Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Parent-offspring regression to accelerate nutritive traits in F2 and F3 generations of red sorghum (Sorghum bicolor L. Moench) genotypes

DOI
https://doi.org/10.14719/pst.8025
Submitted
2 March 2025
Published
21-08-2025
Versions

Abstract

Addressing global micronutrient deficiencies through biofortification is essential for improving human health. Sorghum, as a drought-tolerant and resilient crop, offers significant potential in this regard. This study investigated the biochemical traits and genetic variability among red sorghum genotypes, focusing on breeding nutritionally enriched varieties. The cross derivatives of sorghum parental varieties viz., CO 32 × Paiyur 2 in F2 and F3 generation were analysed for key biochemical traits, including total carbohydrate, amylose content, total protein, total phenolic content, total flavonoid content, total tannin content, total anthocyanin content, iron and zinc, as well as antioxidant potential. The genotypes in F2 generation exhibited considerable variation with iron content ranging from 772.15 mg/kg to 1094.84 mg/kg and zinc content between 59.05 mg/kg and 764.23 mg/kg, highlighting the potential for biofortification. Total antioxidant activity ranged from 10.63 % to 88.56 %, indicating diverse antioxidant profiles among the genotypes. The F3 generation genotypes showed improved mean values for total carbohydrate averaging 63.54 g/100 g, amylose content of 38.89 % and Fe content of 958.65 mg/kg. Selection pressure led to reduced genetic variability, as evidenced by changes in skewness and kurtosis and significant improvements in micronutrient and antioxidant content in F3 generation materials. High correlation coefficients (≥0.94) for traits such as amylose content, total protein, iron and zinc content suggested strong genetic control and inheritance of the traits. Heritability estimates above 0.50 indicated the potential for consistent genetic gains. These findings provided valuable insights for developing sorghum varieties with enhanced nutritional profiles, contributing to global food security and addressing micronutrient malnutrition.

