Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Advancements in induced systemic resistance: Mechanisms, applications and integration for sustainable crop protection and climate adaptation

DOI
https://doi.org/10.14719/pst.7976
Submitted
27 February 2025
Published
05-08-2025
Versions

Abstract

Induced Systemic Resistance (ISR) is an important biological defense mechanism in plants, which enhances their resistance to a wide range of pathogens and abiotic stresses. ISR is triggered by beneficial microorganisms, particularly Plant Growth Promoting Rhizobacteria (PGPR) and involves complex molecular interactions among key signaling pathways, including salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA) and Reactive Oxygen Species (ROS). This review explores the mechanistic basis of ISR, focusing on the molecular crosstalk and epigenetic memory that primes plants for enhanced stress tolerance. The integration of ISR with climate resilience strategies is highlighted, addressing the potential of ISR to mitigate the impacts of climate variability, including heatwaves, floods and elevated CO₂ levels. Additionally, practical challenges such as field-level validation, cost-effectiveness and formulation development are discussed, alongside the technological innovations that may enhance ISR applications in sustainable agriculture. This work aims to provide a comprehensive understanding of ISR's molecular foundations and its potential for climate-resilient agriculture, with a focus on scalable and economically viable solutions. Future directions, including the integration of ISR with precision agriculture and the use of biotechnological advancements such as CRISPR-Cas systems, offer promising avenues for enhancing ISR efficiency and expanding its applicability across diverse agricultural systems. This review aims to contribute to the development of ISR-based strategies that can promote long-term agricultural sustainability and global food security.

References

  1. 1. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, et al. Requirement of salicylic acid for the induction of systemic acquired resistance. Science. 1993;261(5122):754–6. https://doi.org/10.1126/science.261.5122.754
  2. 2. Food and Agriculture Organization of the United Nations. The state of food and agriculture 2023: Revealing the true cost of food to transform agrifood systems. 2023.
  3. 3. Global Network Against Food Crises. 2025 Global report on food crises: High-level launch event. International Fund for Agricultural Development (IFAD), Rome, Italy. 2025.
  4. 4. World Bank. Food security update: Solutions to food insecurity. 2025. https://www.worldbank.org/en/topic/agriculture/brief/food-security-update
  5. 5. Ray P, Lakshmanan V, Labbé J, Craven KD. Microbe to microbiome: A paradigm shift in the application of microorganisms for sustainable agriculture. Front Microbiol. 2020;11:622926. https://doi.org/10.3389/fmicb.2020.622926
  6. 6. Altieri MA, Nicholls CI, Henao A, Lana M. Agroecology and the design of climate change-resilient farming systems. Agron Sustain Dev. 2015;35(3):869–90. https://doi.org/10.1007/s13593-015-0285-2
  7. 7. Reddy AJ, T C, Bhujel S, R V, N NS, Siddiqua A, et al. Maximizing yield and sustainability: A comprehensive approach to integrated pest management in horticulture crops. J Adv Biol Biotechnol. 2024;27(5):632–49. https://doi.org/10.9734/jabb/2024/v27i5824
  8. 8. Adewuyi NAY, Anyibama NB, Adebayo NKB, Kalinzi NJM, Adeniyi NSA, Wada NI. Precision agriculture: Leveraging data science for sustainable farming. Int J Sci Res Arch. 2024;12(2):1122–9.
  9. 9. Brzozowski L, Mazourek M. A sustainable agricultural future relies on the transition to organic agroecological pest management. Sustainability. 2018;10(6):2023. https://doi.org/10.3390/su10062023
  10. 10. Kovalchuk I. Role of epigenetic factors in response to stress and establishment of somatic memory of stress exposure in plants. Plants. 2023;12(21):3667. https://doi.org/10.3390/plants12213667
  11. 11. Manoharan B, Narayanasamy S, Joshi J, Jegadeesan S, Qi S, Dai Z, et al. Molecular events and defence mechanism against biotic stress induced by bio-priming of beneficial microbes. In: Microorganisms for Sustainability. 2023;61–87. https://doi.org/10.1007/978-981-99-3947-3_3
  12. 12. Gong M, He J, Kong M, Huo Q, Jiang Y, Song J, et al. A microencapsulation approach to design microbial seed coatings to boost wheat seed germination and seedling growth under salt stress. Front Plant Sci. 2023;14:1283590. https://doi.org/10.3389/fpls.2023.1283590
