Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Polymer-mediated delivery of agrochemicals

DOI
https://doi.org/10.14719/pst.7970
Submitted
27 February 2025
Published
31-07-2025 — Updated on 15-08-2025
Versions

Abstract

A major challenge in modern agriculture is the inefficient delivery and utilization of agrochemicals, which often leads to their overuse, causing environmental pollution and harming beneficial organisms such as earthworms and bees. This challenge can potentially be addressed by using advanced and efficient methods such as polymer-mediated delivery systems. Polymers offer the potential to enhance the efficiency of agrochemicals used in agriculture. Incorporating polymers into agrochemical delivery systems can overcome the limitations associated with conventional methods. This article aims to analyse the potential role of polymers in agrochemical delivery system. Polymer can enable the precise delivery of active ingredients, nutrients, pesticides and herbicides into plants, making the process more resilient to agrochemical loss associated with conventional delivery methods. Enhancing our understanding of polymers and their properties may improve the efficiency and efficacy of agrochemicals by influencing their interaction with plants, carrier capabilities and release mechanisms.

References

  1. 1. Mondéjar-López M, García-Simarro MP, Navarro-Simarro P, Gómez-Gómez L, Ahrazem O, Niza E. A review on the encapsulation of “eco-friendly” compounds in natural polymer-based nanoparticles as next-generation nano-agrochemicals for sustainable agriculture and crop management. International Journal of Biological Macromolecules. 2024;236:136030. https://doi.org/10.1016/j.ijbiomac.2024.136030
  2. 2. Vasseghian Y, Arunkumar P, Joo S, Gnanasekaran L. Metal-organic framework-enabled pesticides are an emerging tool for sustainable cleaner production and environmental hazard reduction. Journal of Cleaner Production. 2022;373:133966. https://doi.org/10.1016/j.jclepro.2022.133966
  3. 3. Statista. Global agrochemical industry. Dossier. 2019. https://www.statista.com/study/37459/agricultural-chemical-industry-statista-dossier/
  4. 4. Zhang L, Yan C, Guo Q, Zhang J, Ruiz-Menjivar J. The impact of agricultural chemical inputs on environment: global evidence from informetrics analysis and visualization. International Journal of Low-Carbon Technologies. 2018;13(4):338–52. https://doi.org/10.1093/ijlct/cty039
  5. 5. Khan MN, Mobin M, Abbas ZK, Alamri SA. Fertilizers and their contaminants in soils, surface and groundwater. Encyclopedia of the Anthropocene. 2018;5:225–40. https://doi.org/10.1016/B978-0-12-809665-9.09888-8
  6. 6. Mandal A, Sarkar B, Mandal S, Vithanage M, Patra AK, Manna MC. Impact of agrochemicals on soil health. In: Agrochemicals Detection, Treatment and Remediation. Butterworth-Heinemann. 2020:161–87. https://doi.org/10.1016/B978-0-08-103017-2.00007-6
  7. 7. Machado TO, Grabow J, Sayer C, de Araújo PH, Ehrenhard ML, Wurm FR. Biopolymer-based nanocarriers for sustained release of agrochemicals: a review on materials and social science perspectives for a sustainable future of agri-and horticulture. Advances in Colloid and Interface Science. 2022;303:102645. https://doi.org/10.1016/j.cis.2022.102645
  8. 8. Kumar S, Nehra M, Dilbaghi N, Marrazza G, Hassan AA, Kim KH. Nano-based smart pesticide formulations: emerging opportunities for agriculture. Journal of Controlled Release. 2019;294:131–53. https://doi.org/10.1016/j.jconrel.2018.12.012
