Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Exploring the use of wild species in vegetable grafting

DOI
https://doi.org/10.14719/pst.7942
Submitted
26 February 2025
Published
19-07-2025 — Updated on 29-07-2025
Versions

Abstract

Grafting is a horticultural technique that combines a scion and rootstock to produce a grafted seedling with improved quality. It will be another way to reduce the yield loss caused by soil-borne pathogens. It is a very useful technique for decreasing plant disease and improving the quality and yield of produce. In that case, rootstocks are used to establish a strong root system, enhance disease resistance, and determine the phenotype of the grafted plants. The scion is used to provide the vegetative character in the grafted plant. Nowadays, disease and pest incidence in plants is high due to the resistance or tolerance of pests and soil-borne pathogens against chemical use. Instead of using chemicals to control pests and pathogens, the grafting technique is a very useful method. Some of the wild species have a resistance trait to pests, pathogens, and abiotic stresses. It serves as a genetic resource for vegetable crop improvement by grafting. Grafting using wild species is not only a new technology to improve yield, but also to enhance disease resistance and resilience. This paper examines the latest advancements in vegetable grafting using wild species. It provides in-depth information on the advantages, disadvantages and potential applications of grafting. A sustainable approach to addressing the issues of soil degradation, climate change and the rising demand for premium vegetables in agriculture is the incorporation of grafting with wild species. Grafting does not directly reverse soil degradation, but it provides a biological tool to manage the consequences of degraded soils. It enables continued productivity, reduces chemical dependence and supports soil-friendly agricultural practices. This review provides an overview of grafting techniques, suitable species, rootstocks and scions.