  13. 13. Khalimi K, Temaja IGRM, Suprapta DN. Systemic resistance induced by Stenotrophomonas maltophilia Sg3 against cucumber mosaic virus in tobacco plant. Int J Agric Biol. 2020;23(1):149–54. https://doi.org/10.17957/IJAB/15.1271
  14. 14. Pršić J, Ongena M. Elicitors of plant immunity triggered by beneficial bacteria. Front Plant Sci. 2020;11:594530. https://doi.org/10.3389/fpls.2020.594530
  15. 15. Yu Y, Gui Y, Li Z, Jiang C, Guo J, Niu D. Induced systemic resistance for improving plant immunity by beneficial microbes. Plants. 2022;11(3):386. https://doi.org/10.3390/plants11030386
  16. 16. Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, Tripathi YN, et al. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J Basic Microbiol. 2020;60(10):828–61. https://doi.org/10.1002/jobm.202000370
  17. 17. Mehmood T, Li G, Anjum T, Akram W. Azospirillum lipoferum strain AL-3 reduces early blight disease of potato and enhances yield. Crop Prot. 2021;139:105349. https://doi.org/10.1016/j.cropro.2020.105349
  18. 18. Rabari A, Ruparelia J, Jha CK, Sayyed RZ, Mitra D, Priyadarshini A, et al. Articulating beneficial rhizobacteria-mediated plant defenses through induced systemic resistance: A review. Pedosphere. 2023;33(4):556–66. https://doi.org/10.1016/j.pedsph.2022.10.003
  19. 19. Walters DR, Fountaine JM. Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. J Agric Sci. 2009;147(5):523–35. https://doi.org/10.1017/s0021859609008806
  20. 20. Elnahal ASM, El-Saadony MT, Saad AM, Desoky EM, El-Tahan AM, Rady MM, et al. The use of microbial inoculants for biological control, plant growth promotion and sustainable agriculture: a review. Eur J Plant Pathol. 2022;162(4):759–92. https://doi.org/10.1007/s10658-021-02393-7
  21. 21. Saini S, Lohani S, Khati P, Rani V. PGPR-mediated mitigation of biotic and abiotic stress in plants. Elsevier eBooks. 2023:199–227. https://doi.org/10.1016/b978-0-323-95090-9.00013-3
  22. 22. Van Wees SC, Swart E, Van Pelt J, Van Loon L, Pieterse CMJ. Enhancement of induced disease resistance by simultaneous activation of salicylate and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2000;97(15):8711–6. https://doi.org/10.1073/pnas.130425197
  23. 23. Mishra B, Kumar N, Mukhtar MS. Systems biology and machine learning in plant-pathogen interactions. Mol Plant Microbe Interact. 2018;32(1):45–55. https://doi.org/10.1094/mpmi-08-18-0221-fi
  24. 24. Del Carmen Orozco-Mosqueda M, Fadiji AE, Babalola OO, Santoyo G. Bacterial elicitors of the plant immune system: an overview and the way forward. Plant Stress. 2023;7:100138. https://doi.org/10.1016/j.stress.2023.100138
  25. 25. Choudhary DK, Prakash A, Johri BN. Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol. 2007;47(4):289–97. https://doi.org/10.1007/s12088-007-0054-2
  26. 26. Conrath U, Thulke O, Katz V, Schwindling S, Kohler A. Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol. 2001;107:113–9. https://doi.org/10.1023/A1008768516313
  27. 27. Loake GJ, Grant M. Salicylic acid in plant defence-the players and protagonists. Curr Opin Plant Biol. 2007;10(5):466–72. https://doi.org/10.1016/j.pbi.2007.08.008
  28. 28. Wilhelm RC, Van Es HM, Buckley DH. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol Biochem. 2021;164:108472. https://doi.org/10.1016/j.soilbio.2021.108472
  29. 29. Kusajima M, Fujita M, Khamsalath S, Nakamura H, Yoneyama K, Nomura T, et al. Strigolactones modulate salicylic acid-mediated disease resistance in Arabidopsis thaliana. Int J Mol Sci. 2022;23(9):5246. https://doi.org/10.3390/ijms23095246
  30. 30. McCoy KD, Burkhard R, Geuking MB. The microbiome and immune memory formation. Immunol Cell Biol. 2019;97(7):625–35. https://doi.org/10.1111/imcb.12273
  31. 31. Tiwari M, Singh P. Plant defense priming: a new tool for sustainable global food security. Agric Innov Sustain. 2021:133–53.
  32. 32. Mauch-Mani B, Baccelli I, Luna E, Flors V. Defense priming: An adaptive part of induced resistance. Annu Rev Plant Biol. 2017;68(1):485–512. https://doi.org/10.1146/annurev-arplant-042916-041132
  33. 33. Bagheri A, Fathipour Y. Induced resistance and defense primings. In: Springer eBooks. 2021;73–139. https://doi.org/10.1007/978-981-16-3591-5_3
  34. 34. Fan W, Dong X. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell. 2002;14(6):1377–89. https://doi.org/10.1105/tpc.001628
  35. 35. Khan RAA, Najeeb S, Chen J, Wang R, Zhang J, Hou J, et al. Insights into the molecular mechanism of Trichoderma stimulating plant growth and immunity against phytopathogens. Physiol Plant. 2023;175(6):e14133.
