Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Advancing seed quality through cold plasma technology: A sustainable approach for agricultural enhancement

DOI
https://doi.org/10.14719/pst.7986
Submitted
28 February 2025
Published
31-03-2025

Abstract

Seeds are exposed to various physical and biological stress during germination. Water uptake plays a major role in germination as it determines the permeability of the seed coat. To enhance seed coat permeability during germination, various technologies have been adopted. Among them, cold plasma technology has emerged as a developing and environmentally sustainable physical seed treatment method. Cold plasma, a non-destructive method using partially ionized gas with reactive species, offers benefits such as seed disinfection, pathogen elimination, enhanced seed metabolism and improved germination. However, challenges related to adaptability, cost-effectiveness and standardization remains. Ongoing research is needed to optimize its use for various seed types and conditions. Addressing these challenges requires continuous research and development to optimize cold plasma treatment for various seed types and environmental conditions. This paper provides the underlying mechanisms of cold plasma effects on seeds, highlighting its potential to expertise seed treatment practices for sustainable agriculture. Thus, cold plasma technology points as a promising avenue for enhancing seed quality, disease management and crop productivity in agriculture. By standardizing various treatments with cold plasma, it is possible to meet the challenges of the 21st century thereby minimizing the environmental impact and pave the way for sustainable agriculture, while making it efficient for commercial scale.

References

  1. Arora NK. Impact of climate change on agriculture production and its sustainable solutions. Environmental Sustainability. 2019;2(2):95-6. https://doi.org/10.1007/s42398-019-00078-w
  2. FAOFP I. World Food Situation. FAO: Rome, Italy. 2021.
  3. Anderson R, Bayer PE, Edwards D. Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology. 2020;56:197-202. https://doi.org/10.1016/j.pbi.2019.12.006
  4. Burm K. Plasma: The fourth state of matter. Plasma Chemistry and Plasma Processing. 2012;32:401-7. https://doi.org/10.1007/s11090-012-9356-1
  5. López M, Calvo T, Prieto M, Múgica-Vidal R, Muro-Fraguas I, Alba-Elías F, et al. A review on non-thermal atmospheric plasma for food preservation: Mode of action, determinants of effectiveness, and applications. Frontiers in Microbiology. 2019;10:432125. https://doi.org/10.3389/fmicb.2019.00622
  6. Karmakar S, Billah M, Hasan M, Sohan SR, Hossain MF, Hoque KMF, et al. Impact of LFGD (Ar+ O2) plasma on seed surface, germination, plant growth, productivity and nutritional composition of maize (Zea mays L.). Heliyon. 2021;7(3). https://doi.org/10.1016/j.heliyon.2021.e06458
  7. Paneru R, Lamichhane P, Chandra Adhikari B, Ki SH, Choi J, Kwon JS, et al. Surface modification of PVA thin film by nonthermal atmospheric pressure plasma for antifogging property. AIP Advances. 2019;9(7). https://doi.org/10.1063/1.5100776
  8. Ghimire B, Patenall BL, Szili EJ, Gaur N, Lamichhane P, Thet NT, et al. The influence of a second ground electrode on hydrogen peroxide production from an atmospheric pressure argon plasma jet and correlation to antibacterial efficacy and mammalian cell cytotoxicity. Journal of Physics D: Applied Physics. 2021;55(12):125207. https://doi.org/10.1088/1361-6463/ac43d9
  9. Nguyen LN, Kaushik N, Lamichhane P, Mumtaz S, Paneru R, Bhartiya P, et al. In situ plasma-assisted synthesis of polydopamine-functionalized gold nanoparticles for biomedical applications. Green Chemistry. 2020;22(19):6588-99. https://doi.org/10.1039/D0GC01348J
  10. Ghimire B, Szili EJ, Lamichhane P, Short RD, Lim JS, Attri P, et al. The role of UV photolysis and molecular transport in the generation of reactive species in a tissue model with a cold atmospheric pressure plasma jet. Applied Physics Letters. 2019;114(9). https://doi.org/10.1063/1.5086522
  11. Lamichhane P, Veerana M, Lim JS, Mumtaz S, Shrestha B, Kaushik NK, et al. Low-temperature plasma-assisted nitrogen fixation for corn plant growth and development. International Journal of Molecular Sciences. 2021;22(10):5360. https://doi.org/10.3390/ijms22105360
  12. Fan L, Liu X, Ma Y, Xiang Q. Effects of plasma-activated water treatment on seed germination and growth of mung bean sprouts. Journal of Taibah University for Science. 2020;14(1):823-30. https://doi.org/10.1080/16583655.2020.1778326
  13. Waskow A, Howling A, Furno I. Mechanisms of plasma-seed treatments as a potential seed processing technology. Frontiers in Physics. 2021;9:617345. https://doi.org/10.3389/fphy.2021.617345
  14. Sivachandiran L, Khacef A. Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC advances. 2017;7(4):1822-32. https://doi.org/10.1039/C6RA24762H
  15. Jiang J, He X, Li L, Li J, Shao H, Xu Q, et al. Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Science and Technology. 2014;16(1):54. https://doi.org/10.1088/1009-0630/16/1/12
  16. Kordas L, Pusz W, Czapka T, Kacprzyk R. The effect of low-temperature plasma on fungus colonization of winter wheat grain and seed quality. Polish Journal of Environmental Studies. 2015;24(1).
