Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Silica fertilization to enhance carbon sequestration in crops: A review

DOI
https://doi.org/10.14719/pst.7948
Submitted
27 February 2025
Published
07-07-2025 — Updated on 14-07-2025
Versions

Abstract

Carbon sequestration is a key strategy to mitigate climate change by capturing and storing atmospheric CO2, with the aim of achieving net-zero emissions by 2050. It is categorized into geological, biological and soil-based methods. Geological sequestration stores CO2 in deep formations such as saline aquifers and depleted reservoirs, with supercritical CO2 injection optimizing storage. Biological methods utilize microorganisms such as algae and fungi, while soil-based approaches focus on practices like silica fertilization to enhance carbon storage. Silicon (Si) fertilization promotes phytolith formation, silica structures in plants that trap organic carbon (Phyt OC). Phytoliths persist in soils for centuries, contributing to long-term sequestration and indirectly supporting carbon capture and storage (CCS) technologies. Silicon also enhances plant resilience, photosynthesis and stress tolerance, thereby boosting biomass production and soil carbon stocks. Innovative techniques such as the sol-gel process transform silica-rich industrial wastes into fertilizers, promoting sustainable agriculture and reducing environmental impacts. These fertilizers improve carbon sequestration by enhancing phytolith production, particularly in crops like wheat. An integrated approach that combines silica fertilization, regenerative farming and advanced technologies optimizes the carbon sink capacity of agricultural soils. Additionally, phytoliths aid paleo ecological research by preserving historical vegetation data. However, balanced silica application is crucial to maintain soil health. This integrated strategy offers a sustainable solution to mitigate excessive carbon emissions, enhance soil carbon storage and support global climate goals.

References

  1. 1. Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, et al. Global warming of 1.5° C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. 2018.
  2. 2. Sinha RK, Chaturvedi ND. A review on carbon emission reduction in industries and planning emission limits. Renewable and Sustainable Energy Reviews. 2019;114:109304. https://doi.org/10.1016/j.rser.2019.109304
  3. 3. Ward H, Radebach A, Vierhaus I, Fügenschuh A, Steckel JC. Reducing global CO2 emissions with the technologies we have. Resource and Energy Economics. 2017;49:201–17. https://doi.org/10.1016/j.reseneeco.2017.05.001
  4. 4. Zuo S, Zhao Y, Zheng L, Zhao Z, Fan S, Wang J. Assessing the influence of the digital economy on carbon emissions: Evidence at the global level. Science of The Total Environment. 2024;946:174242. https://doi.org/10.1016/j.scitotenv.2024.174242
  5. 5. Wee JH. Contribution of fuel cell systems to CO2 emission reduction in their application fields. Renewable and Sustainable Energy Reviews. 2010;14(2):735–44. https://doi.org/10.1016/j.rser.2009.10.013
  6. 6. Minasny B, Malone BP, McBratney AB, Angers DA, Arrouays D, Chambers A, et al. Soil carbon 4 per mille. Geoderma. 2017;292:59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
  7. 7. Olson KR, Al-Kaisi MM, Lal R, Lowery B. Experimental consideration, treatments, and methods in determining soil organic carbon sequestration rates. Soil Science Society of America Journal. 2014;78(2):348–60. https://doi.org/10.2136/sssaj2013.09.0412
  8. 8. Song X, Zhang J, Zhan C, Xuan Y, Ye M, Xu C. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical framework, and applications. Journal of Hydrology. 2015;523:739–57. https://doi.org/10.1016/j.jhydrol.2015.02.013
  9. 9. Freund P, Ormerod WG. Progress toward storage of carbon dioxide. Energy Conversion and Management. 1997;38:S 199–204. https://doi.org/10.1016/S0196-8904(96)00269-5
  10. 10. Follett RF, Samson-Liebig E, Kimble JM, Pruessner EG, Waltman S. Carbon sequestration under CRP in the historic grassland soils of the USA. SSSA Special Publication. 2001;57:27-40..