References

  1. 1. Notaguchi M, Kurotani KI, Sato Y, Tabata R, Kawakatsu Y, Okayasu K, et al. Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases. Science. 2020;369(6504):698–702. https://doi.org/10.1126/science.abc3710.
  2. 2. Pugalendhi L, Bharathi S, Selvi NA, Nandhini Devi HU. Anatomical and histological studies of grafted tomato with interspecific solanaceous rootstocks. Int J Plant Soil Sci. 2021;33(20):132–40. https://doi.org/10.9734/ijpss/2021/v33i2030639.
  3. 3. Tripodi G, Condurso C, Cincotta F, Merlino M, Verzera A. Aroma compounds in mini-watermelon fruits from different grafting combinations. J Sci Food Agric. 2020;100(3):1328–35. https://doi.org/10.1002/jsfa.10149.
  4. 4. Consentino BB, Rouphael Y, Ntatsi G, De Pasquale C, Iapichino G, D'Anna F, et al. Agronomic performance and fruit quality in greenhouse grown eggplant are interactively modulated by iodine dosage and grafting. Sci Hortic. 2022;295:110891. https://doi.org/10.1016/j.scienta.2022.110891.
  5. 5. Phani V, Gowda MT, Dutta TK. Grafting vegetable crops to manage plant-parasitic nematodes: a review. J Pest Sci. 2024;97(2):539–60. https://doi.org/10.1007/s10340-023-01658-w.
  6. 6. Davis AR, Perkins-Veazie P, Sakata Y, Lopez-Galarza S, Maroto JV, Lee SG, et al. Cucurbit grafting. CRC Crit Rev Plant Sci. 2008;27(1):50–74. https://doi.org/10.1080/07352680802053940.
  7. 7. Colla G, Rouphael Y, Cardarelli M, Salerno A, Rea E. The effectiveness of grafting to improve alkalinity tolerance in watermelon. Environ Exp Bot. 2010;68(3):283–91. https://doi.org/10.1016/j.envexpbot.2009.12.005.
  8. 8. Fallik E, Ziv C. How rootstock/scion combinations affect watermelon fruit quality after harvest? J Sci Food Agric. 2020;100(8):3275–82. https://doi.org/10.1002/jsfa.10325.
  9. 9. Seymen M, Yavuz D, Ercan M, Akbulut M, Çoklar H, Kurtar ES, et al. Effect of wild watermelon rootstocks and water stress on chemical properties of watermelon fruit. Hortic Environ Biotechnol. 2021;62(3):411–22. https://doi.org/10.1007/s13580-020-00329-4.
  10. 10. Warschefsky EJ, Klein LL, Frank MH, Chitwood DH, Londo JP, von Wettberg EJ, et al. Rootstocks: diversity, domestication and impacts on shoot phenotypes. Trends Plant Sci. 2016;21(5):418–37. https://doi.org/10.1016/j.tplants.2015.11.008.
  11. 11. Mahmoud A. Grafting as a tool to improve TYLCV-tolerance in tomato. J Hortic Sci Ornamental Plants. 2014;6(3):109–15.
  12. 12. Kégbé AM, Salako KV, Lokonon B, Mensah S, Noba K, Assogbadjo AE. A comparative study of morpho-physiological responses of wild and cultivated Solanum species to water stress: the case of S. sisymbriifolium and S. macrocarpon. Genet Resour Crop Evol. 2024:1–5. https://doi.org/10.1007/s10722-024-02095-z.
  13. 13. Xu W, Cui K, Xu A, Nie L, Huang J, Peng S. Drought stress condition increases root to shoot ratio via alteration of carbohydrate partitioning and enzymatic activity in rice seedlings. Acta Physiol Plant. 2015;37:1–1. https://doi.org/10.1007/s11738-014-1760-0.
  14. 14. Pina A, Errea P, Schulz A, Martens HJ. Cell-to-cell transport through plasmodesmata in tree callus cultures. Tree Physiol. 2009;29(6):809–18. https://doi.org/10.1093/treephys/tpp025.
  15. 15. Tamilselvi NA, Pugalendhi L. Studies on effect of grafting technique on growth and yield of bitter gourd (Momordica charantia L.). 2017.
  16. 16. Jalali A, Moghaddam EG, Marjani A. Early detection of graft incompatibility in sweet cherry by internode association and callus fusion techniques. Plant Cell Tissue Organ Cult. 2024;156(2):47. https://doi.org/10.1007/s11240-023-02663-8.
  17. 17. Assunção M, Santos C, Brazão J, Eiras-Dias JE, Fevereiro P. Understanding the molecular mechanisms underlying graft success in grapevine. BMC Plant Biol. 2019;19:1–7. https://doi.org/10.1186/s12870-019-1967-8.
  18. 18. Grieneisen ML, Aegerter BJ, Stoddard CS, Zhang M. Yield and fruit quality of grafted tomatoes and their potential for soil fumigant use reduction. A meta-analysis. Agron Sustain Dev. 2018;38:1–6. https://doi.org/10.1007/s13593-018-0507-5.
  19. 19. Zhou Z, Yuan Y, Wang K, Wang H, Huang J, Yu H, et al. Rootstock-scion interactions affect fruit flavor in grafted tomato. Hortic Plant J. 2022;8(4):499–510. https://doi.org/10.1016/j.hpj.2022.01.001.