References

  1. 1. Charyulu DK, Afari-Sefa V, Gumma MK. Trends in Global sorghum production: perspectives and limitations. In: omics and biotechnological approaches for product profile-driven sorghum improvement: Springer; 2024. p. 1-19.
  2. 2. Faostat F. FAOSTAT statistical database. FAO (Food and Agriculture Organization of the United Nations), Rome, Italy; 2016. https://doi.org/10.1186/s12977-017-0356-3
  3. 3. Shanalin J, Chandirakala R, Boopathi N, Chandrakumar K, Giridhari V, Sivakumar S. Unveiling the nutraceutical properties and functional attributes of sorghum-Comprehensive review. Plant Science Today. 2025;12(sp1):01-15. https://doi.org/10.14719/pst.4115
  4. 4. Bachmann N, Turk T, Kadelka C, Marzel A, Shilaih M, Böni J, et al. Parent-offspring regression to estimate the heritability of an HIV-1 trait in a realistic setup. Retrovirology. 2017;14:1-10. https://doi.org/10.1186/s12977-017-0356-3
  5. 5. de Villemereuil P, Gimenez O, Doligez B. Comparing parent–offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations: a simulation study for Gaussian and binary traits. Methods in Ecology and Evolution. 2013;4(3):260-75. https://doi.org/10.1111/2041-210X.12011
  6. 6. Kruuk LE, Slate J, Pemberton JM, Brotherstone S, Guinness F, Clutton‐Brock T. Antler size in red deer: heritability and selection but no evolution. Evolution. 2002;56(8):1683-95. https://doi.org/10.1111/j.0014-3820.2002.tb01480.x
  7. 7. Hill WG, Mackay TF. DS falconer and introduction to quantitative genetics. Genetics. 2004;167(4):1529-36. https://doi.org/10.1093/genetics/167.4.1529
  8. 8. Liang GH, Walter T. Heritability estimates and gene effects for agronomic traits in grain sorghum, sorghum vulgate pers. 1. Crop science. 1968;8(1):77-81. https://doi.org/10.2135/cropsci1968.0011183X000800010022x
  9. 9. Chung P-Y, Liao C-T. Selection of parental lines for plant breeding via genomic prediction. Frontiers in Plant Science. 2022;13:934767. https://doi.org/10.3389/fpls.2002.934767
  10. 10. Swarup S, Cargill EJ, Crosby K, Flagel L, Kniskern J, Glenn KC. Genetic diversity is indispensable for plant breeding to improve crops. Crop Science. 2021;61(2):839-52. https://doi.org/10.1002/csc2.20377
  11. 11. Gerrano A, Labuschagne M, Van Biljon A, Shargie N. Quantification of mineral composition and total protein content in sorghum [Sorghum bicolor (L.) Moench] genotypes. Cereal Research Communications. 2016;44(2):272-85. https://doi.org/10.1556/0806.43.2015.046
  12. 12. Trikoesoemaningtyas FA, Burnama P, Rahayu F, Rachman F, Hariadi RE, Marwiyah S, et al. Genetic variations in sorghum segregating populations based on yield and amylose content. SABRAO J Breed Genet. 2024;56(4):1357-66. http://doi.org/10.54910/sabrao2024.56.4.3
  13. 13. Ng'uni D, Geleta M, Hofvander P, Fatih M, Bryngelsson T. Comparative genetic diversity and nutritional quality variation among some important Southern African sorghum accessions ['Sorghum bicolor'(L.) Moench]. Australian Journal of Crop Science. 2012;6(1):56-64.
  14. 14. Shegro A, Shargie NG, van Biljon A, Labuschagne MT. Diversity in starch, protein and mineral composition of sorghum landrace accessions from Ethiopia. Journal of Crop Science and Biotechnology. 2012;15:275-80. https://doi.org/10.1007/s12892-012-0008-z
  15. 15. Dicko MH, Gruppen H, Traoré AS, Voragen AG, van Berkel WJ. Sorghum grain as human food in Africa: relevance of content of starch and amylase activities. African Journal of Biotechnology. 2006;5(5):384-95.
  16. 16. Makebe A, Shimelis H. diversity analysis for grain nutrient content and agronomic traits among newly bred striga-resistant and Fusarium oxysporum f. sp. strigae (FOS)-compatible sorghum genotypes. Diversity. 2023;15(3):371. https://doi.org/10.3390/d15030371
  17. 17. Girma G, Nida H, Tirfessa A, Lule D, Bejiga T, Seyoum A, et al. A comprehensive phenotypic and genomic characterization of Ethiopian sorghum germplasm defines core collection and reveals rich genetic potential in adaptive traits. The Plant Genome. 2020;13(3):e20055. https://doi.org/10.1002/tpg2.20055
  18. 18. Phuke RM, Anuradha K, Radhika K, Jabeen F, Anuradha G, Ramesh T, et al. Genetic variability, genotype × environment interaction, correlation, and GGE biplot analysis for grain iron and zinc concentration and other agronomic traits in RIL population of sorghum (Sorghum bicolor L. Moench). Frontiers in Plant Science. 2017;8:712. https://doi.org/10.3389/fpls.2017.00712
  19. 19. Shamini K, Selvi B. Assessment of frequency distribution in F3 generation of sorghum (Sorghum bicolor L. Moench.) for grain yield and its attributed traits. Madras Agricultural Journal. 2022;109(4):24-28. https://doi.org/10.29321/MAJ.10.000623
  20. 20. Daudi H, Shimelis H, Mathew I, Rathore A, Ojiewo CO. Combining ability and gene action controlling rust resistance in groundnut (Arachis hypogaea L.). Scientific Reports. 2021;11(1):16513. https://doi.org/10.1038/s41598-021-96079-z
  21. 21. Maryono MY, Wirnas D, Human S. Analisis genetik dan seleksi segregan transgresif pada populasi F2 sorgum hasil persilangan B69× Numbu dan B69× Kawali. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy). 2019;47(2):163-70. https://doi.org/10.24831/jai.v47i2.24991
  22. 22. Bhushan S, Ram S, Verma N, Izhar T, Kumar V, Choudhary AKC, et al. Genetic variability studies in F2 and F3 segregating generations for yield and its components in linseed (Linum usitatissimum L.). Journal of Pharmacognosy and Phytochemistry. 2017;6(6):752-5.
  23. 23. Andiku C, Shimelis H, Shayanowako AI, Gangashetty PI, Manyasa E. Genetic diversity analysis of East African sorghum (Sorghum bicolor [L.] Moench) germplasm collections for agronomic and nutritional quality traits. Heliyon. 2022;8(6):e09690. https://doi.org/10.1016/j.heliyon.2022.e09690

Downloads

Download data is not yet available.