Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Cold plasma: A green technology for improving legume productivity

DOI
https://doi.org/10.14719/pst.7993
Submitted
28 February 2025
Published
25-09-2025

Abstract

Cold plasma technology represents a groundbreaking innovation in sustainable agriculture, particularly for optimizing the germination dynamics, physiological vigor and resilience of leguminous crops. As a non-thermal ionized gas, cold plasma induces intricate physicochemical modifications in seed architecture, enhancing surface hydrophilicity, permeability and imbibition kinetics. These transformations expedite germination, activate key enzymatic cascades and fortify antioxidative defense mechanisms, thereby bolstering legume adaptation to environmental stressors. Furthermore, cold plasma has been shown to regulate gene networks associated with stress tolerance, nitrogen assimilation and metabolic efficiency, culminating in improved plant vigor and yield stability. Beyond seed enhancement, cold plasma serves as an eco-compatible strategy for microbial decontamination, effectively neutralizing phytopathogens on legume seeds without compromising viability. It also extends post-harvest longevity by mitigating spoilage and oxidative degradation. Recent advancements have leveraged cold plasma in synergy with nanotechnology to facilitate targeted nutrient delivery, while its integration with magnetic field exposure has demonstrated enhanced metabolic activation and water absorption in leguminous seeds. Additionally, machine learning applications are refining plasma treatment protocols, enabling precise optimization tailored to specific crop requirements. As a transformative and environmentally sustainable agronomic tool, cold plasma holds profound implications for advancing legume cultivation while reducing reliance on chemical inputs. Its capacity to enhance seed vigor, stress tolerance and crop productivity underscores its potential as a pivotal innovation in climate-resilient, high-efficiency agricultural systems. Further exploration and technological refinement will unlock new frontiers, establishing cold plasma as a cornerstone of modern legume agronomy.

References

  1. 1. Dufour T, Gutierrez Q. Cold plasma treatment of seeds: deciphering the role of contact surfaces through multiple exposures, randomizing and stirring. J Phys D Appl Phys. 2021;54(50):505202. https://doi.org/10.1088/1361-6463/ac25af
  2. 2. Thirumdas R, Kothakota A, Annapure U, Siliveru K, Blundell R, Gatt R, et al. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci Technol. 2018;77:21-31. https://doi.org/10.1016/j.tifs.2018.05.007
  3. 3. Attri P, Ishikawa K, Okumura T, Koga K, Shiratani M. Plasma agriculture from laboratory to farm: A review. Processes. 2020;8(8):1002. https://doi.org/10.3390/pr8081002
  4. 4. Randeniya LK, de Groot GJ. Non-thermal plasma treatment of agricultural seeds for stimulation of germination, removal of surface contamination and other benefits: a review. Plasma Chem Plasma Process. 2015;12(7):608-23. https://doi.org/10.1002/ppap.201500042
  5. 5. Pankaj SK, Wan Z, Keener KM. Effects of cold plasma on food quality: A review. Foods. 2018;7(1):4. https://doi.org/10.3390/foods7010004