  17. Attri P, Ishikawa K, Okumura T, Koga K, Shiratani M, Mildaziene V. Impact of seed color and storage time on the radish seed germination and sprout growth in plasma agriculture. Scientific Reports. 2021;11(1):2539. https://doi.org/10.1038/s41598-021-81175-x
  18. Guragain RP, Baniya HB, Dhungana S, Chhetri GK, Sedhai B, Basnet N, et al. Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus sativus). Plasma Science and Technology. 2021;24(1):015502. https://doi.org/10.1088/2058-6272/ac3476
  19. Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Scientific Reports. 2015;5(1):1-10. https://doi.org/10.1038/srep13033
  20. Adhikari B, Adhikari M, Ghimire B, Park G, Choi EH. Cold atmospheric plasma-activated water irrigation induces defense hormone and gene expression in tomato seedlings. Scientific Reports. 2019;9(1):16080. https://doi.org/10.1038/s41598-019-52646-z
  21. Adhikari B, Adhikari M, Ghimire B, Adhikari BC, Park G, Choi EH. Cold plasma seed priming modulates growth, redox homeostasis and stress response by inducing reactive species in tomato (Solanum lycopersicum). Free Radical Biology and Medicine. 2020;156:57-69. https://doi.org/10.1016/j.freeradbiomed.2020.06.003
  22. de Groot GJ, Hundt A, Murphy AB, Bange MP, Mai-Prochnow A. Cold plasma treatment for cotton seed germination improvement. Scientific Reports. 2018;8(1):14372. https://doi.org/10.1038/s41598-018-32692-9
  23. Kang M-H, Veerana M, Eom S, Uhm H-S, Ryu S, Park G. Plasma mediated disinfection of rice seeds in water and air. Journal of Physics D: Applied Physics. 2020;53(21):214001. https://doi.org/10.1088/1361-6463/ab79de
  24. Feizollahi E, Roopesh M. Degradation of zearalenone by atmospheric cold plasma: Effect of selected process and product factors. Food and Bioprocess Technology. 2021;14(11):2107-19. https://doi.org/10.1007/s11947-021-02692-1
  25. Ukuku DO, Niemira BA, Ukanalis J. Nisin-based antimircobial combination with cold plasma treatment inactivate Listeria monocytogenes on Granny Smith apples. Lwt. 2019;104:120-7. https://doi.org/10.1016/j.lwt.2018.12.049
  26. Sen Y, Onal-Ulusoy B, Mutlu M. Detoxification of hazelnuts by different cold plasmas and gamma irradiation treatments. Innovative Food Science & Emerging Technologies. 2019;54:252-9. https://doi.org/10.1016/j.ifset.2019.05.002
  27. Venkataratnam H, Sarangapani C, Cahill O, Ryan CB. Effect of cold plasma treatment on the antigenicity of peanut allergen Ara h 1. Innovative Food Science & Emerging Technologies. 2019;52:368-75. https://doi.org/10.1016/j.ifset.2019.02.001
  28. Abeysingha DN, Dinesh S, Roopesh M, Warkentin TD, Thilakarathna MS. The effect of cold plasma seed treatments on nodulation and plant growth in pea (Pisum sativum) and lentil (Lens culinaris). Plasma Processes and Polymers. 2024:e2400015. https://doi.org/10.1002/ppap.202400015
  29. Ekezie F-GC, Sun D-W, Cheng J-H. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology. 2017;69:46-58. https://doi.org/10.1016/j.tifs.2017.08.007
  30. Corradini MG. Modeling microbial inactivation during cold atmospheric-pressure plasma (CAPP) processing. Advances in cold plasma applications for food safety and preservation: Elsevier; 2020. p. 93-108. https://doi.org/10.1016/B978-0-12-814921-8.00003-7
  31. Li L, Li J, Shen M, Hou J, Shao H, Dong Y, et al. Improving seed germination and peanut yields by cold plasma treatment. Plasma Science and Technology. 2016;18(10):1027. https://doi.org/10.1088/1009-0630/18/10/10
