Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Waterlogging induced morpho-physiological and biochemical changes in maize (Zea mays L.) seedlings

DOI
https://doi.org/10.14719/pst.7929
Submitted
25 February 2025
Published
17-10-2025

Abstract

This study investigated the effects of waterlogging on two maize genotypes (BML6 and BML7) at two distinct seedling stages as Set 1 and Set 2 (11 – 17 days and 21 – 27 days). Waterlogging significantly impacted plant growth, leading to reduced leaf area (LA) in both genotypes. The tolerant genotype BML7 maintained a significantly larger LA (113 cm²) compared to the sensitive genotype BML6 (92.09 cm²) by the 27th day of stress exposure. Across both developmental stages, leaf senescence was more pronounced in BML6, with a 50 % leaf death rate, compared to 37 % in BML7. Waterlogging stress adversely affected plant growth, resulting in a reduction in final biomass by 20 % in BML6 and 15 % in BML7. Additionally, waterlogging led to a significant decline in relative water content (RWC) (by approximately 15 %) and chlorophyll content (by 20 %) in both genotypes. Biochemical assessments indicated marked changes, with total carbohydrate content decreasing by 15 % in BML6 and 10 % in BML7. Hydrogen peroxide (H2O2) levels increased threefold at the late seedling stage, while peroxidase (POD) activity increased by 30 % in BML7 under waterlogged conditions, suggesting a stronger antioxidant response in the tolerant genotype. These findings demonstrate significant genotypic variation in waterlogging tolerance among maize cultivars. Further research is crucial to identify key physiological, biochemical and morphological traits associated with waterlogging stress tolerance in maize. Characterizing these traits will facilitate the development of maize cultivars with enhanced resilience to waterlogging stress, a critical adaptation in light of the increasing frequency and intensity of flooding events driven by climate change.