  11. 11. Zhang D, Song J. Mechanisms for geological carbon sequestration. Procedia IUTAm. 2014;10:319–27. https://doi.org/10.1016/j.piutam.2014.01.027
  12. 12. Al Hameli F, Belhaj H, Al Dhuhoori M. CO2 sequestration overview in geological formations: Trapping mechanisms matrix assessment. Energies. 2022;15(20):7805. https://doi.org/10.3390/en15207805
  13. 13. Albertz M, Stewart SA, Goteti R. Perspectives on geologic carbon storage. Frontiers in Energy Research. 2023;10:1071735. https://doi.org/10.3389/fenrg.2022.1071735
  14. 14. Friedmann SJ. Geological carbon dioxide sequestration. Elements. 2007;3(3):179–84.
  15. https://doi.org/10.2113/gselements.3.3.179
  16. 15. Amaraweera SM, Gunathilake CA, Gunawardene OH, Dassanayake RS, Cho E-B, Du Y. Carbon capture using porous silica materials. Nanomaterials. 2023;13(14):2050. https://doi.org/10.3390/nano13142050
  17. 16. Rumayor M, Dominguez-Ramos A, Irabien A. Formic acid manufacture: carbon dioxide utilization alternatives. Applied Sciences. 2018;8(6):914. https://doi.org/10.3390/app8060914
  18. 17. Alper E, Orhan OY. CO2 utilization: Developments in conversion processes. Petroleum. 2017;3(1):109–26. https://doi.org/10.1016/j.petlm.2016.11.003
  19. 18. Faba L, Rapado P, Ordóñez S. Carboxylation reactions for integrating CO2 capture with the production of renewable monomers. Greenhouse Gases: Science and Technology. 2023;13(2):227–44. https://doi.org/10.1002/ghg.2175
  20. 19. Milani D, Kiani A, Haque N, Giddey S, Feron P. Green pathways for urea synthesis: A review from Australia's perspective. Sustainable Chemistry for Climate Action. 2022;1:100008. https://doi.org/10.1016/j.scca.2022.100008
  21. 20. Hosseini SM, Aslani A, Kasaeian A. Life cycle cost and environmental assessment of CO2 utilization in the beverage industry: A natural gas-fired power plant equipped with post-combustion CO2 capture. Energy Reports. 2023;9:414–36. https://doi.org/10.1016/j.egyr.2022.11.200
  22. 21. Rosa L, Mazzotti M. Potential for hydrogen production from sustainable biomass with carbon capture and storage. Renewable and Sustainable Energy Reviews. 2022;157:112123. https://doi.org/10.1016/j.rser.2022.112123
  23. 22. Chauvy R, Dubois L, Lybaert P, Thomas D, De Weireld G. Production of synthetic natural gas from industrial carbon dioxide. Applied Energy. 2020;260:114249. https://doi.org/10.1016/j.apenergy.2019.114249
  24. 23. Gayathri R, Mahboob S, Govindarajan M, Al-Ghanim KA, Ahmed Z, Al-Mulhm N, et al. A review on biological carbon sequestration: A sustainable solution for a cleaner air environment, less pollution and lower health risks. Journal of King Saud University-Science. 2021;33(2):101282. https://doi.org/10.1016/j.jksus.2020.101282
  25. 24. Jeewani PH, Luo Y, Yu G, Fu Y, He X, Van Zwieten L, et al. Arbuscular mycorrhizal fungi and goethite promote carbon sequestration via hyphal-aggregate mineral interactions. Soil Biology and Biochemistry. 2021;162:108417. https://doi.org/10.1016/j.soilbio.2021.108417
  26. 25. Viswanaathan S, Perumal PK, Sundaram S. Integrated approach for carbon sequestration and wastewater treatment using algal-bacterial consortia: Opportunities and challenges. Sustainability. 2022;14(3):1075. https://doi.org/10.3390/su14031075
  27. 26. Kimble JM, Follett RF, Cole CV. The potential of US cropland to sequester carbon and mitigate the greenhouse effect. New York: CRC press; 1998.