  20. 20. Albacete A andújar C, Dodd I, Giuffrida F, Hichri I, Lutts S, et al. Rootstock-mediated variation in tomato vegetative growth under drought, salinity and soil impedance stresses. Acta Hortic 2014;1086:141–6. https://doi.org/10.17660/ActaHortic.2015.1086.17.
  21. 21. Kong Q, Yuan J, Gao L, Liu P, Cao L, Huang Y, et al. Transcriptional regulation of lycopene metabolism mediated by rootstock during the ripening of grafted watermelons. Food Chem. 2017;214:406–11. https://doi.org/10.1016/j.foodchem.2016.07.103.
  22. 22. Masoud S, Chowdhury BD, Son YJ, Kubota C, Tronstad R. Simulation based optimization of resource allocation and facility layout for vegetable grafting operations. Comput Electron Agric. 2019;163:104845. https://doi.org/10.1016/j.compag.2019.05.054.
  23. 23. Thomas H, Van den Broeck L, Spurney R, Sozzani R, Frank M. Gene regulatory networks for compatible versus incompatible grafts identify a role for SlWOX4 during junction formation. Plant Cell. 2022;34(1):535–56. https://doi.org/10.1093/plcell/koab246.
  24. 24. Loupit G, Cookson SJ. Identifying molecular markers of successful graft union formation and compatibility. Front Plant Sci. 2020;11:610352. https://doi.org/10.3389/fpls.2020.610352.
  25. 25. Duan Y, Zhang F, Meng X, Shang Q. Spatio-temporal dynamics of phytohormones in the tomato graft healing process. Hortic Plant J. 2024;10(6):1362–70. https://doi.org/10.1016/j.hpj.2022.11.014.
  26. 26. Huang Q, Zhang B, Wang D, Zhao M, Chen L, Yang X, et al. Physiological, anatomical and transcriptome analyses reveal 'Huaizhi' as widely compatible rootstock in Litchi chinensis Sonn. grafting. Sci Hortic. 2024;331:113161. https://doi.org/10.1016/j.scienta.2024.113161.
  27. 27. Melnyk CW, Gabel A, Hardcastle TJ, Robinson S, Miyashima S, Grosse I, et al. Transcriptome dynamics at Arabidopsis graft junctions reveal an intertissue recognition mechanism that activates vascular regeneration. PNAS Nexus. 2018;115(10):E2447–56. https://doi.org/10.1073/pnas.1718263115.
  28. 28. He Y, Zhu Z, Yang J, Ni X, Zhu B. Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environ Exp Bot. 2009;66(2):270–8. https://doi.org/10.1016/j.envexpbot.2009.02.007.
  29. 29. Anushma PL, Rajasekharan PE, Singh TH. Pollen cryobanking in wild solanums for conservation and utilization of nuclear genetic diversity. Genet Resour Crop Evol. 2024;71(6):2687–97. https://doi.org/10.1007/s10722-023-01805-3.
  30. 30. Venema JH, Dijk BE, Bax JM, van Hasselt PR, Elzenga JT. Grafting tomato (Solanum lycopersicum) onto the rootstock of a high-altitude accession of Solanum habrochaites improves suboptimal-temperature tolerance. Environ Exp Bot. 2008;63(1-3):359–67. https://doi.org/10.1016/j.envexpbot.2007.12.015.
  31. 31. Aydın A. The growth, leaf antioxidant enzymes and amino acid content of tomato as affected by grafting on wild tomato rootstocks 1 (S. pimpinellifolium and S. habrochaites) under salt stress. Sci Hortic. 2024;325:112679. https://doi.org/10.1016/j.scienta.2023.112679.
  32. 32. Husain SE, James C, Shields R, Foyer CH. Manipulation of fruit sugar composition but not content in Lycopersicon esculentum fruit by introgression of an acid invertase gene from Lycopersicon pimpinellifolium. New Phytol. 2001:65–72. https://doi.org/10.1046/j.1469-8137.2001.00070.x.
  33. 33. Sucha L, Tomsik P. The steroidal glycoalkaloids from Solanaceae: toxic effect, antitumour activity and mechanism of action. Planta Med. 2016;82(5):379–87. https://doi.org/10.1055/s-0042-100810.
  34. 34. Viteri-Díaz P, Vásquez-Castillo W, Racines-Oliva M, Viera-Arroyo W. Andean Solanaceae species with resistance to biotic factors, such as tree tomato (Solanum betaceum Cav.) rootstocks. Manglar. 2020;17(4):347–52. https://doi.org/10.17268/manglar.2020.052.
  35. 35. Miron D, Schaffer AA. Sucrose phosphate synthase, sucrose synthase and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol. 1991;95(2):623–7. https://doi.org/10.1104/pp.95.2.623.
  36. 36. King SR, Davis AR, Liu W, Levi A. Grafting for disease resistance. HortScience. 2008;43(6):1673–6. https://doi.org/10.21273/hortsci.43.6.1673.