References

  1. 1. Jackson MB, Colmer TD. Response and adaptation by plants to flooding stress. Ann Bot. 2005;96(4):501-5. https://doi.org/10.1093/aob/mci205
  2. 2. Aggarwal PK, Kalra N, Chander S, Pathak H. Info Crop: a dynamic simulation model for the assessment of crop yields, losses due to pests, and environmental impact of agro-ecosystems in tropical environments. I. Model description. Agric Syst. 2006;89(1):1-25. https://doi.org/10.1016/j.agsy.2005.08.001
  3. 3. Voesenek LA, Colmer TD, Pierik R, Millenaar FF, Peeters AJ. How plants cope with complete submergence. New Phytol. 2006;170:213-26. https://doi.org/10.1111/j.1469-8137.2006.01692.x
  4. 4. Ferreira JL, Magalhaes PC, Borem A. Evaluation of three physiologic characteristics in four cycles of selection in maize cultivar BRS-4154 under tolerance to waterlogging of the soil. Cienc Agrotec. 2008;32:1719-23. https://doi.org/10.1590/S1413-70542008000600006
  5. 5. Dat JF, Capelli N, Folzer H, Bourgeade P, Badot PM. Sensing and signalling during plant flooding. Plant Physiol Biochem. 2004;42(4):273-82. https://doi.org/10.1016/j.plaphy.2004.02.003
  6. 6. Bailey-Serres J, Voesenek LACJ. Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol. 2008;59:313-39. https://doi.org/10.1146/annurev.arplant.59.032607.092752
  7. 7. FAOSTAT. Food and Agriculture Organization of the United Nations. Rome: FAO; 2023.
  8. 8. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press; 2021.
  9. 9. Zaidi PH, Rafique S, Rai PK, Singh NN, Srinivasan G. Tolerance to excess moisture in maize (Zea mays L.): susceptible crop stages and identification of tolerant genotypes. Field Crops Res. 2004;90(2-3):189-202. https://doi.org/10.1016/j.fcr.2004.03.002
  10. 10. Kaur G, Vikal Y, Kaur L, Kalia A, Mittal A, Kaur D, et al. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. Plant Sci. 2021;304:110823. https://doi.org/10.1016/j.plantsci.2021.110823
  11. 11. Shi F, Yamamoto R, Shimamura S, Hiraga S, Nakayama N, Nakamura T, et al. Cytosolic ascorbate peroxidase 2 (cAPX2) is involved in the soybean response to flooding. Phytochemistry. 2008;69:1295-303. https://doi.org/10.1016/j.phytochem.2008.01.007
  12. 12. Hashiguchi A, Sakata K, Komatsu S. Proteome analysis of early-stage soybean seedlings under flooding stress. J Proteome Res. 2009;8(4):2058-69. https://doi.org/10.1021/pr801051m
  13. 13. Younis ME, El-Shahaby OA, Nemat AMM, El-Basatwisky MZ. Kinetin alleviates the influence of waterlogging and salinity on growth and affects the production of plant growth regulators in Vigna sinensis and Zea mays. Agronomy. 2003;23:277-85. https://doi.org/10.1051/agro:2003010
  14. 14. Baranwal S, Singh BB. Effect of waterlogging on growth, chlorophylls and saccharides content in maize genotypes. Indian J Plant Physiol. 2002;7:246-51. https://doi.org/10.5897/AJAR2015.9790
  15. 15. Lone AA, Warsi MZK. Response of maize (Zea mays L.) to excess soil moisture tolerance at different stages of life cycle. Bot Res Int. 2009;2(3):211-7.
  16. 16. Alam I, Sharmin SA, Kim KH, Yang JK, Choi MS, Lee BH. Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil. 2010;333(1):491-505. https://doi.org/10.1007/s11104-010-0365-7
  17. 17. Ren B, Zhang J, Li X, Fan X, Dong S, Liu P, et al. Effects of waterlogging on the yield and growth of summer maize under field conditions. Can J Plant Sci. 2014;94(1):23-31. https://doi.org/10.4141/cjps2013-175
  18. 18. Tian LX, Bi WS, Ren XS, Li WL, Sun L, Li J. Flooding has more adverse effects on the stem structure and yield of spring maize (Zea mays L.) than waterlogging in Northeast China. Eur J Agron. 2020;117:126054. https://doi.org/10.1016/j.eja.2020.126054
  19. 19. Zaidi PH, Rafique S, Singh NN. Response of maize (Zea mays L.) genotypes to excess soil moisture stress: morpho-physiological effects and basis of tolerance. Eur J Agron. 2003;19(3):383-99. https://doi.org/10.1016/S1161-0301(02)00090-4 (Repetitive author set with #9)
  20. 20. Yordanova RY, Popova LP. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol Plant. 2007;29:535-41. https://doi.org/10.1007/s11738-007-0064-z
  21. 21. Shin S, Kim SG, Jung GH, Kim CG, Son BY, Kim JT, et al. Evaluation of waterlogging tolerance with the degree of foliar senescence at early vegetative stage of maize (Zea mays L.). J Crop Sci Biotechnol. 2016;19:393-9. https://doi.org/10.1007/s12892-016-0097-1
  22. 22. Pociecha E, Koscielniak J, Filek W. Effects of root flooding and stage of development on the growth and photosynthesis of field bean (Vicia faba L. minor). Acta Physiol Plant. 2008;30:529-35. https://doi.org/10.1007/s11738-008-0151-9
  23. 23. Else MA, Janowiak F, Atkinson CJ, Jackson MB. Root signals and stomatal closure in relation to photosynthesis, chlorophyll a fluorescence and adventitious rooting of flooded tomato plants. Ann Bot. 2009;103:313-23. https://doi.org/10.1093/aob/mcn208
  24. 24. Celik G, Turhan E. Genotypic variation in growth and physiological responses of common bean (Phaseolus vulgaris L.) seedlings to flooding. Afr J Biotechnol. 2011;10(38):7372-80. https://doi.org/10.5897/AJB11.500
