Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 4 (2025)

Phytochemicals as modulators of autophagy and apoptosis: unveiling synergistic mechanisms in cancer therapy

DOI
https://doi.org/10.14719/pst.8034
Submitted
2 March 2025
Published
29-08-2025 — Updated on 01-10-2025
Versions

Abstract

Naturally occurring bioactive phytochemicals have been used for centuries to treat various pathophysiological disorders. Many studies have revealed that certain phytochemicals exhibit impressive properties that may combat cancer effectively. These natural compounds show promise as valuable therapeutic agents in the fight against various types of cancer, offering hope for innovative treatment strategies. Essentially, phytochemicals can regulate two essential cellular mechanisms, autophagy and apoptosis, which play significant roles in the underlying pathophysiology of carcinogenesis. Combining phytochemicals with conventional chemotherapy can potentially enhance the therapeutic effects while minimizing adverse side effects. Continued advancements in this field are crucial for overcoming the challenges associated with the development of anticancer therapeutics based on phytochemicals. This review aims to shed light on the intricate molecular processes of autophagy and the apoptotic pathway in tumour progression, as well as the potential of phytochemicals in developing anticancer drugs. By harnessing the potential of phytomolecules, it is possible to uncover novel and effective treatments for various types of cancer, thereby paving the way for advancements in anticancer therapy. Taken as a whole, a detailed molecular understanding of the mode of action of phytochemicals in regulating autophagy and apoptosis could lead to the development of strategies for anticancer drugs, advancing towards achieving the United Nations' Sustainable Development Goals (SDG 3: good health and well-being).

References

  1. 1. Ocran Mattila P, Ahmad R, Hasan SS, Babar ZU. Availability, affordability, access and pricing of anticancer medicines in low-and middle-income countries: A systematic review of literature. Front Public Health. 2021;9:628744. https://doi.org/10.3389/fpubh.2021.628744
  2. 2. Henley SJ, Ward EM, Scott S, Ma J, Anderson RN, Firth AU, et al. Annual report to the nation on the status of cancer, part I: national cancer statistics. Cancer. 2020;126(10):2225–49. https://doi.org/10.1002/cncr.32802
  3. 3. Anand S, Chan TA, Hasan T, Maytin EV. Current prospects for treatment of solid tumors via photodynamic, photothermal, or ionizing radiation therapies combined with immune checkpoint inhibition (A review). Pharmaceuticals (Basel). 2021;14(5):447. https://doi.org/10.3390/ph14050447
  4. 4. Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol. 2019;54(2):407–19. https://doi.org/10.3892/ijo.2018.4661
  5. 5. Alfarouk KO, Stock CM, Taylor S, Walsh M, Muddathir AK, Verduzco D, et al. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15:1–3. https://doi.org/10.1186/s12935–015–0221–1
  6. 6. Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019;2(2):141. https://doi.org/10.20517/cdr.2019.10
  7. 7. Thorburn A, Thamm DH, Gustafson DL. Autophagy and cancer therapy. Mol Pharmacol. 2014;85(6):830–8. https://doi.org/10.1124/mol.114.091850
  8. 8. Panigrahi GK, Satapathy KB. Arabidopsis DCP5, a decapping complex protein interacts with ubiquitin–5 in the processing bodies. Plant Arch. 2020;20(1):2243–7.