  36. 36. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, et al. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 2010;64(2):204–14. https://doi.org/10.1111/j.1365-313X.2010.04324.x
  37. 37. Xie S, Yu H, Li E, Wang Y, Liu J, Jiang H. Identification of miRNAs involved in Bacillus velezensis FZB42-activated induced systemic resistance in maize. Int J Mol Sci. 2019;20(20):5057.
  38. 38. Lim G. Regulation of salicylic acid and N-hydroxy-pipecolic acid in systemic acquired resistance. Plant Pathol J (Suwon). 2023;39(1):21–7. https://doi.org/10.5423/PPJ.RW.10.2022.0145
  39. 39. De La Torre JOM, Margutti MYP, López IL, Cambiagno DA, Alvarez ME, Cecchini NM. The Arabidopsis chromatin regulator MOM1 is a negative component of the defense priming induced by AZA, BABA and PIP. Front Plant Sci. 2023;14:1133327. https://doi.org/10.3389/fpls.2023.1133327
  40. 40. Hu Y, Wang Y, Chen Y, Chai Q, Dong H, Shen J, et al. Salicylic acid enhances heat stress resistance of Pleurotus ostreatus (Jacq.) P. Kumm through metabolic rearrangement. Antioxidants. 2022;11(5):968. https://doi.org/10.3390/antiox11050968
  41. 41. Agostini RB, Rius SP, Vargas W, Campos-Bermudez VA. Proteome impact on maize silks under the priming state induced by Trichoderma root colonization. Planta. 2021;253(5). https://doi.org/10.1007/s00425-021-03633-0
  42. 42. Vasyukova NI, Ozeretskovskaya OL. Induced plant resistance and salicylic acid: A review. Appl Biochem Microbiol. 2007;43(4):367–73. https://doi.org/10.1134/S0003683807040011
  43. 43. Nair A, Bhukya DPN, Sunkar R, Chavali S, Allu AD. Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. J Exp Bot. 2022;73(11):3355–71. https://doi.org/10.1093/jxb/erac089
  44. 44. Maithani D, Singh H, Sharma A. Stress alleviation in plants using SAR and ISR: Current views on stress signaling network. In: Rhizosphere Biology. 2020:7–36. https://doi.org/10.1007/978-981-15-7094-0_2
  45. 45. Samain E, Ernenwein C, Aussenac T, Selim S. Effective and durable systemic wheat-induced resistance by a plant-growth-promoting rhizobacteria consortium of Paenibacillus sp. strain B2 and Arthrobacter spp. strain AA against Zymoseptoria tritici and drought stress. Physiol Mol Plant Pathol. 2022;119:101830. https://doi.org/10.1016/j.pmpp.2022.101830
  46. 46. Vasyukova NI, Ozeretskovskaya OL. Induced plant resistance and salicylic acid: A review. Appl Biochem Microbiol. 2007;43(4):367–73. https://doi.org/10.1134/S0003683807040011
  47. 47. Segonzac C, Zipfel C. Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol. 2011;14(1):54–61. https://doi.org/10.1016/j.mib.2010.12.005
  48. 48. Loranger MEW, Yim W, Toffoli M, Groleau M, Nickzad A, Morales-Lizcano N, et al. Characterization of immunity-inducing rhizobacteria highlights diversity in plant-microbe interactions. bioRxiv. 2024. https://doi.org/10.1101/2024.05.23.595641
  49. 49. Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science. 1993;262(5141):1883–6. https://doi.org/10.1126/science.8266079
  50. 50. Westman S, Kloth KJ, Hanson J, Ohlsson AB, Albrectsen BR. Defence priming in Arabidopsis: A meta-analysis. Sci Rep. 2019;9(1):49811. https://doi.org/10.1038/s41598-019-49811-9
  51. 51. Nunes PS, Lacerda-Junior GV, Mascarin GM, Guimarães RA, Medeiros FH, Arthurs S, et al. Microbial consortia of biological products: Do they have a future? Biol Control. 2024;188:105439. https://doi.org/10.1016/j.biocontrol.2024.105439
  52. 52. Cao L, Yoo H, Chen T, Mwimba M, Zhang X, Dong X. H2O2 sulfenylates CHE linking local infection to establishment of systemic acquired resistance. bioRxiv. 2023. https://doi.org/10.1101/2023.07.27.550865
  53. 53. Veillet F, Durand M, Kroj T, Cesari S, Gallois J. Precision breeding made real with CRISPR: Illustration through genetic resistance to pathogens. Plant Commun. 2020;1(5):100102. https://doi.org/10.1016/j.xplc.2020.100102
  54. 54. Liu J, Li L, Xiong Z, Robert C, Li B, He S, et al. Trade-offs between the accumulation of cuticular wax and jasmonic acid-mediated herbivory resistance in maize. J Integr Plant Biol. 2024;66(1):143–59. https://doi.org/10.1111/jipb.13586
  55. 55. Heo A, Koo YM, Choi HW. Biological control activity of plant growth-promoting rhizobacteria Burkholderia contaminans AY001 against tomato Fusarium wilt and bacterial speck diseases. Biology. 2022;11(4):619. https://doi.org/10.3390/biology11040619
  56. 56. Kusajima M, Shima S, Fujita M, Minamisawa K, Sik F, Yamakawa H, et al. Involvement of ethylene signaling in Azospirillum sp. B510-induced disease resistance in rice. Biosci Biotechnol Biochem. 2018;82(9):1522–6. https://doi.org/10.1080/09168451.2018.1480350
  57. 57. Hu Z, Shao S, Zheng C, Sun Z, Shi J, Yu J, Qi Z. Induction of systemic resistance in tomato against Botrytis cinerea by N-decanoyl-homoserine lactone via jasmonic acid signaling. Planta. 2018;247(5):1217–27. https://doi.org/10.1007/s00425-018-2860-7
  58. 58. Glick BR. Beneficial plant-bacterial interactions. Springer eBooks. 2020.