  32. Shelar A, Singh AV, Dietrich P, Maharjan RS, Thissen A, Didwal PN, et al. Emerging cold plasma treatment and machine learning prospects for seed priming: a step towards sustainable food production. RSC Advances. 2022;12(17):10467-88. https://doi.org/10.1039/D2RA00809B
  33. Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Scientific Reports. 2014;4(1):5859. https://doi.org/10.1038/srep05859
  34. Sera B, Spatenka P, S?erý M, Vrchotova N, Hruskova I. Influence of plasma treatment on wheat and oat germination and early growth. IEEE Transactions on Plasma Science. 2010;38(10):2963-8. https://doi.org/10.1109/TPS.2010.2060728
  35. Guo Q, Meng Y, Qu G, Wang T, Yang F, Liang D, et al. Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment. Bioelectromagnetics. 2018;39(2):120-31. https://doi.org/10.1002/bem.22088
  36. Ahmed N, Siow KS, Wee MMR, Patra A. A study to examine the ageing behaviour of cold plasma-treated agricultural seeds. Scientific Reports. 2023;13(1):1675. https://doi.org/10.1038/s41598-023-28811-w
  37. Ganesan AR, Tiwari U, Ezhilarasi P, Rajauria G. Application of cold plasma on food matrices: A review on current and future prospects. Journal of Food Processing and Preservation. 2021;45(1):e15070. https://doi.org/10.1111/jfpp.15070
  38. Ito M, Oh JS, Ohta T, Shiratani M, Hori M. Current status and future prospects of agricultural applications using atmospheric?pressure plasma technologies. Plasma Processes and Polymers. 2018;15(2):1700073. https://doi.org/10.1002/ppap.201700073
  39. Švubová R, Slováková ?, Holubová ?, Rov?anová D, Gálová E, Tomeková J. Evaluation of the impact of cold atmospheric pressure plasma on soybean seed germination. Plants. 2021;10(1):177. https://doi.org/10.3390/plants10010177
  40. Attri P, Koga K, Okumura T, Shiratani M. Impact of atmospheric pressure plasma treated seeds on germination, morphology, gene expression and biochemical responses. Japanese Journal of Applied Physics. 2021;60(4):040502. https://doi.org/10.35848/1347-4065/abe47d
  41. Nasiru MM, Frimpong EB, Muhammad U, Qian J, Mustapha AT, Yan W, et al. Dielectric barrier discharge cold atmospheric plasma: Influence of processing parameters on microbial inactivation in meat and meat products. Comprehensive Reviews in Food Science and Food Safety. 2021;20(3):2626-59. https://doi.org/10.1111/1541-4337.12740
  42. Zhang JJ, Jo JO, Huynh DL, Mongre RK, Ghosh M, Singh AK, et al. Growth-inducing effects of argon plasma on soybean sprouts via the regulation of demethylation levels of energy metabolism-related genes. Scientific Reports. 2017;7(1):41917. https://doi.org/10.1038/srep41917
  43. Meng Y, Qu G, Wang T, Sun Q, Liang D, Hu S. Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chemistry and Plasma Processing. 2017;37:1105-19. https://doi.org/10.1007/s11090-017-9799-5
  44. Sajib SA, Billah M, Mahmud S, Miah M, Hossain F, Omar FB, et al. Plasma activated water: The next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo L.). Plasma Chemistry and Plasma Processing. 2020;40:119-43. https://doi.org/10.1007/s11090-019-10028-3
  45. Adamovich I, Baalrud S, Bogaerts A, Bruggeman P, Cappelli M, Colombo V, et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. Journal of Physics D: Applied Physics. 2017;50(32):323001. https://doi.org/10.1088/1361-6463/aa76f5
  46. Misra N, Martynenko A, Chemat F, Paniwnyk L, Barba FJ, Jambrak AR. Thermodynamics, transport phenomena, and electrochemistry of external field-assisted nonthermal food technologies. Critical Reviews in Food Science and Nutrition. 2018;58(11):1832-63. https://doi.org/10.1080/10408398.2017.1287660