  9. 9. Lin Y, Shi R, Wang X, Shen HM. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets. 2008;8(7):634–46. https://doi.org/10.2174/156800908786241050
  10. 10. Sahoo A, Satapathy KB, Panigrahi GK. Security check: plant immunity under temperature surveillance. J Plant Biochem Biotechnol. 2024;33(1):1–4. https://doi.org/10.1007/s13562–023–00846–0
  11. 11. Sahoo A, Satapathy KB, Sahoo SK, Panigrahi GK. Microbased biorefinery for gold nanoparticle production: recent advancements, applications and future aspects. Prep Biochem Biotechnol. 2023;53(6):579–90. https://doi.org/10.1080/10826068.2022.2122065
  12. 12. Ahmadi Dehlaghi F, Mohammadi P, Valipour E, Pournaghi P, Kiani S, Mansouri K. Autophagy: A challengeable paradox in cancer treatment. Cancer Med. 2023;12(10):11542–69. https://doi.org/10.1002/cam4.5577
  13. 13. Bhattacharya S, Perris A, Jawed JJ, Hoda M. Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action. Pharmacol Res Mod Chinese Med. 2023;6:100233. https://doi.org/10.1016/j.prmcm.2023.100233
  14. 14. Duan Y, Tian X, Liu Q, Jin J, Shi J, Hou Y. Role of autophagy on cancer immune escape. Cell Commun Signal. 2021;19:1–2. https://doi.org/10.1186/s12964–021–00769–0
  15. 15. Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005;5(9):726–34. https://doi.org/10.1038/nrc1692
  16. 16. Panigrahi GK, Satapathy KB. Pseudomonas syringae pv. syringae infection orchestrates the fate of the Arabidopsis J domain containing cochaperone and decapping protein factor 5. Physiol Mol Plant Pathol. 2021;113:101598. https://doi.org/10.1016/j.pmpp.2020.101598
  17. 17. Sahoo A, Satapathy KB. Differential expression of Arabidopsis EJC core proteins under short-day and long-day growth conditions. Plant Sci Today. 2021;8(4):815–9. https://doi.org/10.14719/pst.2021.8.4.1214
  18. 18. Pfeffer CM, Singh AT. Apoptosis: A target for anticancer therapy. IntJ Mol Sci. 2018;19(2):448. https://doi.org/10.3390/ijms19020448
  19. 19. Ploumi C, Papandreou ME, Tavernarakis N. The complex interplay between autophagy and cell death pathways. Biochem J. 2022;479(1):75–90. https://doi.org/10.1042/bcj20210450
  20. 20. Decuypere JP, Parys JB, Bultynck G. Regulation of the autophagic bcl–2/beclin 1 interaction. Cells. 2012;1(3):284–312. https://doi.org/10.3390/cells1030284
  21. 21. Feroz W, Sheikh AM. Exploring the multiple roles of guardian of the genome: P53. Egypt J Med Hum Genet. 2020;21(1):49. https://doi.org/10.1186/s43042–020–00089–x
  22. 22. Kang R, Zeh HJ, Lotze MT, Tang D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18(4):571–80. https://doi.org/10.1038/cdd.2010.191
  23. 23. Qian S, Wei Z, Yang W, Huang J, Yang Y, Wang J. The role of BCL–2 family proteins in regulating apoptosis and cancer therapy. Front Oncol. 2022;12:985363. https://doi.org/10.3389/fonc.2022.985363
  24. 24. Singh H, Khar A. Potential of onion (Allium cepa) as traditional therapeutic and functional food: An update. Indian J Agric Sci. 2022;92(11):1291–7. https://doi.org/10.56093/ijas.v92i11.123235
  25. 25. Granato M, Rizzello C, Montani MS, Cuomo L, Vitillo M, Santarelli R, et al. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J Nutr Biochem. 2017;41:124–36. https://doi.org/10.1016/j.jnutbio.2016.12.011
  26. 26. Nidhi P, Rolta R, Kumar V, Dev K, Sourirajan A. Synergistic potential of Citrus aurantium L. essential oil with antibiotics against Candida albicans. J Ethnopharmacol. 2020;262:113135. https://doi.org/10.1016/j.jep.2020.113135
  27. 27. Sohel M, Sultana H, Sultana T, Al Amin M, Aktar S, Ali MC, et al. Chemotherapeutic potential of hesperetin for cancer treatment, with mechanistic insights: A comprehensive review. Heliyon. 2022;8(1). https://doi.org/10.1016/j.heliyon.2022.e08815
  28. 28. Rahimi–Madiseh M, Lorigoini Z, Zamani–Gharaghoshi H, Rafieian–Kopaei M. Berberis vulgaris: specifications and traditional uses. Iran J Basic Med Sci. 2017;20(5):569. https://doi.org/10.22038/ijbms.2017.8690.