  28. 27. Dan-Dan Z, Peng-Bo Z, Bocharnikova EA, Matichenkov VV, Khomyakov DM, Pakhnenko EP. Estimated carbon sequestration by rice roots as affected by silicon fertilizers. Moscow University Soil Science Bulletin. 2019;74(3):105–10. https://doi.org/10.3103/S0147687419030025
  29. 28. Nicolae CL, Pîrvulescu DC, Antohi AM, Niculescu AG, Grumezescu AM, Croitoru GA. Silica nanoparticles in medicine: overcoming pathologies through advanced drug delivery, diagnostics, and therapeutic strategies. Romanian Journal of Morphology and Embryology. 2024;65(2):173. https://doi.org/10.47162/RJME.65.2.03
  30. 29. Malathy R, Rajagopal Sentilkumar SR, Prakash AR, Das B, Chung IM, Kim SH, et al. Use of industrial silica sand as a fine aggregate in concrete—an explorative study. Buildings. 2022;12(8):1273. https://doi.org/10.3390/buildings12081273
  31. 30. Videira-Quintela D, Martin O, Montalvo G. Emerging opportunities of silica-based materials within the food industry. Microchemical Journal. 2021;167:106318. https://doi.org/10.1016/j.microc.2021.106318
  32. 31. Mecfel J, Hinke S, Goedel WA, Marx G, Fehlhaber R, Bäucker E, et al. Effect of silicon fertilizers on silicon accumulation in wheat. Journal of Plant Nutrition and Soil Science. 2007;170(6):769–72. https://doi.org/10.1002/jpln.200625038
  33. 32. Parr JF, Sullivan LA. Phytolith occluded carbon and silica variability in wheat cultivars. Plant and Soil. 2011;342:165–71. https://doi.org/10.1007/s11104-010-0680-z
  34. 33. Rashad RT, Hussien RA. Agronomic efficiency of feldspar, quartz silica, and zeolite as silicon (Si) fertilizers in sandy soil. Communications in Soil Science and Plant Analysis. 2020;51(8):1078–88. https://doi.org/10.1080/00103624.2020.1751184
  35. 34. Singh A, Kumar A, Hartley S, Singh IK. Silicon: its ameliorative effect on plant defense against herbivory. Journal of Experimental Botany. 2020;71(21):6730–43. https://doi.org/10.1093/jxb/eraa300
  36. 35. Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters. 2005;249(1):1–6. https://doi.org/10.1016/j.femsle.2005.06.034
  37. 36. Cocker KM, Evans DE, Hodson MJ. The amelioration of aluminium toxicity by silicon in higher plants: solution chemistry or an in planta mechanism? Physiologia Plantarum. 1998;104(4):608–14. https://doi.org/10.1034/j.1399-3054.1998.1040413.x
  38. 37. Vaculík M, Pavlovič A, Lux A. Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize. Ecotoxicology and Environmental Safety. 2015;120:66–73. https://doi.org/10.1016/j.ecoenv.2015.05.026
  39. 38. Massey FP, Roland Ennos A, Hartley SE. Herbivore specific induction of silica-based plant defences. Oecologia. 2007;152:677–83. https://doi.org/10.1007/s00442-007-0703-5
  40. 39. Detmann KC, Araújo WL, Martins SC, Sanglard LM, Reis JV, Detmann E, et al. Silicon nutrition increases grain yield, which, in turn, exerts a feed‐forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytologist. 2012;196(3):752–62. https://doi.org/10.1111/j.1469-8137.2012.04299.x
  41. 40. Zhu Y, Stiller JW, Shaner MP, Baldini A, Scemama JL, Capehart AA. Cloning of somatolactin alpha and beta cDNAs in zebrafish and phylogenetic analysis of two distinct somatolactin subtypes in fish. Journal of Endocrinology. 2004;182(3):509–18. https://doi.org/10.1677/joe.0.1820509
  42. 41. Zhu Y, Gong H. Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development. 2014;34(2):455–72. https://doi.org/10.1007/s13593-013-0194-1
  43. 42. Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M. Interactions of silicon with essential and beneficial elements in plants. Frontiers in Plant Science. 2021;12:697592. https://doi.org/10.3389/fpls.2021.697592