  47. Luan X, Song Z, Xu W, Li Y, Ding C, Chen H. Spectral characteristics on increasing hydrophilicity of Alfalfa seeds treated with alternating current corona discharge field. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;236:118350. https://doi.org/10.1016/j.saa.2020.118350
  48. Nishime TM, Werner J, Wannicke N, Mui TS, Kostov KG, Weltmann K-D, et al. Characterization and optimization of a conical corona reactor for seed treatment of rapeseed. Applied Sciences. 2022;12(7):3292. https://doi.org/10.3390/app12073292
  49. Adhikari B, Adhikari M, Park G. The effects of plasma on plant growth, development, and sustainability. Applied Sciences. 2020;10(17):6045. https://doi.org/10.3390/app10176045
  50. Sakudo A, Yagyu Y, Onodera T. Disinfection and sterilization using plasma technology: Fundamentals and future perspectives for biological applications. International Journal of Molecular Sciences. 2019;20(20):5216. https://doi.org/10.3390/ijms20205216
  51. Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K. The potential of cold plasma for safe and sustainable food production. Trends in Biotechnology. 2018;36(6):615-26. https://doi.org/10.1016/j.tibtech.2017.11.001
  52. Adhikari B, Pangomm K, Veerana M, Mitra S, Park G. Plant disease control by non-thermal atmospheric-pressure plasma. Frontiers in Plant Science. 2020;11:504001. https://doi.org/10.3389/fpls.2020.00077
  53. Chou YJ, Cheng KC, Hsu FC, Wu JSB, Ting Y. Producing high quality mung bean sprout using atmospheric cold plasma treatment: better physical appearance and higher ??aminobutyric acid (GABA) content. Journal of the Science of Food and Agriculture. 2021;101(15):6463-71. https://doi.org/10.1002/jsfa.11317
  54. Liu B, Honnorat B, Yang H, Arancibia J, Rajjou L, Rousseau A. Non-thermal DBD plasma array on seed germination of different plant species. Journal of Physics D: Applied Physics. 2018;52(2):025401. https://doi.org/10.1088/1361-6463/aae771
  55. Rahman MM, Sajib SA, Rahi MS, Tahura S, Roy NC, Parvez S, et al. Mechanisms and signaling associated with LPDBD plasma mediated growth improvement in wheat. Scientific Reports. 2018;8(1):10498. https://doi.org/10.1038/s41598-018-28960-3
  56. Attri P, Ishikawa K, Okumura T, Koga K, Shiratani M. Plasma agriculture from laboratory to farm: A review. Processes. 2020;8(8):1002. https://doi.org/10.3390/pr8081002
  57. Takaki K, Takahashi K, Hamanaka D, Yoshida R, Uchino T. Function of plasma and electrostatics for keeping quality of agricultural produce in post-harvest stage. Japanese Journal of Applied Physics. 2020;60(1):010501. https://doi.org/10.35848/1347-4065/abcc13
  58. Shelar A, Singh AV, Maharjan RS, Laux P, Luch A, Gemmati D, et al. Sustainable agriculture through multidisciplinary seed nanopriming: prospects of opportunities and challenges. Cells. 2021;10(9):2428. https://doi.org/10.3390/cells10092428
  59. Lutts S, Benincasa P, Wojtyla L, Kubala S, Pace R, Lechowska K, et al. Seed priming: new comprehensive approaches for an old empirical technique. New challenges in seed biology-basic and translational research driving seed technology. 2016;46. https://doi.org/10.5772/64420
  60. Rasooli Z, Barzin G, Mahabadi TD, Entezari M. Stimulating effects of cold plasma seed priming on germination and seedling growth of cumin plant. South African Journal of Botany. 2021;142:106-13. https://doi.org/10.1016/j.sajb.2021.06.025