  29. 29. Rauf A, Abu–Izneid T, Khalil AA, Imran M, Shah ZA, Emran TB, et al. Berberine as a potential anticancer agent: A comprehensive review. Molecules. 2021;26(23):7368. https://doi.org/10.3390/molecules26237368
  30. 30. Zadeh JB, Kor NM, Kor ZM. Chamomile (Matricaria recutita) as a valuable medicinal plant. Int J Adv Biol Biomed Res. 2014;2(3):823–9.
  31. 31. Al–Dabbagh B, Elhaty IA, Elhaw M, Murali C, Al Mansoori A, Awad B, et al. Antioxidant and anticancer activities of chamomile (Matricaria recutita L.). BMC Res Notes. 2019;12:1–8. https://doi.org/10.1186/s13104–018–3960–y
  32. 32. Xie TZ, Zhao YL, Wang H, Chen YC, Wei X, Wang ZJ, et al. New steroidal alkaloids with anti–inflammatory and analgesic effects from Veratrum grandiflorum. J Ethnopharmacol. 2022;293:115290. https://doi.org/10.1016/j.jep.2022.115290
  33. 33. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi–Rad M, et al. Resveratrol: A double-edged sword in health benefits. Biomedicines. 2018;6(3):91. https://doi.org/10.3390/biomedicines6030091
  34. 34. Loria Gutierrez A, Blanco Barrantes J, Porras Navarro M, Ortega Monge MC, Cerdas Vargas MJ, Madrigal Redondo GL. Aspectos generales del Allium sativum–una revisión. Ars Pharm (Internet). 2021;62(4):471–81. https://doi.org/10.30827/ars.v62i4.20843
  35. 35. Yifan M, Rui X, Yuan L, Feiyun J. Allicin inhibits the biological activities of cervical cancer cells by suppressing circEIF4G2. Food Sci Nutr. 2024;12(4):2523–36. https://doi.org/10.1002/fsn3.3935
  36. 36. Zhao Q, Chen XY, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull (Beijing). 2016;61:1391–8. https://doi.org/10.1007/s11434–016–1136–5
  37. 37. Sun ZK, Yang HQ, Chen SD. Traditional Chinese medicine: A promising candidate for the treatment of Alzheimers’ disease. Transl Neurodegener. 2013;2:1–7. https://doi.org/10.1186/2047–9158–2–6
  38. 38. Lou JS, Hu D, Wang HJ, Zhao LP, Hu JH, Zhou ZH. Ginkgo biloba: a potential anticancer agent. In: Badria FA, editor. Medicinal plants. London: IntechOpen; 2022. https://doi.org/10.5772/intechopen.104788
  39. 39. Yarosh DB, Galvin JW, Nay SL, Pena AV, Canning MT, Brown DA. Anti-inflammatory activity in skin by biomimetic of Evodia rutaecarpa extract from traditional Chinese medicine. J Dermatol Sci. 2006;42(1):13–21. https://doi.org/10.1016/j.jdermsci.2005.12.009
  40. 40. Shen H, Zhao S, Xu Z, Zhu L, Han Y, Ye J. Evodiamine inhibits proliferation and induces apoptosis in gastric cancer cells. Oncol Lett. 2015;10(1):367–71. https://doi.org/10.3892/ol.2015.3153
  41. 41. Ajuwon OR, Marnewick JL, Davids LM. Rooibos (Aspalathus linearis) and its major flavonoids – potential against oxidative stress–induced conditions. In: Laher I, editor. Basic principles and clinical significance of oxidative stress. London: IntechOpen; 2015. p. 171. https://doi.org/10.5772/61614
  42. 42. Panigrahi GK, Sahoo SK, Sahoo A, Behera S, Sahu S, Dash A, et al. Bioactive molecules from plants: a prospective approach to combat SARS–CoV–2. Adv Tradit Med. 2023;23(3):617–30. https://doi.org/10.1007/s13596–021–00599–y