  9. 9. Kah M, Tufenkji N, White JC. Nano-enabled strategies to enhance crop nutrition and protection. Nature Nanotechnology. 2019;14:532–40. https://doi.org/10.1038/s41565-019-0439-5
  10. 10. Evenson RE, Gollin D. Assessing the impact of the Green Revolution, 1960 to 2000. Science. 2003;300:758–62. https://doi.org/10.1126/science.1078710
  11. 11. Sikder A, Pearce AK, Parkinson SJ, Napier R, O’Reilly RK. Recent trends in advanced polymer materials in agriculture-related applications. ACS Applied Polymer Materials. 2021;3(3):1203–17. https://doi.org/10.1021/acsapm.0c00982
  12. 12. Kuperkar K, Patel D, Atanase LI, Bahadur P. Amphiphilic block copolymers: their structures and self-assembly to polymeric micelles and polymersomes as drug delivery vehicles. Polymers. 2022;14(21):4702. https://doi.org/10.3390/polym14214702
  13. 13. Bhandari G. An overview of agrochemicals and their effects on the environment in Nepal. Applied Ecology and Environmental Sciences. 2014;2(2):66–73. https://doi.org/10.12691/aees-2-2-5
  14. 14. Abad A, Ravelojaona P. A generalization of environmental productivity analysis. Journal of Productivity Analysis. 2022;57:61–78. https://doi.org/10.1007/s11123-021-00620-1
  15. 15. Clark T, Hamer M. Pesticides in perspective. Ecological Risk Assessment for Agricultural Pesticides. Journal of Environmental Monitoring. 2000;2(6):104N–105N. https://doi.org/10.1039/B008962L
  16. 16. Alloway BJ, Brown PH, Cakmak I, Edwards AC, Fageria NK, Fan X, et al. Micronutrient deficiencies in global crop production. 1st ed. Dordrecht: Springer Netherlands; 2008.
  17. 17. Munson RD. Principles of plant analysis. In: Kalra YP, editor. Handbook of reference methods for plant analysis. 1st ed. Boca Raton, FL: CRC Press Taylor & Francis Group. 1998:1–24.
  18. 18. Subehia SK, Verma S, Sharma SP. Effect of long-term use of chemical fertilisers with and without organics on forms of soil acidity, phosphorus adsorption and crop yields in an acid soil. Journal of the Indian Society of Soil Science. 2005;53(3):308–14.
  19. 19. Oerke EC. Crop losses to pests. The Journal of Agricultural Science. 2006;144(1):31–43. https://doi.org/10.1017/S0021859605005708
  20. 20. Nollet LML, Rathore HS. Handbook of pesticides: methods of pesticide residues analysis. 1st ed. Boca Raton, FL: CRC Press; 2010. https://doi.org/10.1201/9781420082470
  21. 21. Populations RP. Pesticide resistance. 2007. https://doi.org/10.1201/9781420004045.ch9
  22. 22. Lechenet M, Dessaint F, Py G, Makowski D, Munier-Jolain N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nature Plants. 2017;3:1–6. https://doi.org/10.1038/nplants.2017.8
  23. 23. Yigit N, Velioglu YS. Effects of processing and storage on pesticide residues in foods. Critical Reviews in Food Science and Nutrition. 2020;60(21):3622–41. https://doi.org/10.1080/10408398.2019.1702501
  24. 24. Velioglu YS, Fikirdesici-Ergen S, Aksu P, Altindag A. Effects of ozone treatment on the degradation and toxicity of several pesticides in different groups. Tarim Bilimleri Dergisi. Journal of Agricultural Sciences. 2018;24(2):245–55. https://doi.org/10.15832/ankutbd.446448
  25. 25. Pesticide Manual. 16th ed. British Crop Production Council; 2009. Software engineered by P. J. Mann Web Design & Consultancy, UK.