  59. 59. Singh AK, Meetei NT, Singh BK, Mandal N. Khasi mandarin: Its importance, problems and prospects of cultivation in north-eastern Himalayan region. Int J Agric Environ Biotechnol. 2016;9(4):573. https://doi.org/10.5958/2230-732x.2016.00076.0
  60. 60. Hönig M, Roeber VM, Schmülling T, Cortleven A. Chemical priming of plant defense responses to pathogen attacks. Front Plant Sci. 2023;14:1146577. https://doi.org/10.3389/fpls.2023.1146577
  61. 61. Saijo Y, Loo EP, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. Plant J. 2018;93(4):592–613. https://doi.org/10.1111/tpj.13808
  62. 62. Samanta S, Roychoudhury A. Molecular crosstalk of jasmonate with major phytohormones and plant growth regulators during diverse stress responses. J Plant Growth Regul. 2025;44(1):62–88.
  63. 63. Wang Y, Mostafa S, Zeng W, Jin B. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. Int J Mol Sci. 2021;22(16):8568. https://doi.org/10.3390/ijms22168568
  64. 64. Innerbner G, Knief C, Vorholt JA. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol. 2011;77(10):3202–10. https://doi.org/10.1128/AEM.00133-11
  65. 65. Tijjani A, Ahmad K. Global food demand and the roles of microbial communities in sustainable crop protection and food security: An overview. In: Microorganisms for Sustainability. 2021:81–107. https://doi.org/10.1007/978-981-15-9912-5_4
  66. 66. Soenens A, Imperial J. Biocontrol capabilities of the genus Serratia. Phytochem Rev. 2019;19(3):577–87. https://doi.org/10.1007/s11101-019-09657-5
  67. 67. Riseh RS, Vazvani MG, Kennedy JF. β-glucan-induced disease resistance in plants: A review. Int J Biol Macromol. 2023;253:127043. https://doi.org/10.1016/j.ijbiomac.2023.127043
  68. 68. Dolgikh VA, Pukhovaya EM, Zemlyanskaya EV. Shaping ethylene response: the role of EIN3/EIL1 transcription factors. Front Plant Sci. 2019;10:1030. https://doi.org/10.3389/fpls.2019.01030
  69. 69. Romero-Gutiérrez KJ, Dourado MN, Garrido LM, Olchanheski LR, Mano ET, Dini-Andreote F, Araújo WL. Phenotypic traits of Burkholderia spp. associated with ecological adaptation and plant-host interaction. Microbiol Res. 2020;236:126451. https://doi.org/10.1016/j.micres.2020.126451
  70. 70. Zhu Z, An F, Feng Y, Li P, Xue L, A M, et al. Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci USA. 2011;108(30):12539–44. https://doi.org/10.1073/pnas.1103959108
  71. 71. Elías JM, Guerrero-Molina MF, Martínez-Zamora MG, Ricci JCD, Pedraza RO. Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense. Plant Biol. 2018;20(3):490–6. https://doi.org/10.1111/plb.12697
  72. 72. Romera FJ, García MJ, Lucena C, Angulo M, Pérez-Vicente R. NO is not the same as GSNO in the regulation of Fe deficiency responses by dicot plants. Int J Mol Sci. 2023;24(16):12617.