  6. 6. Varilla C, Marcone M, Annor GA. Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: a review. Foods. 2020;9(10):1435. https://doi.org/10.3390/foods9101435
  7. 7. Kebede E. Contribution, utilization and improvement of legumes-driven biological nitrogen fixation in agricultural systems. Front Sustain Food Syst. 2021;5:767998. https://doi.org/10.3389/fsufs.2021.767998
  8. 8. Tyagi J, Ahmad S, Malik M. Nitrogenous fertilizers: Impact on environment sustainability, mitigation strategies and challenges. Int J Environ Sci Technol. 2022;19(11):11649-72. https://doi.org/10.1007/s13762-022-04027-9
  9. 9. Sutton MA, Mason KE, Bleeker A, Hicks WK, Masso C, Raghuram N, et al. Just enough nitrogen: Summary and synthesis of outcomes. In: Just Enough Nitrogen. Cham: Springer; 2020. p. 1-25. https://doi.org/10.1007/978-3-030-58065-0_1
  10. 10. Mildaziene V, Ivankov A, Sera B, Baniulis D. Biochemical and physiological plant processes affected by seed treatment with non-thermal plasma. Plants. 2022;11(7):856. https://doi.org/10.3390/plants11070856
  11. 11. Abeysingha DN, Dinesh S, Roopesh MS, Warkentin TD, Thilakarathna MS. The effect of cold plasma seed treatments on nodulation and plant growth in pea (Pisum sativum) and lentil (Lens culinaris). Plasma Process Polym. 2024;21(7):2400015. https://doi.org/10.1002/ppap.202400015
  12. 12. Firouzkoohi F, Nasibi F, Keramat B, Noori H, Ahmadi Mousavi E. Effects of seed priming using cold plasma on increasing germination and growth of guar (Cyamopsis tetragonoloba) seeds under salt stress conditions. Iran J Seed Res. 2025. https://doi.org/10.22092/ijsst.2024.364182.1507
  13. 13. Jangra S, Mishra A, Mishra R, Pandey S, Prakash R. Transformative impact of atmospheric cold plasma on mung bean seeds: Unveiling surface characteristics, physicochemical alterations and enhanced germination potential. AIP Adv. 2024;14(7). https://doi.org/10.1063/5.0211662
  14. 14. Oh YJ, Song AY, Min SC. Inhibition of Salmonella typhimurium on radish sprouts using nitrogen-cold plasma. Int J Food Microbiol. 2017;249:66-71. https://doi.org/10.1016/j.ijfoodmicro.2017.03.005
  15. 15. Min SC, Roh SH, Niemira BA, Boyd G, Sites JE, Uknalis J, et al. In-package inhibition of E. coli O157:H7 on bulk Romaine lettuce using cold plasma. Food Microbiol. 2017;65:1-6. https://doi.org/10.1016/j.fm.2017.01.010
  16. 16. Luang-In V, Saengha W, Karirat T, Buranrat B, Matra K, Deeseenthum S, et al. Effect of cold plasma and elicitors on bioactive contents, antioxidant activity and cytotoxicity of Thai rat-tailed radish microgreens. J Sci Food Agric. 2021;101(4):1685-98. https://doi.org/10.1002/jsfa.10985
  17. 17. Mohandoss S, Mohan H, Balasubramaniyan N, Assadi AA, Loganathan S. Pearl millet seed surface modification and improved germination by non-thermal plasma discharge: understanding the role of reactive species. Plasma Chem Plasma Process. 2024;44(2):1031-51. https://doi.org/10.1007/s11090-024-10460-0
  18. 18. Gavahian M, Cullen PJ. Cold plasma as an emerging technique for mycotoxin-free food: Efficacy, mechanisms and trends. Food Rev Int. 2020;36(2):193-214. https://doi.org/10.1080/87559129.2019.1630638