  43. 43. Panigrahi GK, Sahoo A, Satapathy KB. Insights to plant immunity: defense signaling to epigenetics. Physiol Mol Plant Pathol. 2021;113:101568. https://doi.org/10.1016/j.pmpp.2020.101568
  44. 44. Panigrahi GK, Satapathy KB. Formation of Arabidopsis Poly (A)–Specific Ribonuclease associated processing bodies in response to pathogenic infection. Plant Arch. 2020;20(2):4907–12
  45. 45. Rahman MA, Rhim H. Therapeutic implication of autophagy in neurodegenerative diseases. BMB Rep. 2017;50(7):345. https://doi.org/10.5483/BMBRep.2017.50.7.069
  46. 46. Zhao YG, Zhang H. Autophagosome maturation: An epic journey from the ER to lysosomes. J Cell Biol. 2019;218(3):757–70. https://doi.org/10.1083/jcb.201810099
  47. 47. Alers S, Loffler AS, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts and feedbacks. Mol Cell Biol. 2012;32(1):2–11. https://doi.org/10.1128/MCB.06159–11
  48. 48. Kim J, Kim YC, Fang C, Russell RC, Kim JH, Fan W, et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 2013;152(1):290–303. https://doi.org/10.1016/j.cell.2012.12.016
  49. 49. Wu Y, Tan HW, Lin JY, Shen HM, Wang H, Lu G. Molecular mechanisms of autophagy and implications in liver diseases. Liver Res. 2023;7(1):56–70. https://doi.org/10.1016/j.livres.2023.02.002
  50. 50. Yun CW, Lee SH. The roles of autophagy in cancer. Int J Mol Sci. 2018;19(11):3466. https://doi.org/10.3390/ijms19113466
  51. 51. Rosenfeldt MT, Ryan KM. The multiple roles of autophagy in cancer. Carcinogenesis. 2011;32(7):955–63. https://doi.org/10.1093/carcin/bgr031
  52. 52. Gewirtz DA. The four faces of autophagy: implications for cancer therapy. Cancer Res. 2014;74(3):647–51. https://doi.org/10.1158/0008–5472.CAN–13–2966
  53. 53. Comel A, Sorrentino G, Capaci V, Del Sal G. The cytoplasmic side of p53s’ oncosuppressive activities. FEBS Lett. 2014;588(16):2600–9. https://doi.org/10.1016/j.febslet.2014.04.015
  54. 54. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651–62. https://doi.org/10.1056/NEJMra1205406
  55. 55. Jung HW, Panigrahi GK, Jung GY, Lee YJ, Shin KH, Sahoo A, et al. Pathogen-associated molecular pattern-triggered immunity involves proteolytic degradation of core nonsense-mediated mRNA decay factors during the early defense response. Plant Cell. 2020;32(4):1081–101. https://doi.org/10.1105/tpc.19.00631
  56. 56. Goldsmith J, Levine B, Debnath J. Autophagy and cancer metabolism. Methods Enzymol. 2014;542:25–57. https://doi.org/10.1016/B978-0-12-416618-9.00002-9
  57. 57. Panda PK, Mukhopadhyay S, Das DN, Sinha N, Naik PP, Bhutia SK. Mechanism of autophagic regulation in carcinogenesis and cancer therapeutics. In: Seminars in Cell & Developmental Biology. London: Academic Press; 2015. p. 43–55. https://doi.org/10.1016/j.semcdb.2015.02.013
  58. 58. Goldar S, Khaniani MS, Derakhshan SM, Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16(6):2129–44. https://doi.org/10.7314/apjcp.2015.16.6.2129
