1813–31. https://doi.org/10.1007/s10653-017-0005-8
  10. 10. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five HMs: Mercury, lead, chromium, cadmium and arsenic. Front Pharmacol. 2021;12:643972. https://doi.org/10.3389/fphar.2021.643972
  11. 11. Truong T, Hoa H, Tran T, Tran H. Management of HMs in rice (Oryza sativa) soils by silicon rich biochar materials. Indian J Agricul Sci. 2024;94(3):241–5. https://doi.org/10.56093/ijas.v94i3.142653
  12. 12. Madhu PM, Sadagopan RS. Effect of HMs on growth and development of cultivated plants with reference to cadmium, chromium and lead: A review. J Stress Physiol Biochem. 2020;16(3):84-102. http://www.jspb.ru/issues/2020/N3/JSPB_2020_3_84-102.pdf
  13. 13. Sudhir KU, Priyanka D, Vinay K, Himanshu KP, Prasann K, Vishnu, DR, et al. Efficient removal of total arsenic (As3+/5+) from contaminated water by novel strategies mediated iron and plant extract activated waste flowers of marigold. Chemosphere. 2023;313:137551. https://doi.org/10.1016/j. chemosphere.2022.137551
  14. 14. Devi VNM. Sources and toxicological effects of some HMs-A mini review. Journal of Toxicological Studies. 2024;2(1):404. https://doi.org/10.59400/jts.v2i1.404
  15. 15. WHO. World Health Organization-Guidelines for drinking water Quality, 4th ed. Geneva. 2011;28:327–97.
  16. 16. Xu XY, McGrath SP, Zhao FJ. Rapid reduction of arsenate in the medium mediated by plant roots. New Phytologist. 2007;176(3):590-9. https://doi:10.1111/j.1469-8137.2007.02195.x 27
  17. 17. Muzaffar S, Khan J, Srivastava R, Gorbatyuk MS, Athar M. Mechanistic understanding of the toxic effects of arsenic and warfare arsenicals on human health and environment. Cell Biol Toxicol. 2022:1–26. https://doi.org/10.1007/s10565-022-09710-8
  18. 18. Ajmal M, Hussain Khan AH, Ahmad S, Ahmad A. Role of sawdust in the removal of copper (II) from industrial wastes. Water Research. 1998;32(10):3085–91. https://doi.org/10.1016/S0043-1354(98)00067-0
  19. 19. Balakumar P, Kaur J. Arsenic exposure and cardiovascular disorders: An overview. Cardiovascular Toxicology. 2009;9(4):169-76. https://doi.org/10.1007/s12012-009-9050-6
  20. 20. Raab A, Ferreira K, Meharg AA, Feldmann J. Can arsenic-phytochelatin complex formation be used as an indicator for toxicity in Helianthus annuus? J Exp Bot. 2007;58(6):1333-8. https://doi.org/10.1093/jxb/erl300
  21. 21. Zhao FJ, Ma JF, Meharg AA, McGrath SP. Arsenic uptake and metabolism in plants. New Phytologist. 2008;181(4):777-94. https://doi:10.1111/j.1469-8137.2008.02716.x
  22. 22. Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The effects of cadmium toxicity. International Journal of Environmental Research and Public Health. 2020;17(11):3782. https://doi.org/10.3390/ijerph17113782
  23. 23. Pande A, Mun B-G, Methela NJ, Rahim W, Lee D-S, Lee G-M, et al. Heavy metal toxicity in plants and the potential NO-releasing novel techniques as the impending mitigation alternatives. Front Plant Sci. 2022;13:1019647. https://doi.org/doi:10.3389/fpls.2022.1019647
  24. 24. Sinha D, Datta S, Mishra R, Agarwal P, Kumari T, Adeyemi SB, et al. Negative impacts of arsenic on plants and mitigation strategies. Plants. 2023;12(9):1815. https://doi.org/10.3390/plants12091815
  25. 25. Ranjan A, Gautam S, Michael R, Shukla T, Trivedi PK. Arsenic-induced galactinol synthase 1 gene, at GolS1, provides arsenic stress tolerance in Arabidopsis thaliana. Environ Exp Bot. 2023;207:105217. https://doi.org/10.1016/j.envexpbot.2023.105217
  26. 26. Ghorbani A, Pishkar L, Roodbari N, Pehlivan N, Wu C. Nitric oxide could allay arsenic phytotoxicity in tomato (Solanum lycopersicum L.) by modulating photosynthetic pigments, phytochelatin metabolism, molecular redox status and arsenic sequestration. Plant Physiol Biochem. 2021;167:337–48. https://doi.org/10.1016/j.plaphy.2021.08.019
  27. 27. Jiang Y, Chen X, Cao X, Wang C, Yue L, Li X, et al. Mechanistic insight into the intensification of arsenic toxicity to rice (Oryza sativa L.) by nanoplastic: Phytohormone and glutathione metabolism modulation. Journal of Hazardous Materials. 2024;469: 134086. https://doi.org/10.1016/j.jhazmat.2024.134086.