  73. 73. Romera FJ, Lucena C, García MJ, Alcántara E, Pérez-Vicente R. The role of ethylene and other signals in the regulation of Fe deficiency responses by dicot plants. Springer eBooks. 2016:277–300. https://doi.org/10.1007/978-3-319-42183-4_12
  74. 74. Chen Z, Xu P, Li B, Li P, Xing W, An F, et al. Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis. Proc Natl Acad Sci USA. 2017;114(52):13834–9. https://doi.org/10.1073/pnas.1711723115
  75. 75. Yanti Y, Warnita, Reflin. Involvement of jasmonic acid in the induced systemic resistance of tomato against Ralstonia syzygii subsp. indonesiensis by indigenous endophyte bacteria. IOP Conf Ser Earth Environ Sci. 2019;347(1):012024. https://doi.org/10.1088/1755-1315/347/1/012024
  76. 76. McCoy KD, Burkhard R, Geuking MB. The microbiome and immune memory formation. Immunol Cell Biol. 2019;97(7):625–35. https://doi.org/10.1111/imcb.12273
  77. 77. Khoshru B, Mitra D, Joshi K, Adhikari P, Rion MSI, Fadiji AE, et al. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon. 2023;9(3):e13825. https://doi.org/10.1016/j.heliyon.2023.e13825
  78. 78. Nandakumar R, Babu S, Viswanathan R, Raguchander T, Samiyappan R. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biol Biochem. 2001;33(4–5):603–12. https://doi.org/10.1016/S0038-0717(00)00202-9
  79. 79. Chan LC, Rossetti M, Miller LS, Filler SG, Johnson CW, Lee HK, et al. Protective immunity in recurrent Staphylococcus aureus infection reflects localized immune signatures and macrophage-conferred memory. Proc Natl Acad Sci USA. 2018;115(47). https://doi.org/10.1073/pnas.1808353115
  80. 80. Meena M, Swapnil P, Divyanshu K, Kumar S, Harish H, Tripathi YN, et al. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against pathogens: Current perspectives. J Basic Microbiol. 2020;60(10):828–61. https://doi.org/10.1002/jobm.202000370
  81. 81. Nejat N, Han Y, Zhang X, He T, Wang P, Li C. Swiftly evolving CRISPR genome editing: A revolution in genetic engineering for developing stress-resilient crops. Curr Chin Sci. 2022;2(5):382–99. https://doi.org/10.2174/2210298102666220324112842
  82. 82. Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The chemistry of plant-microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci. 2018;9:112. https://doi.org/10.3389/fpls.2018.00112
  83. 83. Negi S, Das DK, Pahari S, Nadeem S, Agrewala JN. Potential role of gut microbiota in induction and regulation of innate immune memory. Front Immunol. 2019;10:2441. https://doi.org/10.3389/fimmu.2019.02441
  84. 84. Conrath U. Molecular aspects of defence priming. Trends Plant Sci. 2011;16(10):524–31. https://doi.org/10.1016/j.tplants.2011.06.004
  85. 85. Slaughter A, Daniel X, Flors V, Luna E, Hohn B, Mauch-Mani B. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 2012;158(2):835–43. https://doi.org/10.1104/pp.111.191593
  86. 86. Luna E, Bruce TJ, Roberts MR, Flors V, Ton J. Next-generation systemic acquired resistance. Plant Physiol. 2012;158(2):844–53. https://doi.org/10.1104/pp.111.187468
  87. 87. Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: Improving plant tolerance to stress combination. Plant J. 2021;109(2):373–89. https://doi.org/10.1111/tpj.15483
  88. 88. Yang Z, Zhi P, Chang C. Priming seeds for the future: Plant immune memory and application in crop protection. Front Plant Sci. 2022;13:961840. https://doi.org/10.3389/fpls.2022.961840
  89. 89. Liu J, He Z. Small DNA methylation, big player in plant abiotic stress responses and memory. Front Plant Sci. 2020;11:595603. https://doi.org/10.3389/fpls.2020.595603
  90. 90. Salwan R, Sharma M, Sharma AK, Sharma V. Insights into plant beneficial microorganism-triggered induced systemic resistance. Plant Stress. 2023;7:100140. https://doi.org/10.1016/j.stress.2023.100140
  91. 91. Bostock RM. Signal crosstalk and induced resistance straddling the line between cost and benefit. Annu Rev Phytopathol. 2005;43:545–80. https://doi.org/10.1146/annurev.phyto.41.052002.095505
  92. 92. Parameswari P, Belagalla N, Singh BV, Abhishek G, Rajesh G, Katiyar D, et al. Nanotechnology-based sensors for real-time monitoring and assessment of soil health and quality: A review. Asian J Soil Sci Plant Nutr. 2024;10(2):157–73. https://doi.org/10.9734/ajsspn/2024/v10i2272
  93. 93. Diezel C, Von Dahl CC, Gaquerel E, Baldwin IT. Different lepidopteran elicitors account for cross-talk in herbivory-induced phytohormone signaling. Plant Physiol. 2009;150(3):1576–86. https://doi.org/10.1104/pp.109.139550
  94. 94. Su Y, Zhou X, Meng H, Xia T, Liu H, Rolshausen P, et al. Cost–benefit analysis of nanofertilizers and nanopesticides emphasizes the need to improve the efficiency of nanoformulations for widescale adoption. Nat Food. 2022;3(12):1020–30. https://doi.org/10.1038/s43016-022-00647-z
  95. 95. Bostock RM. Signal crosstalk and induced resistance: Straddling the line between cost and benefit. Annu Rev Phytopathol. 2005;43(1):545–80. https://doi.org/10.1146/annurev.phyto.41.052002.095505
  96. 96. Romera FJ, Lucena C, García MJ, Alcántara E, Pérez-Vicente R. The role of ethylene and other signals in the regulation of Fe deficiency responses by dicot plants. Springer eBooks. 2016:277–300. https://doi.org/10.1007/978-3-319-42183-4_12
  97. 97. Llorens E, González-Hernández AI, Scalschi L, Fernández-Crespo E, Camañes G, Vicedo B, et al. Priming mediated stress and cross-stress tolerance in plants: Concepts and opportunities. Elsevier eBooks. 2020:1–20. https://doi.org/10.1016/b978-0-12-817892-8.00001-5
  98. 98. Kumar M, Karthikeyan N, Prasanna R. Priming of plant defense and plant growth in disease-challenged crops using microbial consortia. In: Choudhary DK, Varma A, editors. Microbial-mediated induced systemic resistance in plants. Singapore: Springer; 2016. https://doi.org/10.1007/978-981-10-0388-2_4
  99. 99. Mei L, Liang Y, Zhang L, Wang Y, Guo Y. Induced systemic resistance and growth promotion in tomato by an indole-3-acetic acid-producing strain of Paenibacillus polymyxa. Ann Appl Biol. 2014;165(2):270–9.