  59. 59. Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J. 2009;23(6):1625. https://doi.org/10.1096/fj.08–111005
  60. 60. Ghobrial IM, Witzig TE, Adjei AA. Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin. 2005;55(3):178–94. https://doi.org/10.3322/canjclin.55.3.178
  61. 61. Xu W, Jing L, Wang Q, Lin CC, Chen X, Diao J, et al. Bax-PGAM5L-Drp1 complex is required for intrinsic apoptosis execution. Oncotarget. 2015;6(30):30017. https://doi.org/10.18632/oncotarget.5013
  62. 62. Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. [Retracted] Apoptosis and Molecular Targeting Therapy in Cancer. BioMed Res Int. 2014;2014(1):150845. https://doi.org/10.1155/2014/150845
  63. 63. Lomonosova E, Chinnadurai G. BH3-only proteins in apoptosis and beyond: an overview. Oncogene. 2008;27(1):S2–19. https://doi.org/10.1038/onc.2009.39
  64. 64. Pena Blanco A, Garcia Saez AJ. Bax, Bak and beyond-mitochondrial performance in apoptosis. FEBS J. 2018;285(3):416–31. https://doi.org/10.1111/febs.14186
  65. 65. Green DR, Llambi F. Cell death signaling. Cold Spring Harb Perspect Biol. 2015;7(12):a006080. https://doi.org/10.1101/cshperspect.a006080
  66. 66. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: The clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–88. https://doi.org/10.1038/cdd.2014.150
  67. 67. Aung TN, Qu Z, Kortschak RD, Adelson DL. Understanding the effectiveness of natural compound mixtures in cancer through their molecular mode of action. Int J Mol Sci. 2017;18(3):656. https://doi.org/10.3390/ijms18030656
  68. 68. Mitra S, Dash R. Natural products for the management and prevention of breast cancer. Evid Based Complement Alternat Med. 2018;2018:8324696. https://doi.org/10.1155/2018/8324696
  69. 69. Sak K. Chemotherapy and dietary phytochemical agents. Chemother Res Pract. 2012;2012:282570. https://doi.org/10.1155/2012/282570
  70. 70. Zhong Y, Krisanapun C, Lee SH, Nualsanit T, Sams C, Peungvicha P, et al. Molecular targets of apigenin in colorectal cancer cells: involvement of p21, NAG–1 and p53. Eur J Cancer. 2010;46(18):3365–74. https://doi.org/10.1016/j.ejca.2010.07.007
  71. 71. Yang J, Pi C, Wang G. Inhibition of PI3K/Akt/mTOR pathway by apigenin induces apoptosis and autophagy in hepatocellular carcinoma cells. Biomed Pharmacother. 2018;103:699–707. https://doi.org/10.1016/j.biopha.2018.04.072
  72. 72. Chu YL, Ho CT, Chung JG, Rajasekaran R, Sheen LY. Allicin induces p53-mediated autophagy in Hep G2 human liver cancer cells. J Agric Food Chem. 2012;60(34):8363–71. https://doi.org/10.1021/jf301298y
  73. 73. Choe YJ, Ha TJ, Ko KW, Lee SY, Shin SJ, Kim HS. Anthocyanins in the black soybean (Glycine max L.) protect U2OS cells from apoptosis by inducing autophagy via the activation of adenosyl monophosphate-dependent protein kinase. Oncol Rep. 2012;28(6):2049–56. https://doi.org/10.3892/or.2012.2034
  74. 74. Wang Y, Liu Y, Du X, Ma H, Yao J. The anticancer mechanisms of berberine: A review. Cancer Manag Res. 2020:695–702. https://doi.org/10.2147/CMAR.S242329