  26. 26. United States Environmental Protection Agency (EPA). 2019. http://www.epa.gov/reducingpesticide-drift/pesticide-volatilization
  27. 27. Fantke P, Juraske R. Variability of pesticide dissipation half-lives in plants. Environmental Science & Technology. 2013;47(8):3548–62. https://doi.org/10.1021/es303525x
  28. 28. Katagi T. Photodegradation of pesticides on plant and soil surfaces. Reviews of Environmental Contamination and Toxicology. 2004;182:1–195. https://doi.org/10.1007/978-1-4419-9098-3_1
  29. 29. Gavrilescu M. Fate of pesticides in the environment and its bioremediation. Engineering in Life Sciences. 2005;5(6):497–526. https://doi.org/10.1002/elsc.200520098
  30. 30. Devi PI, Manjula M, Bhavani RV. Agrochemicals, environment and human health. Annual Review of Environment and Resources. 2022;47(1):399–421. https://doi.org/10.1146/annurev-environ-120920-111015
  31. 31. Ramamoorthy P, Sathiyamurthi S, Pavithra A, Sivasakthi M, Praveen Kumar S. Impact of major nutrients fertilizer application on soil pollution and management measures. In: Soil, Water Pollution and Mitigation Strategies: A Spatial Approach. Cham: Springer Nature Switzerland. 2024:301–14. https://doi.org/10.1007/978-3-031-63296-9_11
  32. 32. Peterson MA, Collavo A, Ovejero R, Shivrain V, Walsh MJ. The challenge of herbicide resistance around the world: a current summary. Pest Management Science. 2018;74(10):2246–59. https://doi.org/10.1002/ps.4821
  33. 33. Shahane AA, Shivay YS. Soil health and its improvement through novel agronomic and innovative approaches. Frontiers in Agronomy. 2021;3:680456. https://doi.org/10.3389/fagro.2021.680456
  34. 34. Virág D, Naár Z, Kiss A. Microbial toxicity of pesticide derivatives produced with UV-photodegradation. Bulletin of Environmental Contamination and Toxicology. 2007;79(3):356–9. https://doi.org/10.1007/s00128-007-9230-7
  35. 35. Delcour I, Spanoghe P, Uyttendaele M. Literature review: impact of climate change on pesticide use. Food Research International. 2015;68:7–15. https://doi.org/10.1016/j.foodres.2014.09.030
  36. 36. Sunam R, Mahat A. Addressing water pollution from agriculture in South Asia. Policy Brief. 2020. https://www.caritas.ch/fileadmin/user_upload/Caritas_Schweiz/data/site/was-wir-tun/engagement-weltweit/klima/Regional_Policy_Brief-SACB-Final-1_Feb_2021.pdf
  37. 37. Feldman D. Polymer history. Designed Monomers and Polymers. 2008;11(1):1–15. https://doi.org/10.1163/156855508X292383
  38. 38. Ahmed A. Applications of functionalized polymers in agriculture. Journal of Islamic Academy of Sciences. 1990;3(1):49–61.
  39. 39. Aouada FA, Shukla A, Fernandes Fraceto L. Nano/micro hydrogel systems for agricultural applications: a review. 1st ed. São Carlos, Brazil: Materials Research; 2011. https://doi.org/10.1590/S1516-14392011005000088
  40. 40. Mu L, Feng SS. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. 1st ed. Amsterdam, Netherlands: Journal of Controlled Release; 2003. https://doi.org/10.1016/S0168-3659(02)00333-7
  41. 41. Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. 1st ed. Basel, Switzerland: Pharmaceutica Acta Helvetiae; 1985. https://doi.org/10.1016/0168-3659(87)90034-4
  42. 42. Fan LT, Singh SK, Hwang CT. Controlled release: a quantitative treatment. 1st ed. Dordrecht, Netherlands: Springer; 1989. https://doi.org/10.1007/978-94-009-2311-9
  43. 43. Conti B, Genta I, Perugini P, Pavanetto F, Modena T. Biodegradable microspheres for sustained delivery of retinoic acid: influence of polymer composition on drug release kinetics and degradation. 1st ed. London, UK: Journal of Microencapsulation; 2007. https://doi.org/10.1080/02652040701330515
  44. 44. Caccavo D, Cascone S, Lamberti G, Barba AA. Modeling the drug release from hydrogel-based matrices. 1st ed. Washington, DC: Molecular Pharmaceutics; 2016. https://doi.org/10.1021/acs.molpharmaceut.5b00563
  45. 45. Siegel RA, Rathbone MJ. Overview of controlled release mechanisms. In: Siepmann J, Siegel RA, Rathbone MJ, editors. Fundamentals and applications of controlled release drug delivery. 1st ed. New York, NY: Springer. 2012:19-43. https://doi.org/10.1007/978-1-4614-0881-9_2
  46. 46. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers. 2011;3(3):1377-97. https://doi.org/10.3390/polym3031377