  19. 19. Misra NN, Martynenko A, Chemat F, Paniwnyk L, Barba FJ, Jambrak AR. Thermodynamics, transport phenomena and electrochemistry of external field-assisted nonthermal food technologies. Crit Rev Food Sci Nutr. 2018;58(11):1832-63. https://doi.org/10.1080/10408398.2017.1287660
  20. 20. Ekezie FG, Sun DW, Cheng JH. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends Food Sci Technol. 2017;69:46-58. https://doi.org/10.1016/j.tifs.2017.08.007
  21. 21. Dasan BG, Onal-Ulusoy B, Pawlat J, Diatczyk J, Sen Y, Mutlu M. A new and simple approach for decontamination of food contact surfaces with gliding arc discharge atmospheric non-thermal plasma. Food Bioproc Tech. 2017;10:650-61. https://doi.org/10.1007/s11947-016-1847-2
  22. 22. Vaideki K. Plasma technology for antimicrobial textiles. In: Antimicrobial textiles. Woodhead Publishing; 2016. p. 73-86. https://doi.org/10.1016/B978-0-08-100576-7.00005-5
  23. 23. Niemira BA. Cold plasma decontamination of foods. Annu Rev Food Sci Technol. 2012;3:125-42. https://doi.org/10.1146/annurev-food-022811-101132
  24. 24. Sayahi K, Sari AH, Hamidi A, Nowruzi B, Hassani F. Evaluating the impact of cold plasma on seedling growth properties, seed germination and soybean antioxidant enzyme activity. BMC Biotechnol. 2024;24(1):93. https://doi.org/10.1186/s12896-024-00921-x
  25. 25. Yan D, Lin L, Zvansky M, Kohanzadeh L, Taban S, Chriqui S, et al. Improving seed germination by cold atmospheric plasma. Plasma. 2022;5(1):98-110. https://doi.org/10.3390/plasma5010008
  26. 26. de Groot GJ, Hundt A, Murphy AB, Bange MP, Mai-Prochnow A. Cold plasma treatment for cotton seed germination improvement. Sci Rep. 2018;8(1):14372. https://doi.org/10.1038/s41598-018-32692-9
  27. 27. Lee Y, Lee YY, Kim YS, Balaraju K, Mok YS, Yoo SJ, et al. Enhancement of seed germination and microbial disinfection on ginseng by cold plasma treatment. J Ginseng Res. 2021;45(4):519-26. https://doi.org/10.1016/j.jgr.2020.12.002
  28. 28. Billah M, Sajib SA, Roy NC, Rashid MM, Reza MA, Hasan MM, et al. Effects of DBD air plasma treatment on the enhancement of black gram (Vigna mungo L.) seed germination and growth. Arch Biochem Biophys. 2020;681:108253. https://doi.org/10.1016/j.abb.2020.108253
  29. 29. Ďurčányová S, Slováková Ľ, Klas M, Tomeková J, Ďurina P, Stupavská M, et al. Efficacy comparison of three atmospheric pressure plasma sources for soybean seed treatment: plasma characteristics, seed properties, germination. Plasma Chem Plasma Process. 2023;43(6):1863-85. https://doi.org/10.1007/s11090-023-10387-y
  30. 30. Gao X, Zhang A, Héroux P, Sand W, Sun Z, Zhan J, et al. Effect of dielectric barrier discharge cold plasma on pea seed growth. J Agric Food Chem. 2019;67(39):10813-22. https://doi.org/10.1021/acs.jafc.9b03099
  31. 31. Han Y, Cheng JH, Sun DW. Activities and conformation changes of food enzymes induced by cold plasma: A review. Crit Rev Food Sci Nutr. 2019;59(5):794-811. https://doi.org/10.1080/10408398.2018.1555131
  32. 32. Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot. 2015;66(13):4013-21. https://doi.org/10.1093/jxb/erv206
  33. 33. Nucifera N, Kanie MA, Pratiwi SH, Pratiwi R, Putro SP, Nur M. Corona discharge plasma technology to accelerate the growth of black soybean plants. J Nat Sci Res. 2016;6(14).