  75. 75. Johnson R, Shabalala S, Louw J, Kappo AP, Muller CJ. Aspalathin reverts doxorubicin-induced cardiotoxicity through increased autophagy and decreased expression of p53/mTOR/p62 signaling. Molecules. 2017;22(10):1589. https://doi.org/10.3390/molecules22101589
  76. 76. Chaicharoenaudomrung N, Jaroonwitchawan T, Noisa P. Cordycepin induces apoptotic cell death of human brain cancer through the modulation of autophagy. Toxicol In Vitro. 2018;46:113–21. https://doi.org/10.1016/j.tiv.2017.10.002
  77. 77. Liu F, Gao S, Yang Y, Zhao X, Fan Y, Ma W, et al. Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol Rep. 2018;39(3):1523–31. https://doi.org/10.3892/or.2018.6188
  78. 78. Rasul A, Yu B, Zhong L, Khan M, Yang H, Ma T. Cytotoxic effect of evodiamine in SGC–7901 human gastric adenocarcinoma cells via simultaneous induction of apoptosis and autophagy. Oncol Rep. 2012;27(5):1481–7. https://doi.org/10.3892/or.2012.1694
  79. 79. Suh Y, Afaq F, Khan N, Johnson JJ, Khusro FH, Mukhtar H. Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis. 2010;31(8):1424–33. https://doi.org/10.1093/carcin/bgq115
  80. 80. Gossner G, Choi M, Tan L, Fogoros S, Griffith KA, Kuenker M, et al. Genistein–induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol Oncol. 2007;105(1):23–30. https://doi.org/10.1016/j.ygyno.2006.11.009
  81. 81. Mai TT, Moon J, Song Y, Viet PQ, Van Phuc P, Lee JM, et al. Ginsenoside F2 induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett. 2012;321(2):144–53. https://doi.org/10.1016/j.canlet.2012.01.045
  82. 82. Chen KL, Chang WS, Cheung CH, Lin CC, Huang CC, Yang YN, et al. Targeting cathepsin S induces tumor cell autophagy via the EGFR–ERK signaling pathway. Cancer Lett. 2012;317(1):89–98. https://doi.org/10.1016/j.canlet.2011.11.015
  83. 83. Hsin MC, Hsieh YH, Wang PH, Ko JL, Hsin IL, Yang SF. Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells. Cell Death Dis. 2017;8(10):e3089–. https://doi.org/10.1038/cddis.2017.459
  84. 84. Minto RE, Blacklock BJ. Biosynthesis and function of polyacetylenes and allied natural products. Prog Lipid Res. 2008;47(4):233–306. https://doi.org/10.1016/j.plipres.2008.02.002
  85. 85. Jin HR, Zhao J, Zhang Z, Liao Y, Wang CZ, Huang WH, et al. The antitumor natural compound falcarindiol promotes cancer cell death by inducing endoplasmic reticulum stress. Cell Death Dis. 2012;3(8):e376–. https://doi.org/10.1038/cddis.2012.122
  86. 86. Huang YH, Sun Y, Huang FY, Li YN, Wang CC, Mei WL, et al. Toxicarioside O induces protective autophagy in a sirtuin-1-dependent manner in colorectal cancer cells. Oncotarget. 2017;8(32):52783. https://doi.org/10.18632/oncotarget.17189
  87. 87. Chao AC, Hsu YL, Liu CK, Kuo PL. ΑΑ-Mangostin, a dietary xanthone, induces autophagic cell death by activating the AMP–activated protein kinase pathway in glioblastoma cells. J Agric Food Chem. 2011;59(5):2086–96. https://doi.org/10.1021/jf1042757
  88. 88. Kumar D, Shankar S, Srivastava RK. Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms. Mol Cancer. 2013;12:1–5. https://doi.org/10.1186/1476–4598–12–171