  61. Sheteiwy MS, An J, Yin M, Jia X, Guan Y, He F, et al. Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma. 2019;256:79-99. https://doi.org/10.1007/s00709-018-1279-0
  62. Li K, Zhong C, Shi Q, Bi H, Gong B. Cold plasma seed treatment improves chilling resistance of tomato plants through hydrogen peroxide and abscisic acid signaling pathway. Free Radical Biology and Medicine. 2021;172:286-97. https://doi.org/10.1016/j.freeradbiomed.2021.06.011
  63. Ghodsimaab SP, Makarian H, Ghasimi Hagh Z, Gholipoor M. Scanning electron microscopy, biochemical and enzymatic studies to evaluate hydro-priming and cold plasma treatment effects on the germination of Salvia leriifolia Benth. seeds. Frontiers in Plant Science. 2023;13:1035296. https://doi.org/10.3389/fpls.2022.1035296
  64. do Espirito Santo Pereira A, Caixeta Oliveira H, Fernandes Fraceto L, Santaella C. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials. 2021;11(2):267. https://doi.org/10.3390/nano11020267
  65. Abbasi Khalaki M, Moameri M, Asgari Lajayer B, Astatkie T. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regulation. 2021;93(1):13-28. https://doi.org/10.1007/s10725-020-00670-9
  66. Babajani A, Iranbakhsh A, Oraghi Ardebili Z, Eslami B. Seed priming with non-thermal plasma modified plant reactions to selenium or zinc oxide nanoparticles: cold plasma as a novel emerging tool for plant science. Plasma Chemistry and Plasma Processing. 2019;39:21-34. https://doi.org/10.1007/s11090-018-9934-y
  67. Iranbakhsh A, Ardebili NO, Ardebili ZO, Shafaati M, Ghoranneviss M. Non-thermal plasma induced expression of heat shock factor A4A and improved wheat (Triticum aestivum L.) growth and resistance against salt stress. Plasma Chemistry and Plasma Processing. 2018;38:29-44. https://doi.org/10.1007/s11090-017-9861-3
  68. Moghanloo M, Iranbakhsh A, Ebadi M, Nejad Satari T, Oraghi Ardebili Z. Seed priming with cold plasma and supplementation of culture medium with silicon nanoparticle modified growth, physiology, and anatomy in Astragalus fridae as an endangered species. Acta Physiologiae Plantarum. 2019;41(4):54. https://doi.org/10.1007/s11738-019-2846-5
  69. Abedi S, Iranbakhsh A, Oraghi Ardebili Z, Ebadi M. Seed priming with cold plasma improved early growth, flowering, and protection of Cichorium intybus against selenium nanoparticle. Journal of Theoretical and Applied Physics. 2020;14:113-9. https://doi.org/10.1007/s40094-020-00371-8
  70. Seddighinia FS, Iranbakhsh A, Oraghi Ardebili Z, Nejad Satari T, Soleimanpour S. Seed priming with cold plasma and multi-walled carbon nanotubes modified growth, tissue differentiation, anatomy, and yield in bitter melon (Momordica charantia). Journal of Plant Growth Regulation. 2020;39:87-98. https://doi.org/10.1007/s00344-019-09965-2
  71. Khamsen N, Onwimol D, Teerakawanich N, Dechanupaprittha S, Kanokbannakorn W, Hongesombut K, et al. Rice (Oryza sativa L.) seed sterilization and germination enhancement via atmospheric hybrid nonthermal discharge plasma. ACS Applied Materials & Interfaces. 2016;8(30):19268-75. https://doi.org/10.1021/acsami.6b04555
  72. Dobrin D, Magureanu M, Mandache NB, Ionita M-D. The effect of non-thermal plasma treatment on wheat germination and early growth. Innovative Food Science & Emerging Technologies. 2015;29:255-60. https://doi.org/10.1016/j.ifset.2015.02.006
  73. Volkov AG, Hairston JS, Marshall J, Bookal A, Dholichand A, Patel D. Plasma seeds: Cold plasma accelerates Phaseolus vulgaris seed imbibition, germination, and speed of seedling growth. Plasma Medicine. 2020;10(3). https://doi.org/10.1615/PlasmaMed.2020036438