  44. 43. Markovich O, Steiner E, Kouřil Š, Tarkowski P, Aharoni A, Elbaum R. Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and Sorghum. Plant, Cell & Environment. 2017;40(7):1189–96. https://doi.org/10.1111/pce.12913
  45. 44. Kim YH, Khan AL, Waqas M, Jeong HJ, Kim DH, Shin JS, et al. Regulation of jasmonic acid biosynthesis by silicon application during physical injury to Oryza sativa L. Journal of Plant Research. 2014;127(4):525–32. https://doi.org/10.1007/s10265-014-0641-3
  46. 45. Jiang NH, Zhang SH. Effects of combined application of potassium silicate and salicylic acid on the defense response of hydroponically grown tomato plants to Ralstonia solanacearum Infection. Sustainability. 2021;13(7):3750. https://doi.org/10.3390/su13073750
  47. 46. Vatansever R, Ozyigit II, Filiz E, Gozukara N. Genome-wide exploration of silicon (Si) transporter genes, Lsi1 and Lsi2 in plants; insights into Si-accumulation status/capacity of plants. BioMetals. 2017;30(2):185–200. https://doi.org/10.1007/s10534-017-9992-2
  48. 47. Exley C. Silicon in life: a bioinorganic solution to bioorganic essentiality. Journal of Inorganic Biochemistry. 1998;69(3):139–44. https://doi.org/10.1016/S0162-0134(97)10010-1
  49. 48. Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T, et al. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiology. 2004;136(2):3284–9. https://doi.org/10.1104/pp.104.047365
  50. 49. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. The cytoskeleton and cell behavior. Molecular Biology of the Cell. 4th edition. Garland Science. 2002.
  51. 50. Exley C, Guerriero G, Lopez X. How is silicic acid transported in plants? Silicon. 2020;12(11):2641–5. https://doi.org/10.1007/s12633-019-00360-w
  52. 51. Exley C. Reflections upon and recent insight into the mechanism of formation of hydroxyaluminosilicates and the therapeutic potential of silicic acid. Coordination Chemistry Reviews. 2012;256(1-2):82–8. https://doi.org/10.1016/j.ccr.2011.06.022
  53. 52. Ramos CG, Hower JC, Blanco E, Oliveira ML, Theodoro SH. Possibilities of using silicate rock powder: An overview. Geoscience Frontiers. 2022;13(1):101185.https://doi.org/10.1016/j.gsf.2021.101185
  54. 53. Zou J, Liu Z, Guo Q. Comprehensive utilisation of blast furnace slag. Canadian Metallurgical Quarterly. 2024;63(3):927–34. https://doi.org/10.1080/00084433.2023.2235147
  55. 54. Radić S, Sandev D, Maldini K, Vujčić Bok V, Lepeduš H, Domijan AM. Recycling electric arc furnace slag into fertilizer: effects of “waste product” on growth and physiology of the common bean (Phaseolus vulgaris L.). Agronomy. 2022;12(9):2218. https://doi.org/10.3390/agronomy12092218
  56. 55. Yuan S, Cui C, Han Y, Chen P, Tu N, Yi Z. Silicon calcium fertilizer application and foliar spraying with silicon fertilizer decreases cadmium uptake and translocation in rice grown in polluted soil. Agronomy. 2023;13(4):1170. https://doi.org/10.3390/agronomy13041170
  57. 56. Xu R, Huang J, Guo H, Wang C, Zhan H. Functions of silicon and phytolith in higher plants. Plant Signaling & Behavior. 2023;18(1):2198848. https://doi.org/10.1080/15592324.2023.2198848
  58. 57. Abayisenga JC, Mbaraka SR, Nkurunziza C, Shema MJ, Murenzi F, Rucamumihigo FX, et al. Effect of soil application of stabilized ortho silicic ccid based granules on growth and yield of rice (Oryza sativa L.). Communications in Soil Science and Plant Analysis. 2023;54(4):444–52. https://doi.org/10.1080/00103624.2022.2112593