  89. 89. Li F, Ma Z, Guan Z, Chen Y, Wu K, Guo P, et al. Autophagy induction by silibinin positively contributes to its anti-metastatic capacity via AMPK/mTOR pathway in renal cell carcinoma. Int J Mol Sci. 2015;16(4):8415–29. https://doi.org/10.3390/ijms16048415
  90. 90. Uddin MS, Al Mamun A, Jakaria M, Thangapandiyan S, Ahmad J, Rahman MA, et al. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Sci Total Environ. 2020;707:135624. https://doi.org/10.1016/j.scitotenv.2019.135624
  91. 91. Shin SW, Kim SY, Park JW. Autophagy inhibition enhances ursolic acid–induced apoptosis in PC3 cells. Biochim Biophys Acta Mol Cell Res. 2012;1823(2):451–7. https://doi.org/10.1016/j.bbamcr.2011.10.014
  92. 92. Chen HY, Huang TC, Shieh TM, Wu CH, Lin LC, Hsia SM. Isoliquiritigenin induces autophagy and inhibits ovarian cancer cell growth. Int J Mol Sci. 2017;18(10):2025. https://doi.org/10.3390/ijms18102025
  93. 93. Zhang Z, Liu T, Yu M, Li K, Li W. The plant alkaloid tetrandrine inhibits metastasis via autophagy-dependent Wnt/ββ-catenin and metastatic tumor antigen 1 signaling in human liver cancer cells. J Exp Clin Cancer Res. 2018;37:1–7. https://doi.org/10.1186/s13046–018–0678–6
  94. 94. Mohapatra P, Preet R, Das D, Satapathy SR, Choudhuri T, Wyatt MD, et al. Quinacrine-mediated autophagy and apoptosis in colon cancer cells is through a p53-and p21-dependent mechanism. Oncol Res. 2012;20(2-3):81–91. https://doi.org/10.3727/096504012X13473664562628
  95. 95. Surichan S, Arroo RR, Tsatsakis AM, Androutsopoulos VP. Tangeretin inhibits the proliferation of human breast cancer cells via CYP1A1/CYP1B1 enzyme induction and CYP1A1/CYP1B1-mediated metabolism to the product 4′ hydroxy tangeretin. Toxicol In Vitro. 2018;50:274–84. https://doi.org/10.1016/j.tiv.2018.04.001
  96. 96. Xue L, Zhang WJ, Fan QX, Wang LX. Licochalcone A inhibits PI3K/Akt/mTOR signaling pathway activation and promotes autophagy in breast cancer cells. Oncol Lett. 2018;15(2):1869–73. https://doi.org/10.3892/ol.2017.7451
  97. 97. Sun CY, Zhu Y, Li XF, Tang LP, Su ZQ, Wang XQ, et al. Norcantharidin alone or in combination with crizotinib induces autophagic cell death in hepatocellular carcinoma by repressing c–Met–mTOR signaling. Oncotarget. 2017;8(70):114945. https://doi.org/10.18632/oncotarget.22935
  98. 98. Ren G, Sha T, Guo J, Li W, Lu J, Chen X. Cucurbitacin B induces DNA damage and autophagy mediated by reactive oxygen species (ROS) in MCF–7 breast cancer cells. J Nat Med. 2015;69:522–30. https://doi.org/10.1007/s11418-015-0918-4
  99. 99. Ataur Rahman M, Kim NH, Yang H, Huh SO. Angelicin induces apoptosis through intrinsic caspase–dependent pathway in human SH–SY5Y neuroblastoma cells. Mol Cell Biochem. 2012;369:95–104. https://doi.org/10.1007/s11010-012-1372-1
  100. 100. Liu Y, Xia XC, Meng LY, Wang Y, Li YM. Alisol B 23 acetate inhibits the viability and induces apoptosis of non small cell lung cancer cells via PI3K/AKT/mTOR signal pathway. Mol Med Rep. 2019;20(2):1187–95.