  100. 100. Benhamou N, Gagné S, Quéré DL, Dehbi L. Bacterial-mediated induced resistance in cucumber: Beneficial effect of the endophytic bacterium Serratia plymuthica on the protection against infection by Pythium ultimum. Phytopathology. 2000;90(1):45–56. https://doi.org/10.1094/phyto.2000.90.1.45
  101. 101. Miotto-Vilanova L, Jacquard C, Courteaux B, Wortham L, Michel J, Clément C, et al. Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization. Front Plant Sci. 2016;7:1236. https://doi.org/10.3389/fpls.2016.01236
  102. 102. Timmermann T, Poupin MJ, Vega A, Urrutia C, Ruz GA, González B. Gene networks underlying the early regulation of Paraburkholderia phytofirmans PsJN induced systemic resistance in Arabidopsis. PLoS One. 2019;14(8):0221358. https://doi.org/10.1371/journal.pone.0221358
  103. 103. Rajamanickam S, Nakkeeran S. Flagellin of Bacillus amyloliquefaciens works as a resistance inducer against groundnut bud necrosis virus in chilli (Capsicum annuum L.). Arch Virol. 2020;165:1585–97.
  104. 104. Gowtham HG, Singh SB, Shilpa N, Aiyaz M, Nataraj K, Udayashankar AC, et al. Insight into recent progress and perspectives in improvement of antioxidant machinery upon PGPR augmentation in plants under drought stress: A review. Antioxidants. 2022;11(9):1763. https://doi.org/10.3390/antiox11091763
  105. 105. Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP. Metabolomics as an emerging tool for the study of plant–pathogen interactions. Metabolites. 2020;10(2):52. https://doi.org/10.3390/metabo10020052
  106. 106. Wang X, Fan D, Yang Y, Gimple RC, Zhou S. Integrative multi-omics approaches to explore immune cell functions: Challenges and opportunities. iScience. 2023;26(4):106359. https://doi.org/10.1016/j.isci.2023.106359
  107. 107. Razzaq A, Kaur P, Akhter N, Wani SH, Saleem F. Next-generation breeding strategies for climate-ready crops. Front Plant Sci. 2021;12. https://doi.org/10.3389/fpls.2021.620420
  108. 108. Wilhelm RC, Van Es HM, Buckley DH. Predicting measures of soil health using the microbiome and supervised machine learning. Soil Biol Biochem. 2021;164:108472. https://doi.org/10.1016/j.soilbio.2021.108472
  109. 109. Alicehajic A, Duivenvoorden AAM, Lenaerts K. Unveiling the molecular complexity of intestinal ischemia–reperfusion injury through omics technologies. Proteomics. 2024;24(12–13). https://doi.org/10.1002/pmic.202300160
  110. 110. Ahmed W, Xia Y, Li R, Bai G, Siddique KH, Guo P. Non-coding RNAs: Functional roles in the regulation of stress response in Brassica crops. Genomics. 2019;112(2):1419–24. https://doi.org/10.1016/j.ygeno.2019.08.011
  111. 111. Díaz ASL, Macheda D, Saha H, Ploll U, Orine D, Biere A. Tackling the context-dependency of microbial-induced resistance. Agronomy. 2021;11(7):1293. https://doi.org/10.3390/agronomy11071293
  112. 112. Wei G. Induced systemic resistance to cucumber diseases and increased plant growth by plant growth-promoting rhizobacteria under field conditions. Phytopathology. 1996;86(2):221. https://doi.org/10.1094/phyto-86-221
  113. 113. Sarwar N, Zahid MH, Ashfaq S, Jamil FF. Induced systemic resistance in chickpea against Ascochyta blight by safe chemicals. Pakistan J Bot. 2011;43(2):1381–7.