  25. 25. Jahan MS, Nordin MNB, Lah MKBC, Khanif YM. Effects of water stress on rice production: bioavailability of potassium in soil. J Stress Physiol Biochem. 2013;9(2):97-107.
  26. 26. Rai RK, Srivastava JP, Shahi JP. Effect of waterlogging on some biochemical parameters during early growth stages of maize. Indian J Plant Physiol. 2004;9:65-8.
  27. 27. Guo W, Xing Y, Luo X, Li F, Ren M, Liang Y. Reactive oxygen species: a crosslink between plant and human eukaryotic cell systems. Int J Mol Sci. 2023;24(17):13052. https://doi.org/10.3390/ijms241713052
  28. 28. Blokhina OB, Chirkova TV, Fagerstedt KV. Anoxic stress leads to hydrogen peroxide formation in plant cells. J Exp Bot. 2001;52(359):1179-90. https://doi.org/10.1093/jexbot/52.359.1179
  29. 29. Corpas FJ, Fernandez-Ocana A, Carreras A, Valderrama R, Luque F, Esteban FJ, et al. The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol. 2006;47(7):984-94. https://doi.org/10.1093/pcp/pcj071
  30. 30. Lama R, Jaishee N, Chakraborty U, Roy A. Responses of seven maize genotypes during flooding stress and identification of cultivars most tolerant to flooding conditions. Plant Arch. 2020;20(2):3244-9.
  31. 31. Arnon DI. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiol. 1949;24:1-15. https://doi.org/10.1104/pp.24.1.1
  32. 32. Nahakpam S, Shah K. Expression of key antioxidant enzymes under combined effect of heat and cadmium toxicity in growing rice seedlings. Plant Growth Regul. 2011;63:23-35. https://doi.org/10.1007/s10725-010-9508-3
  33. 33. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350-6. https://doi.org/10.1021/ac60111a017
  34. 34. Ali S, Kim WC. Plant growth promotion under water: decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. Front Microbiol. 2018;9:1096. https://doi.org/10.3389/fmicb.2018.01096
  35. 35. Joshi R, Bhattacharya P, Lekshmy S, Sairam RK. Physiological traits to screen mungbean genotypes for waterlogging tolerance in a subtropical environment. In: National Conference of Plant Physiology on Physiological and Molecular Approaches for Crop Improvement under Changing Environment; 2010 Nov 25-27; Varanasi, India. p.125.
  36. 36. Kumutha D, Ezhilmathi K, Sairam RK, Srivastava GC, Deshmukh PS, Meena RC. Waterlogging induced oxidative stress and antioxidant activity in pigeonpea genotypes. Biol Plant. 2009;53(1):75-84. https://doi.org/10.1007/s10535-009-0011-5
  37. 37. Nahakpam S. Effectual tolerant traits for grain yield in rice genotypes grown under drought. J Pharmacogn Phytochem. 2017a;1:890-7.
  38. 38. Kumari A, Pandey OP. Effect of waterlogging on metabolic constituents in maize. Indian J Plant Physiol. 2007;12(4):366. https://doi.org/10.3390/plants13010108
  39. 39. Nahakpam S. Chlorophyll stability: a better trait for grain yield in rice under drought. Indian J Ecol. 2017b;44(4):77-82.
  40. 40. Nahakpam S, Kesari R, Singh SP, Pal AK, Satyendra, Sinha S, et al. Essential traits for reproductive drought and heat stress tolerance of Sabour Ardhjal rice: implication for agricultural improvement. Int J Adv Biochem Res. 2024;8(9):598-606. https://doi.org/10.33545/26174693.2024.v8.i9h.2244
  41. 41. Waraich EA, Ahmad R, Ashraf MY. Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agric Scand B Soil Plant Sci. 2011;61(4):291-304. https://doi.org/10.1080/09064710.2010.491954
  42. 42. Bharti A, Kesari R, Sinha S, Nahakpam S, Kumar M, Roy C. Mechanistic insights and genetic approaches for enhancing submergence tolerance in rice. J Exp Agric Int. 2024;47(8):1037-51. https://doi.org/10.9734/jeai/2024/v46i82792
  43. 43. Shah K, Nahakpam S. Heat stress and cadmium toxicity in higher plants: an overview. In: Hemantaranjan A, editor. Adv Plant Physiol. Vol. 12. Jodhpur (India): Scientific Publishers; 2011. p.243-80.
  44. 44. Bin T, Xu SZ, Zou XL, Zheng YL, Qiu FZ. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage. Agric Sci China. 2010;9(5):651-61. https://doi.org/10.1016/S1671-2927(09)60140-1
  45. 45. Akter T, Saquib TMN, Islam MR, Ali MR, Motiar M, Rohman M. Comparative analysis of physiological and anti-oxidative enzyme responses of maize genotypes under waterlogging stress and screening of tolerant genotypes. Plant Omics J. 2021;14(1):64-71. https://doi.org/10.21475/POJ.14.01.21.p3211
  46. 46. Kulkarni SS, Chavan PD. Influence of waterlogging on carbohydrate metabolism in ragi and rice roots. J Stress Physiol Biochem. 2013;9(2):199-205.
  47. 47. Ren B, Zhang J, Dong S, Liu P, Zhao B. Responses of carbon metabolism and antioxidant system of summer maize to waterlogging at different stages. J Agron Crop Sci. 2018;204(5):505-14. https://doi.org/10.1111/jac.12275
  48. 48. Wang F, Zhou Z, Liu X, Zhu L, Guo B, Lv C, et al. Transcriptome and metabolome analyses reveal molecular insights into waterlogging tolerance in barley. BMC Plant Biol. 2024;24:385. https://doi.org/10.1186/s12870-024-05091-8
  49. 49. Zhao HR, Zhang L, Qi Y, Yang C, Hu LL. Effects of drought and waterlogging stress on root-shoot ratio and source-sink relationship of grain filling of summer maize. Clim Change Res. 2024;20(6):782-98. https://doi.org/10.12006/j.issn.1673-1719

Downloads

Download data is not yet available.