  47. 47. Wu XS, Wang N. Synthesis, characterization, biodegradation and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. Journal of Biomaterials Science, Polymer Edition. 2001;12:21-34. https://doi.org/10.1163/156856201744425
  48. 48. Houchin ML, Topp EM. Physical properties of PLGA films during polymer degradation. Journal of Applied Polymer Science. 2009;114:2848-54. https://doi.org/10.1002/app.30813
  49. 49. Frank A, Rath SK, Venkatraman SS. Controlled release from bioerodible polymers: effect of drug type and polymer composition. Journal of Controlled Release. 2005;102:333-44. https://doi.org/10.1016/j.jconrel.2004.10.019
  50. 50. Li Y, Wang C, Deng X, Cai R, Cao L, Cao C, et al. Preparation of thifluzamide polylactic acid glycolic acid copolymer microspheres and its effect on the growth of cucumber seedlings. International Journal of Molecular Sciences. 2023;24(12):10121. https://doi.org/10.3390/ijms241210121
  51. 51. Domard A. pH and c.d. measurements on a fully deacetylated chitosan: application to CuII-polymer interactions. International Journal of Biological Macromolecules. 1987;9:98-104. https://doi.org/10.1016/0141-8130(87)90033-X
  52. 52. Rinaudc M, Pavlov G, Desbrieres J. Solubilization of chitosan in strong acid medium. International Journal of Polymer Analysis and Characterization. 1999;5(3):267-76. https://doi.org/10.1080/10236669908009742
  53. 53. Chattopadhyay DP, Inamdar MS. Aqueous behaviour of chitosan. International Journal of Polymer Science. 2010;2010:1-7. https://doi.org/10.1155/2010/939536
  54. 54. Raafat D, Sahl HG. Chitosan and its antimicrobial potential: a critical literature survey. Microbial Biotechnology. 2009;2(2):186-201. https://doi.org/10.1111/j.1751-7915.2008.00080.x
  55. 55. No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology. 2002;74(1-2):65-72. https://doi.org/10.1016/S0168-1605(01)00717-6
  56. 56. Pu S, Li J, Sun L, Zhong L, Ma Q. An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles. Carbohydrate Polymers. 2019;211:161-72. https://doi.org/10.1016/j.carbpol.2019.02.007
  57. 57. Camara MC, Campos EV, Monteiro RA, do Espirito Santo Pereira A, de Freitas Proença PL, Fraceto LF. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. Journal of Nanobiotechnology. 2019;17:1-9. https://doi.org/10.1186/s12951-019-0533-8
  58. 58. Agarwal M, Nagar DP, Srivastava N, Agarwal MK. Chitosan nanoparticles-based drug delivery: an update. International Journal of Advanced Multidisciplinary Research. 2015;2(4):1-3.
  59. 59. Sahab AF, Waly AI, Sabbour MM, Nawar LS. Synthesis, antifungal and insecticidal potential of chitosan (CS)-g-poly (acrylic acid) (PAA) nanoparticles against some seed borne fungi and insects of soybean. International Journal of ChemTech Research. 2015;8(2):589-98.
  60. 60. Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV. Molecular mechanisms of chitosan interactions with fungi and plants. International Journal of Molecular Sciences. 2019;20(2):332. https://doi.org/10.3390/ijms20020332
  61. 61. Drumright RE, Gruber PR, Henton DE. Polylactic acid technology. Advanced Materials. 2000;12(23):1841-6. https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  62. 62. Hoogsteen W, Postema AR, Pennings AJ, Ten Brinke G, Zugenmaier P. Crystal structure, conformation and morphology of solution-spun poly (L-lactide) fibers. Macromolecules. 1990;23(2):634-42. https://doi.org/10.1021/ma00204a041
  63. 63. Palade LI, Lehermeier HJ, Dorgan JR. Melt rheology of high L-content poly (lactic acid). Macromolecules. 2001;34(5):1384-90. https://doi.org/10.1021/ma001173b
  64. 64. Karamanlioglu M, Robson GD. The influence of biotic and abiotic factors on the rate of degradation of poly (lactic) acid (PLA) coupons buried in compost and soil. Polymer Degradation and Stability. 2013;98(10):2063-71. https://doi.org/10.1016/j.polymdegradstab.2013.07.004
  65. 65. Ambros S, Bauer SA, Shylkina L, Foerst P, Kulozik U. Microwave-vacuum drying of lactic acid bacteria: influence of process parameters on survival and acidification activity. Food and Bioprocess Technology. 2016;9:1901-11. https://doi.org/10.1007/s11947-016-1768-0
  66. 66. Hawkyard C. Synthetic fibre dyeing. Society of Dyers and Colourists; 2004.