  74. Wang J, Cui D, Wang L, Du M, Yin Y, Ma R, et al. Atmospheric pressure plasma treatment induces abscisic acid production, reduces stomatal aperture and improves seedling growth in Arabidopsis thaliana. Plant Biology. 2021;23(4):564-73. https://doi.org/10.1111/plb.13245
  75. Hashizume H, Kitano H, Mizuno H, Abe A, Yuasa G, Tohno S, et al. Improvement of yield and grain quality by periodic cold plasma treatment with rice plants in a paddy field. Plasma Processes and Polymers. 2021;18(1):2000181. https://doi.org/10.1002/ppap.202000181
  76. van Gelderen K, Kang C, Pierik R. Light signaling, root development, and plasticity. Plant Physiology. 2018;176(2):1049-60. https://doi.org/10.1104/pp.17.01079
  77. Mudgil Y, Karve A, Teixeira PJ, Jiang K, Tunc-Ozdemir M, Jones AM. Photosynthate regulation of the root system architecture mediated by the heterotrimeric G protein complex in Arabidopsis. Frontiers in Plant Science. 2016;7:210128. https://doi.org/10.3389/fpls.2016.01255
  78. Mildaziene V, Ivankov A, Pauzaite G, Naucien? Z, Zukiene R, Degutyte?Fomins L, et al. Seed treatment with cold plasma and electromagnetic field induces changes in red clover root growth dynamics, flavonoid exudation, and activates nodulation. Plasma Processes and Polymers. 2021;18(1):2000160. https://doi.org/10.1002/ppap.202000160
  79. Ling L, Hailin G, Junqin Z, Jingbo C, Yi W, Jianjian L, et al. Influence of low-vacuum helium cold plasma pre-treatment on the rooting and root growth of zoysiagrass (Zoysia Willd.) stolon cuttings. Plasma Science and Technology. 2019;21(5):055504. https://doi.org/10.1088/2058-6272/aaf368
  80. Ivankov A, Zukiene R, Nauciene Z, Degutyte-Fomins L, Filatova I, Lyushkevich V, et al. The effects of red clover seed treatment with cold plasma and electromagnetic field on germination and seedling growth are dependent on seed color. Applied Sciences. 2021;11(10):4676. https://doi.org/10.3390/app11104676
  81. Nedved H, Kalatskaja J, Kopylova N, Herasimovich K, Rybinskaya E, Vusik N, et al., editors. Short-term and Long-Term effects of plasma and Radio Wave seed treatments on red clover plants. IOP Conference Series: Earth and Environmental Science; 2021: IOP Publishing. https://doi.org/10.1088/1755-1315/937/2/022137
  82. Pérez-Pizá MC, Cejas E, Zilli C, Prevosto L, Mancinelli B, Santa-Cruz D, et al. Enhancement of soybean nodulation by seed treatment with non–thermal plasmas. Scientific Reports. 2020;10(1):4917. https://doi.org/10.1038/s41598-020-61913-3
  83. Singh R, Prasad P, Mohan R, Verma MK, Kumar B. Radiofrequency cold plasma treatment enhances seed germination and seedling growth in variety CIM-Saumya of sweet basil (Ocimum basilicum L.). Journal of Applied Research on Medicinal and Aromatic Plants. 2019;12:78-81. https://doi.org/10.1016/j.jarmap.2018.11.005
  84. Mazandarani A, Goudarzi S, Ghafoorifard H, Eskandari A. Evaluation of DBD plasma effects on barley seed germination and seedling growth. IEEE Transactions on Plasma Science. 2020;48(9):3115-21. https://doi.org/10.1109/TPS.2020.3012909
  85. Los A, Ziuzina D, Boehm D, Cullen PJ, Bourke P. Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Processes and Polymers. 2019;16(4):1800148. https://doi.org/10.1002/ppap.201800148
  86. Kumar R, Thakur AK, Vikram A, Vaid A, Rane R. Effect of cold plasma treatment of seeds on quality of seed crop of okra. International Journal of Economic Plants. 2019;6(2):73-7. https://doi.org/10.23910/IJEP/2019.6.2.0299