  114. 114. Kloepper JW, Ryu C, Zhang S. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology. 2004;94(11):1259–66. https://doi.org/10.1094/phyto.2004.94.11.1259
  115. 115. Han Q, Tan W, Zhao Y, Yang F, Yao X, Lin H, Zhang D. Salicylic acid-activated BIN2 phosphorylation of TGA3 promotes Arabidopsis PR gene expression and disease resistance. EMBO J. 2022;41(19). https://doi.org/10.15252/embj.2022110682
  116. 116. Díaz ASL, Macheda D, Saha H, Ploll U, Orine D, Biere A. Tackling the context-dependency of microbial-induced resistance. Agronomy. 2021;11(7):1293. https://doi.org/10.3390/agronomy11071293
  117. 117. Campos-Avelar I, Montoya-Martínez AC, Villa-Rodríguez ED, Valenzuela-Ruiz V, Zepeda MA, Parra-Cota FI, et al. The mitigation of phytopathogens in wheat under current and future climate change scenarios: Next-generation microbial inoculants. Sustainability. 2023;15(21):15250. https://doi.org/10.3390/su152115250
  118. 118. Msomba BH, Ndaki PM, Joseph CO. Sugarcane sustainability in a changing climate: A systematic review on pests, diseases and adaptive strategies. Front Agron. 2024;6:1423233. https://doi.org/10.3389/fagro.2024.1423233
  119. 119. M RC, Jadhav A, N MK, Bhat PP, R RP, K A, et al. A review on adaptive strategies for climate resilience in agricultural extension services in India. Arch Curr Res Int. 2024;24(6):140–50. https://doi.org/10.9734/acri/2024/v24i6772
  120. 120. Wigand C, Ardito T, Chaffee C, Ferguson W, Paton S, Raposa K, et al. A climate change adaptation strategy for management of coastal marsh systems. Estuaries Coasts. 2017;40(3):682–93. https://doi.org/10.1007/s12237-015-0003-y
  121. 121. Khodaei B, Hashemi H, Salimi S, Berndtsson R. Substantial carbon sequestration by peatlands in temperate areas revealed by InSAR. Environ Res Lett. 2023;18(4):044012. https://doi.org/10.1088/1748-9326/acc194
  122. 122. Jeyanny N. Geo-spatial technologies for carbon sequestration monitoring and management. Am J Environ Sci. 2011;7(5):456–62. https://doi.org/10.3844/ajessp.2011.456.462
  123. 123. Dossa KF, Miassi YE. Remote sensing methods and GIS approaches for carbon sequestration measurement: A general review. Int J Environ Climate Change. 2024;14(7):222–33. https://doi.org/10.9734/ijecc/2024/v14i74265
  124. 124. Wilson J. Modeling the measurement of carbon dioxide removal: Perspectives from the philosophy of measurement. Front Clim. 2024;5:1283333. https://doi.org/10.3389/fclim.2023.1283333
  125. 125. Molinari S. New developments in understanding the role of salicylic acid in plant defence. CABI Rev Perspect Agric Vet Sci Nutr Nat Resour. 2008. https://doi.org/10.1079/PAVSNNR20072067
  126. 126. Chakraborty S, Ghosh S, Banerjee S, Kumar S, Bhattacharyya P. Elucidating the synergistic effect of acidity and metalloid poisoning on the microbiome through metagenomics and machine learning approaches. Environ Res. 2023;243:117885. https://doi.org/10.1016/j.envres.2023.117885
  127. 127. Taniguchi S, Takeda A, Kiryu M, Gomi K. Jasmonic acid-induced β-cyclocitral confers resistance to bacterial blight and negatively affects abscisic acid biosynthesis in rice. Int J Mol Sci. 2023;24(2):1704. https://doi.org/10.3390/ijms24021704
  128. 128. Shikha D, Jakhar P, Satbhai SB. Role of jasmonate signaling in the regulation of plant responses to nutrient deficiency. J Exp Bot. 2022;74(4):1221–43. https://doi.org/10.1093/jxb/erac387
  129. 129. Pimentel D, Hepperly P, Hanson J, Seidel R, Douds D. Organic and conventional farming systems: Environmental and economic issues.