  67. 67. Vink ET, Rábago KR, Glassner DA, Springs B, O'Connor RP, Kolstad J, Gruber PR. The sustainability of NatureWorks™ polylactide polymers and Ingeo™ polylactide fibers: an update of the future. Macromolecular Bioscience. 2004;4(6):551-64. https://doi.org/10.1002/mabi.200400023
  68. 68. Blackburn R, editor. Biodegradable and sustainable fibres. Taylor & Francis US; 2005.
  69. 69. Bakibaev AA, Gazaliev AM, Kabieva SK, Fedorchenko VI, Guba GY, Smetanina EI, et al. Polymerization of lactic acid using microwave and conventional heating. Procedia Chemistry. 2015;15:97-102. https://doi.org/10.1016/j.proche.2015.10.015
  70. 70. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles-based drug delivery systems. Colloids and Surfaces B: Biointerfaces. 2010;75(1):1-18. https://doi.org/10.1016/j.colsurfb.2009.09.001
  71. 71. Coelho JF, Ferreira PC, Alves P, Cordeiro R, Fonseca AC, Góis JR, et al. Drug delivery systems: advanced technologies potentially applicable in personalized treatments. EPMA Journal. 2010;1(1):164-209. https://doi.org/10.1007/s13167-010-0001-x
  72. 72. Chen Y, Geever LM, Killion JA, Lyons JG, Higginbotham CL, Devine DM. Review of multifarious applications of poly(lactic acid). Polymer-Plastics Technology and Engineering. 2016;55(10):1057-75. https://doi.org/10.1080/03602559.2015.1132465
  73. 73. Grethe T. Biodegradable synthetic polymers in textiles: what lies beyond PLA and medical applications? A review. Tekstilec. 2021;64(1). https://doi.org/10.14502/Tekstilec2021.64.32-46
  74. 74. Hariyadi DM, Islam N. Current status of alginate in drug delivery. Advances in Pharmacological and Pharmaceutical Sciences. 2020;2020(1):8886095. https://doi.org/10.1155/2020/8886095
  75. 75. Ching SH, Bansal N, Bhandari B. Alginate gel particles: a review of production techniques and physical properties. Critical Reviews in Food Science and Nutrition. 2017;57(6):1133-52. https://doi.org/10.1080/10408398.2014.965773
  76. 76. Zhang A, Jung K, Li A, Liu J, Boyer C. Recent advances in stimuli-responsive polymer systems for remotely controlled drug release. Progress in Polymer Science. 2019;99:101164. https://doi.org/10.1016/j.progpolymsci.2019.101164
  77. 77. Szekalska M, Puciłowska A, Szymanska E, Ciosek P, Winnicka K. Alginate: current use and future perspectives in pharmaceutical and biomedical applications. International Journal of Polymer Science. 2016;2016:7697031. https://doi.org/10.1155/2016/7697031
  78. 78. Cardoso M, Costa R, Mano J. Marine origin polysaccharides in drug delivery systems. Marine Drugs. 2016;14(2):34. https://doi.org/10.3390/md14020034
  79. 79. Mirtic J, Ilaš J, Kristl J. Influence of different classes of crosslinkers on alginate polyelectrolyte nanoparticle formation, thermodynamics and characteristics. Carbohydrate Polymers. 2018;181:93-102. https://doi.org/10.1016/j.carbpol.2017.10.040
  80. 80. Wang T, Zheng Y, Shi Y, Zhao L. pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity. Drug Delivery and Translational Research. 2019;9(1):227-39. https://doi.org/10.1007/s13346-018-00609-8
  81. 81. Liu Q, Chiu A, Wang L-H, et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nature Communications. 2019;10(1):1–14. https://doi.org/10.1038/s41467-019-13238-7
  82. 82. Choi YH, Han H-K. Nanomedicines: current status and future perspectives in aspect of drug delivery and pharmacokinetics. Journal of Pharmaceutical Investigation. 2018;48(1):43–60. https://doi.org/10.1007/s40005-017-0370-4
  83. 83. Dos Santos Silva M, Cocenza DS, Grillo R, de Melo NFS, Tonello PS, de Oliveira LC, et al. Paraquat-loaded alginate/chitosan nanoparticles: Preparation, characterization and soil sorption studies. Journal of Hazardous Materials. 2011;190:366–74. https://doi.org/10.1016/j.jhazmat.2011.03.057
  84. 84. Heinze T, Pfeiffer K. Studies on the synthesis and characterization of carboxymethylcellulose. Angewandte Makromolekulare Chemie. 1999;266:37–45. https://doi.org/10.1002/(SICI)1522-9505(19990501)266:1<37::AID-APMC37>3.0.CO;2-Z
  85. 85. Morris BA. Rheology of polymer melts. In: The Science and Technology of Flexible Packaging. 1st ed. Oxford, UK: William Andrew. 2017:121–47.