  37. 37. Kaleem MM, Nawaz MA, Alam SM, Ding X, Cheng J, Bie Z. Rootstock-scion interaction mediated impact on fruit quality attributes of thick-skinned melon during storage under different temperature regimes. Sci Hortic. 2023;312:111823. https://doi.org/10.1016/j.scienta.2022.111823.
  38. 38. Devi P, Tymon L, Keinath A, Miles C. Progress in grafting watermelon to manage Verticillium wilt. Plant Pathol. 2021;70(4):767–77. https://doi.org/10.1111/ppa.13344.
  39. 39. Mashilo J, Shimelis H, Contreras-Soto RI, Ngwepe RM. A meta-analysis on rootstock-induced effects in grafted watermelon (Citrullus lanatus var. lanatus). Sci Hortic. 2023;319:112158. https://doi.org/10.1016/j.scienta.2023.112158.
  40. 40. Miguel A, Maroto JV, San Bautista A, Baixauli C, Cebolla V, Pascual B, et al. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Sci Hortic. 2004;103(1):9–17. https://doi.org/10.1016/j.scienta.2004.04.007.
  41. 41. Barik S, Ponnam N, Acharya GC, Kumari M, Adamala AK, Petikam S, et al. Assessment of bacterial wilt-resistant Solanum genetic resources as rootstocks for yield and fruit quality traits in eggplant. Australas Plant Pathol. 2023;52(4):253–69. https://doi.org/10.1007/s13313-023-00916-w.
  42. 42. Smith J, Saravanakumar D. Development of resistance in tomato plants grafted onto Solanum torvum against bacterial wilt disease. J Plant Dis Prot. 2022;129(6):1389–99. https://doi.org/10.1007/s41348-022-00650-3.
  43. 43. Ramesh R, Achari G, Asolkar T, Dsouza M, Singh NP. Management of bacterial wilt of brinjal using wild brinjal (Solanum torvum) as rootstock. Indian Phytopathol. 2016;69(3):260–5.
  44. 44. Ramesh R, D'Souza M, Asolkar T, Achari G, Gupta MJ. Rootstocks for the management of bacterial wilt in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.) in the coastal regions of India. Adv Agric. 2022;2022(1):8594080. https://doi.org/10.1155/2022/8594080.
  45. 45. Amerian M, Palangi A, Gohari G, Ntatsi G. Enhancing salinity tolerance in cucumber through selenium biofortification and grafting. BMC Plant Biol. 2024;24(1):24. https://doi.org/10.1186/s12870-023-04711-z.
  46. 46. Pu D, Wen ZY, Sun JB, Zhang MX, Zhang F, Dong CJ. Unveiling the mechanism of source-sink rebalancing in cucumber-pumpkin heterografts: the buffering roles of rootstock cotyledon. Physiol Plant. 2024;176(2):e14232. https://doi.org/10.1111/ppl.14232.
  47. 47. Ahn SJ, Im YJ, Chung GC, Cho BH, Suh SR. Physiological responses of grafted-cucumber leaves and rootstock roots affected by low root temperature. Sci Hortic. 1999;81(4):397–408. https://doi.org/10.1016/S0304-4238(99)00042-4.
  48. 48. Huang Y, Tang R, Cao Q, Bie Z. Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Sci Hortic. 2009;122(1):26–31. https://doi.org/10.1016/j.scienta.2009.04.004.
  49. 49. Fredes A, Roselló S, Beltrán J, Cebolla‐Cornejo J, Pérez‐de‐Castro A, Gisbert C, et al. Fruit quality assessment of watermelons grafted onto citron melon rootstock. J Sci Food Agric. 2017;97(5):1646–55. https://doi.org/10.1002/jsfa.7915.
  50. 50. Lindhout P. Genetics and breeding. In: Atherton JG, Rudich J, editors. Tomatoes. Wallingford (UK): CABI Publishing; 2005. p. 21–52. https://doi.org/10.1079/9780851993966.0021.
  51. 51. Balibrea ME, Martínez-Andújar C, Cuartero J, Bolarín MC, Pérez-Alfocea F. The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism. Funct Plant Biol. 2006;33(3):279–88. https://doi.org/10.1071/FP05134.
  52. 52. Flores FB, Sanchez-Bel P, Estañ MT, Martinez-Rodriguez MM, Moyano E, Morales B, et al. The effectiveness of grafting to improve tomato fruit quality. Sci Hortic. 2010;125(3):211–7. https://doi.org/10.1016/j.scienta.2010.03.026.
  53. 53. Abdelmageed AHA, Gruda N. Influence of grafting on growth, development and some physiological parameters of tomatoes under controlled heat stress conditions. Eur J Hortic Sci. 2009;74(1):16–20.
  54. 54. Tedesco S, Irisarri P, Santos MT, Fevereiro P, Pina A, Kragler F. Early detection of grapevine graft incompatibility: insights into translocated and virus-induced incompatibility. Sci Hortic. 2023;318:112087. https://doi.org/10.1016/j.scienta.2023.112087.
  55. 55. Meng X, Zhang F, Yang W, Shang Q. A PHYB-PIF4-auxin module promotes tomato graft formation in response to elevated ambient temperature. Hortic Plant J. 2025;11(1):227–38.

Downloads

Download data is not yet available.