  34. 34. Dhayal M, Lee SY, Park SU. Using low-pressure plasma for Carthamus tinctorium L. seed surface modification. Vacuum. 2006;80(5):499-506. https://doi.org/10.1016/j.vacuum.2005.06.008
  35. 35. Pathan FL, Deshmukh RR, Annapure US. Soaking plasma processed chickpea (Cicer arientinum) cultivars. Legum Sci. 2021;3(2):e102. https://doi.org/10.1002/leg3.102
  36. 36. Yang J, Lan L, Jin Y, Yu N, Wang D, Wang E. Mechanisms underlying legume-rhizobium symbioses. J Integr Plant Biol. 2022;64(2):244-67. https://doi.org/10.1111/jipb.13207
  37. 37. Pérez-Pizá MC, Cejas E, Zilli C, Prevosto L, Mancinelli B, Santa-Cruz D, et al. Enhancement of soybean nodulation by seed treatment with non-thermal plasmas. Sci Rep. 2020;10(1):4917. https://doi.org/10.1038/s41598-020-61913-3
  38. 38. Dell’Olmo E, Tiberini A, Sigillo L. Leguminous seedborne pathogens: Seed health and sustainable crop management. Plants. 2023;12(10):2040. https://doi.org/10.3390/plants12102040
  39. 39. Recek N, Holc M, Vesel A, Zaplotnik R, Gselman P, Mozetič M, et al. Germination of Phaseolus vulgaris L. seeds after a short treatment with a powerful RF plasma. Int J Mol Sci. 2021;22(13):6672. https://doi.org/10.3390/ijms22136672
  40. 40. Pérez-Pizá MC, Prevosto L, Grijalba PE, Zilli CG, Cejas E, Mancinelli B, et al. Improvement of growth and yield of soybean plants through the application of non-thermal plasmas to seeds with different health status. Heliyon. 2019;5(4):e01495. https://doi.org/10.1016/j.heliyon.2019.e01495
  41. 41. Šrenáta R, Nicolette V, Monika B, Stanislav K, Eliška G, Veronika M, et al. Enhanced in situ activity of peroxidases and lignification of root tissues after exposure to non-thermal plasma increases the resistance of pea seedlings. Plasma Chem Plasma Process. 2021;41:903-22. https://doi.org/10.1007/s11090-021-10160-z
  42. 42. Zhou R, Li J, Zhou R, Zhang X, Yang S. Atmospheric-pressure plasma treated water for seed germination and seedling growth of mung bean and its sterilization effect on mung bean sprouts. Innov Food Sci Emerg Technol. 2019;53:36-44. https://doi.org/10.1016/j.ifset.2018.08.006
  43. 43. Darmanin M, Fröhling A, Bußler S, Durek J, Neugart S, Schreiner M, et al. Aqueous and gaseous plasma applications for the treatment of mung bean seeds. Sci Rep. 2021;11(1):19681. https://doi.org/10.1038/s41598-021-97823-1
  44. 44. Pérez-Pizá MC, Prevosto L, Zilli C, Cejas E, Kelly H, Balestrasse K. Effects of non-thermal plasmas on seed-borne Diaporthe/Phomopsis complex and germination parameters of soybean seeds. Innov Food Sci Emerg Technol. 2018;49:82-91. https://doi.org/10.1016/j.ifset.2018.07.009
  45. 45. Selcuk M, Oksuz L, Basaran P. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresour Technol. 2008;99(11):5104-9. https://doi.org/10.1016/j.biortech.2007.09.076
  46. 46. Machado-Moreira B, Tiwari BK, Richards KG, Abram F, Burgess CM. Application of plasma activated water for decontamination of alfalfa and mung bean seeds. Food Microbiol. 2021;96:103708. https://doi.org/10.1016/j.fm.2020.103708
  47. 47. Wen Z, Lu X, Wen J, Wang Z, Chai M. Physical seed dormancy in legumes: molecular advances and perspectives. Plants. 2024;13(11):1473. https://doi.org/10.3390/plants13111473
  48. 48. Le TQ, Nguyen LN, Nguyen TT, Choi EH, Nguyen QL, Kaushik NK, et al. Effects of cold plasma treatment on physical modification and endogenous hormone regulation in enhancing seed germination and radicle growth of mung bean. Appl Sci. 2022;12(20):10308. https://doi.org/10.3390/app122010308