  59. 58. Shwethakumari U, Pallavi T, Prakash NB. Influence of foliar silicic acid application on soybean (Glycine max L.) varieties grown across two distinct rainfall years. Plants. 2021;10(6):1162. https://doi.org/10.3390/plants10061162
  60. 59. Benzon HR, Rubenecia MR, Ultra Jr VU, Lee SC. Nano-fertilizer affects the growth, development, and chemical properties of rice. International Journal of Agronomy and Agricultural Research. 2015;7(1):105–17. https://doi.org/10.5539/jas.v7n4p20
  61. 60. Yue L, Wang J, Cao X, Wang C, Ma C, Chen F, et al. Silica nanomaterials promote rice tillering and yield by regulating rhizosphere processes, nitrogen uptake, and hormone pathways. ACS Sustainable Chemistry & Engineering. 2023;11(46):16650–60. https://doi.org/10.1021/acssuschemeng.3c05419
  62. 61. Ahmadian K, Jalilian J, Pirzad A. Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agricultural Water Management. 2021;244:106544. https://doi.org/10.1016/j.agwat.2020.106544
  63. 62. Sobatinasab Z, Rahimmalek M, Etemadi N, Szumny A. Nano silicon modulates chemical composition and antioxidant capacities of ajowan (Trachyspermum ammi) under water deficit condition. Foods. 2025;14(1):124. https://doi.org/10.3390/foods14010124
  64. 63. Manning DA. Mineral stabilities in soils: how minerals can feed the world and mitigate climate change. Clay Minerals. 2022;57(1):31–40. https://doi.org/10.1180/clm.2022.17
  65. 64. Hodson M, Sangster A. Observations on the distribution of mineral elements in the leaf of wheat (Triticum aestivum L.), with particular reference to silicon. Annals of Botany. 1988;62(5):463–71. https://doi.org/10.1093/oxfordjournals.aob.a087681
  66. 65. Klančnik K, Vogel-Mikuš K, Gaberščik A. Silicified structures affect leaf optical properties in grasses and sedge. Journal of Photochemistry and Photobiology B: Biology. 2014;130:1–10. https://doi.org/10.1016/j.jphotobiol.2013.10.011
  67. 66. Wang C, Lu H, Zhang J, Mao L, Ge Y. Bulliform phytolith size of rice and its correlation with hydrothermal environment: a preliminary morphological study on species in Southern China. Frontiers in Plant Science. 2019;10:1037. https://doi.org/10.3389/fpls.2019.01037
  68. 67. Johnson SN, Hartley SE. Elevated carbon dioxide and warming impact silicon and phenolic‐based defences differently in native and exotic grasses. Global Change Biology. 2018;24(9):3886–96. https://doi.org/10.1111/gcb.13971
  69. 68. Alzahrani Y, Kuşvuran A, Alharby HF, Kuşvuran S, Rady MM. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicology and Environmental Safety. 2018;154:187–96. https://doi.org/10.1016/j.ecoenv.2018.02.057
  70. 69. Hodson M, White PJ, Mead A, Broadley M. Phylogenetic variation in the silicon composition of plants. Annals of Botany. 2005;96(6):1027–46. https://doi.org/10.1093/aob/mci255
  71. 70. Parr JF, Sullivan LA. Soil carbon sequestration in phytoliths. Soil Biology and Biochemistry. 2005;37(1):117–24. https://doi.org/10.1016/j.soilbio.2004.06.013
  72. 71. Dai C, Xu R, Yu L, Zhu F, Li M, Li J, et al. Silicon uptake and phytolith morphology in Dendrocalamus brandisii seedling leaf from different rearing methods. Forests. 2023;14(9):1877. https://doi.org/10.3390/f14091877
  73. 72. Ge Y, Lu H, Wang C, Gao X. Phytoliths in selected broad-leaved trees in China. Scientific Reports. 2020;10(1):15577. https://doi.org/10.1038/s41598-020-72547-w
  74. 73. Piperno DR. Phytoliths: A comprehensive guide for archaeologists and paleoecologists: Rowman Altamira. 2006.