  28. 28. Low KS, Lee CK, Liew SC. Soprtion of cadmium and lead from aqueous solutions by spent grain. Process Biochemistry. 2000;36(1–2):59-64. https://doi:10.1016/S0032-9592(00)00177-1
  29. 29. Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. https://doi.org/ 10.1016/j.heliyon.2020.e0
  30. 30. Chen JM, Hao OJ. Microbial chromium (VI) reduction. Critical Reviews in Environmental Science and Technology. 1998;28(3):219-51. https://doi.org/10.1080/10643389891254214
  31. 31. Rafique M, Noreen Z, Usman S, Shah AA, Taj H, El-Sheikh MA, et al. Mitigation of adverse effect of cadmium toxicity in lettuce (Lactuca sativa L.) through foliar application of chitosan and spermidine. Sci Rep. 2025;15:9062. https://doi.org/10.1038/s41598-025-93672-4
  32. 32. Al-Jashaami SHK, Almudhafar SM, Almayahi BA . The impact of climatic characteristics on increasing soil salinity in Manathira district center. Natural and Engineering Sciences. 2024;9(2):426-40. https://doi.org/10.28978/nesciences.1574447
  33. 33. Singh KK, Singh AK, Hasan SH. Low cost bio-sorbent “wheat bran” for the removal of cadmium from wastewater: Kinetic and equilibrium studies. Bioresource Technology. 2006;97(8):994–1001. https://doi:10.1016/j.biortech.2005.04.043
  34. 34. Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci. 2017;8:1867. https://doi.org/10.3389/fpls.2017.01867
  35. 35. Sharma A, Soares, C, Sousa B, Martins M, Kumar V, Shahzad B, et al. Nitric oxide-mediated regulation of oxidative stress in plants under metal stress: A review on molecular and biochemical aspects. Physiologia Plantarum. 2020;168:318–44. https://doi.org/doi: 10.1111/ppl.13004
  36. 36. Piacentini D, Ronzan M, Fattorini L, Della Rovere F, Massimi L, Altamura M, et al. Nitric oxide alleviates cadmium-but not arsenic-induced damages in rice roots. Plant Physiol Biochem. 2020;151:729–42. https://doi.org/doi:10.1016/ j.plaphy.2020.04.004
  37. 37. Ionela CV, Vasile S, Maria G. Analysis of heavy metal impacts on cereal crop growth and development in contaminated soils. Agriculture. 2023;13(10):1983. https://doi.org/doi.org/10.3390/agriculture1
  38. 38. Singh I, Shah K. Evidences for suppression of cadmium induced oxidative stress in presence of sulphosalicylic acid in rice seedlings. Plant Growth Regul. 2015;76:99–110. https://doi.org/10.1007/s10725-015-0023-4
  39. 39. Vinodhini V, Das N. Relevant approach to assess the performance of sawdust as adsorbent of chromium (VI) ions from aqueous solutions. International Journal of Environmental Science & Technology. 2009 7(1):85-92. https://doi:10.1007/bf03326120
  40. 40. Eastmond DA, MacGregor JT, Slesinski RS. Trivalent chromium: Assessing the genotoxic risk of an essential trace element and widely used human and animal nutritional supplement. Critical Reviews in Toxicology. 2008;38(3):173-90. https://doi:10.1080/10408440701845401
  41. 41. Abdullah, Wani KI, Naeem M, Jha PK, Jha UC, Aftab T, Prasad PVV. Systems biology of chromium-plant interaction: insights from omics approaches. Front Plant Sci. 2024 Jan 8;14:1305179. https://doi.org/10.3389/fpls.2023.1305179
  42. 42. Bingol Ö, Battal A, Erez ME. The effects of cadmium concentrations on germination and physiological parameters in Tomato (Solanum lycopersicum Lam.). Journal of Agricultural Production. 2023;4(2):111–6. https://doi.org/10.56430/japro.1365163
  43. 43. Zulfiqar U, Haider FU, Ahmad M, Hussain S, Maqsood MF, Ishfaq M, et al. Chromium toxicity, speciation and remediation strategies in soil-plant interface: A critical review. Front Plant Sci. 2023;13:1081624. https://doi.org/doi:doi:10.3389/fpls.2022.1081624
  44. 44. Abass MH, Hassan, ZK, Al-Jabary KM . Assessment of HMs pollution in soil and date palm (Phoenix dactylifera L.) leaves sampled from Basra/Iraq governorate. Advances in Environmental Sciences. 2015;7(1):52-9.