  49. 49. da Silva DL, de Andrade MV, Braz DC, de Sousa RR, Silva MR, Monção RM. Germination, wettability and imbibition of dormant seeds of Desmanthus virgatus after low-pressure plasma treatment. Acta Vet Bras. 2022;16(1). https://doi.org/10.21708/avb.2022.16.1.10425
  50. 50. Šerá B, Jirešová J, Scholtz V, Julák J, Khun J. Non-thermal plasma treatment improves properties of dormant seeds of black locust (Robinia pseudoacacia L.). Forests. 2023;14(3):471. https://doi.org/10.3390/f14030471
  51. 51. Alves-Junior C, da Silva DL, Vitoriano JO, Barbalho AP, de Sousa RC. The water path in plasma-treated Leucaena seeds. Seed Sci Res. 2020;30(1):13-20. https://doi.org/10.1017/S0960258520000045
  52. 52. Braz DC, Silva DL, Rocha-Silva M, Sousa RR, Moncão RM, Lima CD, et al. Effect of low-pressure plasma treatment on the seed surface structure of Desmanthus virgatus L. Willd. Rev Arvore. 2022;46:e4605. https://doi.org/10.1590/1806-908820220000005
  53. 53. Rahman MM, Sajib SA, Rahi MS, Tahura S, Roy NC, Parvez S, et al. Mechanisms and signaling associated with LPDBD plasma mediated growth improvement in wheat. Sci Rep. 2018;8(1):10498. https://doi.org/10.1038/s41598-018-28960-3
  54. 54. Sadhu S, Thirumdas R, Deshmukh RR, Annapure US. Influence of cold plasma on the enzymatic activity in germinating mung beans (Vigna radiata). LWT. 2017;78:97-104. https://doi.org/10.1016/j.lwt.2016.12.026
  55. 55. Švubová R, Kyzek S, Medvecká V, Slováková Ľ, Gálová E, Zahoranová A. Novel insight at the effect of cold atmospheric pressure plasma on the activity of enzymes essential for the germination of pea (Pisum sativum L. cv. Prophet) seeds. Plasma Chem Plasma Process. 2020;40:1221-40. https://doi.org/10.1007/s11090-020-10089-9
  56. 56. Kheto A, Behera A, Manikpuri S, Sehrawat R, Gul K, Kumar L. Atmospheric cold plasma pretreatment on germination of guar bean seeds: effect on germination parameters, bioactive compounds, antinutritional factors, functional groups and in vitro protein digestibility. Legum Sci. 2024;6(3):e251. https://doi.org/10.1002/leg3.251
  57. 57. Volkov AG, Hairston JS, Marshall J, Bookal A, Dholichand A, Patel D. Plasma seeds: cold plasma accelerates Phaseolus vulgaris seed imbibition, germination and speed of seedling growth. Plasma Med. 2020;10(3). https://doi.org/10.1615/PlasmaMed.2020036438
  58. 58. Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M. Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process. 2015;35:659-76. https://doi.org/10.1007/s11090-015-9627-8
  59. 59. Holc M, Gselman P, Primc G, Vesel A, Mozetič M, Recek N. Wettability and water uptake improvement in plasma-treated alfalfa seeds. Agriculture. 2022;12(1):96. https://doi.org/10.3390/agriculture12010096
  60. 60. Ling L, Jiafeng J, Jiangang L, Minchong S, Xin H, Hanliang S, et al. Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep. 2014;4(1):5859. https://doi.org/10.1038/srep05859
  61. 61. Hendeniya N, Sandanuwan T, Attygalle D, Amarasinghe DA, Weragoda S, Ranaweera B, et al. Non-thermal atmospheric pressure plasma: An alternative method to enhance the seed quality in long bean-KPN (Vigna unguiculata L.) seeds. Mater Today Proc. 2022;56:1691-5. https://doi.org/10.1016/j.matpr.2021.10.329