  86. 86. Ghannam MT, Esmail MN. Rheological properties of carboxymethyl cellulose. Journal of Applied Polymer Science. 1997;64:289–301. https://doi.org/10.1002/(SICI)1097-4628(19970411)64:2<289::AID-APP9>3.0.CO;2-N
  87. 87. Benchabane A, Bekkour K. Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science. 2008;286:1173. https://doi.org/10.1007/s00396-008-1882-2
  88. 88. Easson M, Villalpando A, Condon BD. Absorbent properties of carboxymethylated fiber, hydroentangled nonwoven and regenerated cellulose: A comparative study. Journal of Engineered Fibers and Fabrics. 2017;12:61–9. https://doi.org/10.1177/1558925017012004
  89. 89. Krizova H, Wiener J. Development of carboxymethyl cellulose/polyphenols gels for textile applications. Autex Research Journal. 2013;13(2):33–6. https://doi.org/10.2478/v10304-012-0021-9
  90. 90. Fu J, Pang Z, Yang J, Huang F, Cai Y, Wei Q. Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application. Applied Surface Science. 2015;349:35–42. https://doi.org/10.1016/j.apsusc.2015.04.215
  91. 91. Tongdeesoontorn W, Mauer LJ, Wongruong S, Sriburi P, Rachtanapun P. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal. 2011;5(1):1–8. https://doi.org/10.1186/1752-153X-5-6
  92. 92. BeMiller JN. An introduction to pectins: structure and properties. Carbohydrate Polymers. 1986.
  93. 93. Min B, Bae IY, Lee HG, Yoo SH, et al. Bioresource Technology. 2010;101:5414–8. https://doi.org/10.1016/j.biortech.2010.02.022
  94. 94. Ciriminna R, Fidalgo A, Delisi R, Ilharco LM, Pagliaro M. Pectin production and global market. Agro Food Industry Hi-Tech. 2016;27(5):17–20.
  95. 95. Crescenzi V, Callegaro L. Chemical Abstracts. 1993;120:301518.
  96. 96. May CD. Pectins. In: Imeson A, editor. Thickening and Gelling Agents for Food. London: Blackie Academic and Professional. 1997:124–52.
  97. 97. Pavithran P, Marimuthu S, Chinnamuthu RC, Lakshmanan A, Bharathi C, Kadhiravan S. Synthesis and characterization of pectin beads for the smart delivery of agrochemicals. International Journal of Biological Macromolecules. 2021.