  87. Shah A, Dhobi S, Sah R, Shrestha R, Mishra L, Nakarmi J. Impact of Plasma Treatment on Lady’s Finger Seeds for Germination and its Growth. Journal of Nepal Physical Society. 2023;9(1):107-15. https://doi.org/10.3126/jnphyssoc.v9i1.57743
  88. Filatova I, Lyushkevich V, Goncharik S, Zhukovsky A, Krupenko N, Kalatskaja J. The effect of low-pressure plasma treatment of seeds on the plant resistance to pathogens and crop yields. Journal of Physics D: Applied Physics. 2020;53(24):244001. https://doi.org/10.1088/1361-6463/ab7960
  89. Lee Y, Lee YY, Kim YS, Balaraju K, Mok YS, Yoo SJ, et al. Enhancement of seed germination and microbial disinfection on ginseng by cold plasma treatment. Journal of Ginseng Research. 2021;45(4):519-26. https://doi.org/10.1016/j.jgr.2020.12.002
  90. Ahmad A, Sripong K, Uthairatanakij A, Photchanachai S, Pankasemsuk T, Jitareerat P. Decontamination of seed borne disease in pepper (Capsicum annuum L.) seed and the enhancement of seed quality by the emulated plasma technology. Scientia Horticulturae. 2022;291:110568. https://doi.org/10.1016/j.scienta.2021.110568
  91. Zhang B, Li R, Yan J. Study on activation and improvement of crop seeds by the application of plasma treating seeds equipment. Archives of Biochemistry and Biophysics. 2018;655:37-42. https://doi.org/10.1016/j.abb.2018.08.004
  92. Park Y, Oh KS, Oh J, Seok DC, Kim SB, Yoo SJ, et al. The biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley. Plasma Processes and Polymers. 2018;15(2):1600056. https://doi.org/10.1002/ppap.201600056
  93. Pérez-Pizá MC, Prevosto L, Grijalba PE, Zilli CG, Cejas E, Mancinelli B, et al. Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon. 2019;5(4). https://doi.org/10.1016/j.heliyon.2019.e01495
  94. Gao X, Zhang A, He?roux P, Sand W, Sun Z, Zhan J, et al. Effect of dielectric barrier discharge cold plasma on pea seed growth. Journal of Agricultural and Food Chemistry. 2019;67(39):10813-22. https://doi.org/10.1021/acs.jafc.9b03099
  95. Zhou R, Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, et al. Effects of atmospheric-pressure N2, He, air, and O2 microplasmas on mung bean seed germination and seedling growth. Scientific Reports. 2016;6(1):32603. https://doi.org/10.1038/srep32603
  96. Puligundla P, Kim J-W, Mok C. Effect of corona discharge plasma jet treatment on decontamination and sprouting of rapeseed (Brassica napus L.) seeds. Food Control. 2017;71:376-82. https://doi.org/10.1016/j.foodcont.2016.07.021
  97. Matra K. Atmospheric non-thermal argon–oxygen plasma for sunflower seedling growth improvement. Japanese Journal of Applied Physics. 2017;57(1S):01AG3. https://doi.org/10.7567/JJAP.57.01AG03
  98. Shapira Y, Chaniel G, Bormashenko E. Surface charging by the cold plasma discharge of lentil and pepper seeds in comparison with polymers. Colloids and Surfaces B: Biointerfaces. 2018;172:541-4. https://doi.org/10.1016/j.colsurfb.2018.09.004
  99. Da Silva A, Farias M, Da Silva D, Vitoriano J, De Sousa R, Alves-Junior C. Using atmospheric plasma to increase wettability, imbibition and germination of physically dormant seeds of Mimosa Caesalpiniafolia. Colloids and Surfaces B: Biointerfaces. 2017;157:280-5. https://doi.org/10.1016/j.colsurfb.2017.05.063
  100. Wang XQ, Zhou R-W, Groot Gd, Bazaka K, Murphy AB, Ostrikov K. Spectral characteristics of cotton seeds treated by a dielectric barrier discharge plasma. Scientific Reports. 2017;7(1):5601. https://doi.org/10.1038/s41598-017-04963-4

Downloads

Download data is not yet available.