  62. 62. Othman KB, Cherif MM, Assadi I, Elfalleh W, Khezami L, Ghorbal A, et al. Exploring cold plasma technology: Enhancements in carob seed germination, phytochemical composition and antioxidant activity. Heliyon. 2024;10(8):e28966. https://doi.org/10.1016/j.heliyon.2024.e28966
  63. 63. Nadeem M, Li J, Yahya M, Sher A, Ma C, Wang X, et al. Research progress and perspective on drought stress in legumes: A review. Int J Mol Sci. 2019;20(10):2541. https://doi.org/10.3390/ijms20102541
  64. 64. Pourbagher M, Pourbagher R, Abbaspour-Fard MH. Reduction of adverse effects of drought stress on germination indices and antioxidant enzymes of licorice seeds (Glycyrrhiza) using cold plasma. J Plant Growth Regul. 2025;44(2):1032-42. https://doi.org/10.1007/s00344-024-11512-7
  65. 65. Jinkui F, Decheng W, Changyong S, Zhang L, Xin T. Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress. Plasma Sci Technol. 2018;20(3):035505. https://doi.org/10.1088/2058-6272/aa9b27
  66. 66. Khatami S, Ahmadinia A. Increased germination and growth rates of pea and zucchini seed by FSG plasma. J Theor Appl Phys. 2018;12:33-8. https://doi.org/10.1007/s40094-018-0280-5
  67. 67. Ahmad Z, Tariq RM, Ramzan M, Bukhari MA, Raza A, Iqbal MA, et al. Biological nitrogen fixation: An analysis of intoxicating tribulations from pesticides for sustainable legume production. In: Managing plant production under changing environment. Singapore: Springer Nature; 2022. p. 351-74. https://doi.org/10.1007/978-981-16-5059-8_14
  68. 68. Anbarasan R, Jaspin S, Bhavadharini B, Pare A, Pandiselvam R, Mahendran R. Chlorpyrifos pesticide reduction in soybean using cold plasma and ozone treatments. Lwt. 2022;159:113193. https://doi.org/10.1016/j.lwt.2022.113193
  69. 69. Pathan FL, Deshmukh RR, Annapure US. Potential of cold plasma to control Callosobruchus chinensis (Chrysomelidae: Bruchinae) in chickpea cultivars during four year storage. Sci Rep. 2021;11(1):13425. https://doi.org/10.1038/s41598-021-92792-x
  70. 70. Kirk-Bradley NT, Salau TG, Salzman KZ, Moore JM. Atmospheric cold plasma (ACP) treatment for efficient disinfestation of the cowpea weevil, Callosobruchus maculatus. J ASABE. 2023;66(4):921-7. https://doi.org/10.13031/ja.15449
  71. 71. Junior CA, De Menezes FL, Vitoriano JD, Da Silva DL. Effect of plasma-activated water on soaking, germination and vigor of Erythrina velutina seeds. Plasma Med. 2019;9(2). https://doi.org/10.1615/PlasmaMed.2019031667
  72. 72. Porto CL, Ziuzina D, Los A, Boehm D, Palumbo F, Favia P, et al. Plasma activated water and airborne ultrasound treatments for enhanced germination and growth of soybean. Innov Food Sci Emerg Technol. 2018;49:13-9. https://doi.org/10.1016/j.ifset.2018.07.013
  73. 73. Sajib SA, Billah M, Mahmud S, Miah M, Hossain F, Omar FB, et al. Plasma activated water: The next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo L.). Plasma Chem Plasma Process. 2020;40:119-43. https://doi.org/10.1007/s11090-019-10028-3
  74. 74. Chou YJ, Ting Y. Plasma-activated water regulated transcriptome gene expression leading to high germination and growth of mung beans. Chem Biol Technol Agric. 2023;10(1):146. https://doi.org/10.1186/s40538-023-00497-2
  75. 75. Mahanta S, Habib MR, Moore JM. Effect of high-voltage atmospheric cold plasma treatment on germination and heavy metal uptake by soybeans (Glycine max). Int J Mol Sci. 2022;23(3):1611. https://doi.org/10.3390/ijms23031611