  75. 74. Witteveen NH, White C, Sanchez Martinez BA, Booij R, Philip A, Gosling WD, et al. Phytolith assemblages reflect variability in human land use and the modern environment. Vegetation History and Archaeobotany. 2024;33(2):221–36. https://doi.org/10.1007/s00334-023-00932-2
  76. 75. Hill J, Black S, Araujo-Murakami A, Boot R, Brienen R, Feldpausch T, et al. An assessment of soil phytolith analysis as a palaeoecological tool for identifying pre-Columbian land use in Amazonian rainforests. Quaternary. 2023;6(2):33. https://doi.org/10.3390/quat6020033
  77. 76. Frayssinet C, Benvenuto LM, Osterrieth ML, Borrelli NL, Alvarez FM, Fernández Honaine M. Content and dynamics of silicophytoliths and silicon in pristine soils and agroecosystems in the southeast of the Pampean Plain, Argentina. In: Bouza P, Rabassa J, Bilmes A, editors. Advances in Geomorphology and Quaternary Studies in Argentina. Springer, Cham; 2021. https://doi.org/10.1007/978-3-030-66161-8_19
  78. 77. Mulholland SC, Rapp G. Phytolith systematics: An introduction. In: Rapp G, Mulholland SC, editors. Phytolith Systematics: Emerging Issues. Boston, MA: Springer; 1992. p. 1–13. https://doi.org/10.1007/978-1-4899-1155-1_1
  79. 78. Sullivan LA, Parr JF. Comment on" Possible source of ancient carbon in phytolith concentrates from harvested grasses" by GM Santos et al.(2012). Biogeosciences. 2013;10(2):977–80. https://doi.org/10.5194/bg-10-977-2013
  80. 79. Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends in Plant Science. 2006;11(8):392–7. https://doi.org/10.1016/j.tplants.2006.06.007
  81. 80. Cooke J, Leishman MR. Consistent alleviation of abiotic stress with silicon addition: a meta‐analysis. Functional Ecology. 2016;30(8):1340–57. https://doi.org/10.1111/1365-2435.12713
  82. 81. Mitani N, Ma JF. Uptake system of silicon in different plant species. Journal of Experimental Botany. 2005;56(414):1255–61. https://doi.org/10.1093/jxb/eri121
  83. 82. Korolyuk E, Polosmak N. Plant remains from Noin-Ula burial mounds 20 and 31 (Northern Mongolia). Archaeology, Ethnology and Anthropology of Eurasia. 2010;38(2):57–63. https://doi.org/10.1016/j.aeae.2010.08.008
  84. 83. Li B, Song Z, Wang H, Li Z, Jiang P, Zhou G. Lithological control on phytolith carbon sequestration in moso bamboo forests. Scientific Reports. 2014;4(1):5262. https://doi.org/10.1038/srep05262
  85. 84. Mercader J, Bennett T, Esselmont C, Simpson S, Walde D. Phytoliths in woody plants from the Miombo woodlands of Mozambique. Annals of Botany. 2009;104(1):91–113. https://doi.org/10.1093/aob/mcp097
  86. 85. Sundue M. Silica bodies and their systematic implications in Pteridaceae (Pteridophyta). Botanical Journal of the Linnean Society. 2009;161(4):422–35. https://doi.org/10.1111/j.1095-8339.2009.01012.x

Downloads

Download data is not yet available.