  98. 98. Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K. Chitosan microspheres as a potential carrier for drugs. International Journal of Pharmaceutics. 2004;274(1–2):1–33. https://doi.org/10.1016/j.ijpharm.2003.12.026
  99. 99. Gupta KC, Jabrail FH. Effects of degree of deacetylation and cross-linking on physical characteristics, swelling and release behavior of chitosan microspheres. Carbohydrate Polymers. 2006;66(1):43–54. https://doi.org/10.1016/j.carbpol.2006.02.019
  100. 100. Kashyap PL, Xiang X, Heiden P. Chitosan nanoparticle-based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules. 2015;77:36–51. https://doi.org/10.1016/j.ijbiomac.2015.02.039
  101. 101. Khoee S, Yaghoobian M. An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. European Journal of Medicinal Chemistry. 2009;44(6):2392–9. https://doi.org/10.1016/j.ejmech.2008.09.045
  102. 102. Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation. 2010;27(3):187–97. https://doi.org/10.3109/02652040903131301
  103. 103. Park S, Safdar M, Kim W, Seol J, Kim D, Lee KH, et al. Gelatin nanoparticles can improve pesticide delivery performance to plants. Small. 2024;20(42):2402899. https://doi.org/10.1002/smll.202402899
  104. 104. Sinha VR, Kumria R. Microbially triggered drug delivery to the colon. FEMS Microbiology Letters. 2003;217(1):1–7. https://doi.org/10.1016/S0928-0987(02)00221-X
  105. 105. Kaith BS, Jindal R, Kumari M, Kaur M. Biodegradable-stimuli sensitive xanthan gum based hydrogel: evaluation of antibacterial activity and controlled agro-chemical release. Reactive and Functional Polymers. 2017;120:1–3. https://doi.org/10.1016/j.reactfunctpolym.2017.08.012
  106. 106. Ferreira L, Vidal MM, Gil MH. Evaluation of poly(2-hydroxyethyl methacrylate) gels as drug delivery systems at different pH values. International Journal of Pharmaceutics. 2006;326(1–2):1–13. https://doi.org/10.1016/S0378-5173(99)00375-0
  107. 107. Sriamornsak P. Chemistry of pectin and its pharmaceutical uses: A review. Silpakorn University International Journal. 2003;3(1–2):206–28.
  108. 108. Sinha VR, Kumria R. Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics. 2001;224(1–2):19–38. https://doi.org/10.1016/S0378-5173(01)00720-7
  109. 109. Xiong Q, Liang W, Shang W, Xie Z, Cheng J, Yu B, et al. Bidirectional uptake, transfer and transport of dextran-based nanoparticles in plants for multidimensional enhancement of pesticide utilization. Small. 2024;20(8):2305693. https://doi.org/10.1002/smll.202305693
  110. 110. Liu Z, Xu W, Kovaleva EG, Cheng J, Li H. Recent progress in encapsulation and controlled release of pesticides based on cyclodextrin derivative carriers. Advanced Agrochem. 2022;1(2):89–99. https://doi.org/10.1016/j.aac.2022.11.008
  111. 111. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: An updated review. International Journal of Pharmaceutical Investigation. 2012;2(1):2–11. https://doi.org/10.4103/2230-973X.96920
  112. 112. Azeem MK, Islam A, Rizwan M, Rasool A, Gul N, Khan RU, et al. Sustainable and environment friendlier carrageenan-based pH-responsive hydrogels: Swelling behavior and controlled release of fertilizers. Colloid and Polymer Science. 2023;301(3):209–19. https://doi.org/10.1007/s00396-023-05054-9
  113. 113. Li X, Wang S, Sun Z, Gao M, Li Q, Qin M. Study on Enteromorpha polysaccharide/Konjac glucomannan mulch films with biochar as a fertilizer carrier. ACS Applied Polymer Materials. 2024;6(12):6946–56. https://doi.org/10.1021/acsapm.4c00433
  114. 114. Singh B, Chauhan N, Kumar S. Synthesis, characterization and swelling studies of pH-responsive psyllium and polyacrylamide based hydrogels for the use in drug delivery. Carbohydrate Polymers. 2008;73(2):201–10. https://doi.org/10.1016/j.carbpol.2007.12.009
  115. 115. Mao S, Sun W, Kissel T. Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews. 2010;62(1):12–27. https://doi.org/10.1016/j.addr.2009.08.004
  116. 116. Singh B, Sharma DK, Negi S, Dhiman A. Synthesis and characterization of agar-starch based hydrogels for slow herbicide delivery applications. International Journal of Plastics Technology. 2015;19:263–74. https://doi.org/10.1007/s12588-015-9126-z
  117. 117. Kumar V, Mittal H, Alhassan SM. Biodegradable hydrogels of tragacanth gum polysaccharide to improve water retention capacity of soil and environment-friendly controlled release of agrochemicals. International Journal of Biological Macromolecules. 2019;132:1252–61. https://doi.org/10.1016/j.ijbiomac.2019.04.023
  118. 118. Roy A, Singh SK, Bajpai J, Bajpai AK. Controlled pesticide release from biodegradable polymers. Central European Journal of Chemistry. 2014;12(4):453–69. https://doi.org/10.2478/s11532-013-0405-2
  119. 119. Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, et al. Chitosan/tripolyphosphate nanoparticles loaded with paraquat herbicide: An environmentally safer alternative for weed control. Journal of Hazardous Materials. 2014;278:163–71. https://doi.org/10.1016/j.jhazmat.2014.05.079
  120. 120. Ahmadi AN, Ganjeali A, Mohassel MH, Mashreghi M. Controlled release of trifluralin herbicide using luminescent Vibrio-derived polyhydroxyalkanoate (PHA) microcapsules. International Journal of Biological Macromolecules. 2025;289:138845. https://doi.org/10.1016/j.ijbiomac.2024.138845
  121. 121. Bindra HS, Singh B. Nanopesticides: future of plant protection. In: Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture: A Smart Delivery System for Crop Improvement. 2020:57.