  76. 76. Yemeli GB, Janda M, Machala Z. Non-thermal plasma as a priming tool to improve the yield of pea in outdoor conditions. Plasma Chem Plasma Process. 2022;42(5):1143-68. https://doi.org/10.1007/s11090-022-10264-0
  77. 77. Guragain RP, Pradhan SP, Baniya HB, Pandey BP, Basnet N, Sedhai B, et al. Impact of plasma-activated water (PAW) on seed germination of soybean. J Chem. 2021;2021(1):7517052. https://doi.org/10.1155/2021/7517052
  78. 78. Shelar A, Singh AV, Dietrich P, Maharjan RS, Thissen A, Didwal PN, et al. Emerging cold plasma treatment and machine learning prospects for seed priming: A step towards sustainable food production. RSC Adv. 2022;12(17):10467-88. https://doi.org/10.1039/D2RA00809B
  79. 79. Moghanloo M, Iranbakhsh A, Ebadi M, Nejad Satari T, Oraghi Ardebili Z. Seed priming with cold plasma and supplementation of culture medium with silicon nanoparticle modified growth, physiology and anatomy in Astragalus fridae as an endangered species. Acta Physiol Plant. 2019;41(4):54. https://doi.org/10.1007/s11738-019-2846-5
  80. 80. Firouzkoohi F, Nasibi F, Keramat B, Noori H, Mousavi EA. Seed pretreatment with cold plasma (dielectric barrier discharge) enhances silica nanoparticle absorption and mitigates salinity-induced damage of guar seedling. Ind Crops Prod. 2025;226:120598. https://doi.org/10.1016/j.indcrop.2025.120598
  81. 81. Vasylenko O, Pasichnyi V, Holovko T, Lapytska N, Golovko M, Xuanxuan Q, et al. Nanosized chitosan and plasma-activated water: Improving the microbiological and physicochemical properties of vetch (Vicia sativa L.) bean sprouts. In: 2023 IEEE 13th International Conference on Nanomaterials: Applications & Properties (NAP). IEEE; 2023. p. IMT10-1. https://doi.org/10.1109/NAP59739.2023.10310729
  82. 82. Radhakrishnan R. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol Mol Biol Plants. 2019;25(5):1107-19. https://doi.org/10.1007/s12298-019-00699-9
  83. 83. Mildaziene V, Ivankov A, Pauzaite G, Naucienė Z, Zukiene R, Degutyte-Fomins L, et al. Seed treatment with cold plasma and electromagnetic field induces changes in red clover root growth dynamics, flavonoid exudation and activates nodulation. Plasma Process Polym. 2021;18(1):2000160. https://doi.org/10.1002/ppap.202000160
  84. 84. Mildažienė V, Paužaitė G, Naučienė Z, Žūkienė R, Malakauskienė A, Norkevičienė E, et al. Effect of seed treatment with cold plasma and electromagnetic field on red clover germination, growth and content of major isoflavones. J Phys D Appl Phys. 2020;53(26):264001. https://doi.org/10.1088/1361-6463/ab8140
  85. 85. Ivankov A, Zukiene R, Nauciene Z, Degutyte-Fomins L, Filatova I, Lyushkevich V, et al. The effects of red clover seed treatment with cold plasma and electromagnetic field on germination and seedling growth are dependent on seed color. Appl Sci. 2021;11(10):4676. https://doi.org/10.3390/app11104676
  86. 86. van der Gaag T, Onishi H, Akatsuka H. Arbitrary EEDF determination of atmospheric-pressure plasma by applying machine learning to OES measurement. Phys Plasmas. 2021;28(3). https://doi.org/10.1063/5.0023928
  87. 87. Abeysingha DN, Dhaliwal HK, Du L, De Silva C, Szczyglowski K, Roopesh MS, et al. The potential of cold plasma-based seed treatments in legume-rhizobia symbiotic nitrogen fixation: A review. Crops. 2024;4(1):95-114. https://doi.org/10.3390/crops4010008

Downloads

Download data is not yet available.