  130. 130. Shi Q, Zhang J, Fu Q, Hao GZ, Chen L, Duan F, et al. Biocontrol efficacy and induced resistance of Paenibacillus polymyxa J2-4 against Meloidogyne incognita infection in cucumber. Phytopathology. 2023;114(3):538–48. https://doi.org/10.1094/PHYTO-03-23-0091-R
  131. 131. Natoli G, Ostuni R. Adaptation and memory in immune responses. Nat Immunol. 2019;20(7):783–9. https://doi.org/10.1038/s41590-019-03 99-9
  132. 132. Segonzac C, Zipfel C. Activation of plant pattern-recognition receptors by bacteria. Curr Opin Microbiol. 2011;14(1):54–61. https://doi.org/10.1016/j.mib.2010.12.005
  133. 133. Abdelkhalek A, Bashir SI, El-Gendi H, Elbeaino T, El-Rahim WMA, Moawad H. Protective activity of Rhizobium leguminosarum bv. viciae strain 33504-Mat209 against Alfalfa mosaic virus infection in faba bean plants. Plants. 2023;12(14):2658. https://doi.org/10.3390/plants12142658
  134. 134. Abdelkhalek A, Aseel DG, Király L, Künstler A, Moawad H, Al-Askar AA. Induction of systemic resistance to Tobacco mosaic virus in tomato through foliar application of Bacillus amyloliquefaciens strain TBorg1 culture filtrate. Viruses. 2022;14(8):1830. https://doi.org/10.3390/v14081830
  135. 135. Tijjani A, Ahmad K. Global food demand and the roles of microbial communities in sustainable crop protection and food security: An overview. In: Microorganisms for Sustainability. 2021:81–107. https://doi.org/10.1007/978-981-15-9912-5_4
  136. 136. Jonathan EI. Biological control of Meloidogyne incognita on tomato and banana with rhizobacteria, actinomycetes and Pasteuria penetrans. 2000.
  137. 137. Devi S, Manhas RK. Induction of systemic resistance in Solanum lycopersicum and Capsicum annum seedlings against Fusarium wilt by Streptomyces bioformulations. Environ Sci Pollut Res. 2023;30(50):109438–52. https://doi.org/10.1007/s11356-023-29973-w
  138. 138. Cheng T, Yao X, Wu C, Zhang W, He W, Dai C. Endophytic Bacillus megaterium triggers salicylic acid-dependent resistance and improves the rhizosphere bacterial community to mitigate rice spikelet rot disease. Appl Soil Ecol. 2020;156:103710. https://doi.org/10.1016/j.apsoil.2020.103710
  139. 139. Nair A, Bhukya DPN, Sunkar R, Chavali S, Allu AD. Molecular basis of priming-induced acquired tolerance to multiple abiotic stresses in plants. J Exp Bot. 2022;73(11):3355–71. https://doi.org/10.1093/jxb/erac089
  140. 140. Hewedy OA, Elsheery NI, Karkour AM, Elhamouly NA, Arafa RA, Mahmoud GA, et al. Jasmonic acid regulates plant development and orchestrates stress response during tough times. Environ Exp Bot. 2023;208:105260. https://doi.org/10.1016/j.envexpbot.2023.105260
  141. 141. De Vleesschauwer D, Chernin L, Höfte M. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol. 2009;9(1):9. https://doi.org/10.1186/1471-2229-9-9
  142. 142. Abdelkhalek A, Al-Askar AA, Behiry SI. Bacillus licheniformis strain POT1 mediated polyphenol biosynthetic pathways genes activation and systemic resistance in potato plants against Alfalfa mosaic virus. Sci Rep. 2020;10(1):72676. https://doi.org/10.1038/s41598-020-72676-2
  143. 143. Santos CD, Franco OL. Pathogenesis-related proteins (PRs) with enzyme activity activating plant defense responses. Plants. 2023;12(11):2226. https://doi.org/10.3390/plants12112226
  144. 144. Khan I, Prakash A, Agashe D. Experimental evolution of insect immune memory versus pathogen resistance. Proc R Soc B. 2017;284(1869):20171583. https://doi.org/10.1098/rspb.2017.1583
  145. 145. Jiang C, Fan Z, Li Z, Niu D, Li Y, Zheng M, et al. Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis. Mol Plant Pathol. 2020;21(6):854–70. https://doi.org/10.1111/mpp.12935
  146. 146. Li Y, Yang J, Zhou J, Wan X, Liu J, Wang S, et al. Multi-omics revealed molecular mechanism of biphenyl phytoalexin formation in response to yeast extract-induced oxidative stress in Sorbus aucuparia suspension cells. Plant Cell Rep. 2024;43(3). https://doi.org/10.1007/s00299-024-03155-5
  147. 147. Antil S, Kumar R, Pathak DV, Kumari A. Recent advances in utilizing bacteria as biocontrol agents against plant parasitic nematodes emphasizing Meloidogyne spp. Biol Control. 2023;183:105244. https://doi.org/10.1016/j.biocontrol.2023.105244
  148. 148. Elsharkawy MM, Al-Otibi FO, Al-Askar AA, Adnan M, Kamran M, Abdelkhalek A, et al. Systemic resistance induction of potato and tobacco plants against Potato virus Y by Klebsiella oxytoca. Life. 2022;12(10):1521. https://doi.org/10.3390/life12101521
  149. 149. Kashyap AS, Manzar N, Nebapure SM, Rajawat MVS, Deo MM, Singh J, et al. Unraveling microbial volatile elicitors using a transparent methodology for induction of systemic resistance and regulation of antioxidant genes at expression levels in chili against bacterial wilt disease. Antioxidants. 2022;11(2):404. https://doi.org/10.3390/antiox11020404

Downloads

Download data is not yet available.