  122. 122. Kenawy ER, Sherrington DC, Akelah A. Controlled release of agrochemical molecules chemically bound to polymers. European Polymer Journal. 1992;28(6):841–62. https://doi.org/10.1016/0014-3057(92)90310-X
  123. 123. Zhang H, Xu W, Li G, Qu H, Ma C, Noruzi EB, et al. Controlled release system of nanopesticides based on noncovalent interactions. ACS Agricultural Science & Technology. 2024;4(9):851–71. https://doi.org/10.1021/acsagscitech.4c00321
  124. 124. Sun Y, Ma Y, Fang G, Ren S, Fu Y. Controlled pesticide release from porous composite hydrogels based on lignin and polyacrylic acid. BioResources. 2016;11(1):2361–71. https://doi.org/10.15376/biores.11.1.2361-2371
  125. 125. Vermoesen E, Bodé S, Brosens G, Boeckx P, Van Vlierberghe S. Chemical strategies towards controlled release in agriculture. Reviews in Chemical Engineering. 2024;40(2):247–77. https://doi.org/10.1515/revce-2022-0057
  126. 126. Apicella A, Cappello B, Del Nobile MA, La Rotonda MI, Mensitieri G, Nicolais L. Poly(ethylene oxide) (PEO) and different molecular weight PEO blends monolithic devices for drug release. Biomaterials. 1993;14(2):83–90. https://doi.org/10.1016/0142-9612(93)90215-N
  127. 127. Lara HH, Ayala-Núñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology. 2010;26(4):615–21. https://doi.org/10.1007/s11274-009-0211-3
  128. 128. Mogul MG, Akin H, Hasirci N, Trantolo DJ, Gresser JD, Wise DL. Controlled release of biologically active agents for purposes of agricultural crop management. Resources, Conservation and Recycling. 1996;16(1–4):289–320. https://doi.org/10.1016/0921-3449(95)00063-1
  129. 129. Fernández-Pérez M, Villafranca-Sanchez M, Gonzalez-Pradas E, Martinez-Lopez F, Flores-Cespedes F. Controlled release of carbofuran from an alginate-bentonite formulation: water release kinetics and soil mobility. Journal of Agricultural and Food Chemistry. 2000;48(3):938–43. https://doi.org/10.1021/jf981296j
  130. 130. Mancera-Andrade EI, Parsaeimehr A, Arevalo-Gallegos A, Ascencio-Favela G, Parra-Saldivar R. Microfluidics technology for drug delivery: A review. Frontiers in Bioscience (Elite Ed). 2018;10:74–91. https://doi.org/10.2741/e809
  131. 131. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-ε-caprolactone microspheres and nanospheres: A review. International Journal of Pharmaceutics. 2004;278(1):1–23. https://doi.org/10.1016/j.ijpharm.2004.01.044
  132. 132. Risangud N. Synthesis and application of new polymers for agriculture: pesticide formulation [Doctoral dissertation]. University of Warwick; 2017. http://wrap.warwick.ac.uk/96908

Downloads

Download data is not yet available.