  45. 45. Madhi Q, Abass MH, Matrood AAA . The efficiency of some bioagent fungi in reduction of wheat seed decay and seedling damping-off disease with HMs interaction. Biodiversitas Journal of Biological Diversity. 2021;22(9). https://doi.org/10.13057/biodiv/d220946
  46. 46. Shoaib A, Khurshid S, Javaid A. Cloncurry buffel grass mitigated Cr(III) and Cr(VI) toxicity in tomato plant. Scientific Reports. 2022;12(1):20952. https://doi.org/10.1038/s41598-022-25604-5
  47. 47. Saud S, Wang D, Fahad S, Javed T, Jaremko M, Abdelsalam NR, et al. The impact of chromium ion stress on plant growth, developmental physiology and molecular regulation. Frontiers in Plant Science. 2022:13. https://doi.org/10.3389/fpls.2022.994785
  48. 48. Dotaniya ML, Dotaniya CK, Solanki P, Meena VD, Doutaniya R K. Lead contamination and its dynamics in soil–plant system. In lead in plants and the environment. Springer. 2020:83–98. https://doi.org/10.1007/978-3-030-21638-2_5
  49. 49. Ali S, Ullah S, Umar H, Saghir A, Nasir S, Aslam, Z, et al. Effects of HMs on soil properties and their biological remediation. Ind J Pure App Biosci. 2022;10(1):40-6. http://ddoi.org/10.18782/2582-2845.8856
  50. 50. Rashid A, Schutte BJ, Ulery A, Deyholos MK, Sanogo S, Lehnhoff EA, et al. Heavy metal contamination in agricultural soil: Environmental pollutants affecting crop health. Agronomy (Basel, Switzerland). 2023;13(6):1521. https://doi.org/10.3390/agronomy13061521
  51. 51. Mandal G, Mandal (Nandi) A, Chakraborty A. The toxic effect of lead on human health. Human Biology and Public Health. 2022:3. https://doi.org/10.52905/hbph2022.3.45
  52. 52. Hauptman M, Bruccoleri R, Woolf AD. An update on childhood lead poisoning. Clin Pediatr Emerg Med. 2017;18(3):181-92. https://doi.org/10.1016%2Fj.cpem.2017.07.010
  53. 53. Kanwal A, Farhan M, Sharif F, Hayyat MU, Shahzad L, Ghafoor GZ. Effect of industrial wastewater on wheat germination, growth, yield, nutrients and bioaccumulation of lead. Sci Rep. 2020;10:1–9. https://doi.org/10.1038/s41598-020-68208-7
  54. 54. WHO/FAO. General standards for contaminants and toxins in food and feed, Rome. Food and Agriculture Organization. 2016.
  55. 55. Bali AS, Sidhu GPS. Arsenic acquisition, toxicity and tolerance in plants - from physiology to remediation: A review. Chemosphere. 2021;283:131050. https://doi.org/10.1016/j.chemosphere.2021.131050
  56. 56. Hu Y, Li J, Lou B, Wu R, Wang G, Lu C, et al. The role of reactive oxygen species in arsenic toxicity. Biomolecules. 2020;10(2):240. https://doi.org/10.3390/biom10020240
  57. 57. Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity and detoxification in plants. Reviews of Environmental Contamination and Toxicology. Springer New York. 2011:113-36. https://doi.org/10.1007/978-1-4419-9860-6_4
  58. 58. Gupta M, Dwivedi V, Kumar S, Patel A, Niazi P, Yadav VK. Lead toxicity in plants: mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. Plant Signaling & Behavior. 2024;19(1):2365576. https://doi.org/10.1080/15592324.2024.2365576
  59. 59. Soni S, Jha AB, Dubey RS, Sharma P. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles. The Science of the Total Environment. 2024;912:168826. https://doi.org/10.1016/j.scitotenv.2023.168826
  60. 60. Haider FU, Liqun C, Coulter JA, Cheema SA, Wu J, Zhang R, et al. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety. 2021;211:111887. https://doi.org/10.1016/j.ecoenv.2020.111887
  61. 61. Liang L, Chenchang W, Tao C. Advances in understanding cadmium stress and breeding of cadmium-tolerant crops. Rice Science. 2024;31(5):507–25. https://doi.org/10.1016/j.rsci.2024.06.006
  62. 62. Shanker A, Cervantes C, Lozatavera H, Avudainayagam S. Chromium toxicity in plants. Environment International. 2005;31(5):739–53. https://doi.org/10.1016/j.envint.2005.02.003
  63. 63. Asiminicesei DM, Fertu DI, Gavrilescu M. Impact of heavy metal pollution in the environment on the metabolic profile of medicinal plants and their therapeutic potential. Plants. 2024;13(6) 913. https://doi.org/10.3390/plants13060913
  64. 64. El-Sappah AH, Zhu Y, Huang Q, Chen B, Soaud SA, Abd Elhamid MA, et al. Plants molecular behavior to HMs: from criticality to toxicity. Frontiers in Plant Science. 2024:15. https://doi.org/10.3389/fpls.2024.1423625

Downloads

Download data is not yet available.