  101. 101. Wang Y, Chen J, Li Z, Liu S, Liu Y, Yu C, et al. Luteolin and Quercetin combination therapy: enhanced inhibition of H157 human lung cancer cells. Pharmacol Res Mod Chinese Med. 2024;12:100479. https://doi.org/10.1016/j.prmcm.2024.100479
  102. 102. Cao Z, Zhang H, Cai X, Fang W, Chai D, Wen Y, et al. Luteolin promotes cell apoptosis by inducing autophagy in hepatocellular carcinoma. Cell Physiol Biochem. 2018;43(5):1803–12. https://doi.org/10.1159/000484066
  103. 103. Choi JB, Kim JH, Lee H, Pak JN, Shim BS, Kim SH. Reactive oxygen species and p53 mediated activation of p38 and caspases is critically involved in kaempferol induced apoptosis in colorectal cancer cells. J Agric Food Chem. 2018;66(38):9960–7. https://doi.org/10.1021/acs.jafc.8b02656
  104. 104. He Z, Xiao X, Li S, Guo Y, Huang Q, Shi X, et al. Oridonin induces apoptosis and reverses drug resistance in cisplatin resistant human gastric cancer cells. Oncol Lett. 2017;14(2):2499–504. https://doi.org/10.3892/ol.2017.6421
  105. 105. Zhang JF, Liu JJ, Liu PQ, Lin DJ, Li XD, Chen GH. Oridonin inhibits cell growth by induction of apoptosis on human hepatocelluar carcinoma BEL–7402 cells. Hepatol Res. 2006;35(2):104–10. https://doi.org/10.1016/j.hepres.2006.03.007
  106. 106. Mujumdar N, Mackenzie TN, Dudeja V, Chugh R, Antonoff MB, Borja–Cacho D, et al. Triptolide induces cell death in pancreatic cancer cells by apoptotic and autophagic pathways. Gastroenterology. 2010;139(2):598–608. https://doi.org/10.1053/j.gastro.2010.04.046
  107. 107. Zhu Y, Rao Q, Zhang X, Zhou X. Galangin induced antitumor effects in human kidney tumor cells mediated via mitochondrial mediated apoptosis, inhibition of cell migration and invasion and targeting PI3K/AKT/mTOR signalling pathway. J BUON. 2018;23(3):795–9.
  108. 108. Ha TK, Jung I, Kim ME, Bae SK, Lee JS. Anticancer activity of myricetin against human papillary thyroid cancer cells involves mitochondrial dysfunction-mediated apoptosis. Biomed Pharmacother. 2017;91:378–84. https://doi.org/10.1016/j.biopha.2017.04.100
  109. 109. Elango R, Athinarayanan J, Subbarayan VP, Lei DK, Alshatwi AA. Hesperetin induces an apoptosis-triggered extrinsic pathway and a p53-independent pathway in human lung cancer H522 cells. J Asian Nat Prod Res. 2018;20(6):559–69. https://doi.org/10.1080/10286020.2017.1327949
  110. 110. Ma X, Ning S. Cyanidin-3-glucoside attenuates the angiogenesis of breast cancer via inhibiting STAT3/VEGF pathway. Phytother Res. 2019;33(1):81–9. https://doi.org/10.1002/ptr.6201
  111. 111. Gupta P, Srivastava SK. Antitumor activity of phenethyl isothiocyanate in HER2-positive breast cancer models. BMC Med. 2012;10:1–8. https://doi.org/10.1186/1741-7015-10-80
  112. 112. Lin W, Tongyi S. Role of Bax/Bcl-2 family members in green tea polyphenol induced necroptosis of p53-deficient Hep3B cells. Tumor Biol. 2014;35:8065–75. https://doi.org/10.1007/s13277–014–2064–0
  113. 113. Khorsandi L, Orazizadeh M, Niazvand F, Abbaspour MR, Mansouri E, Khodadadi AJ. Quercetin induces apoptosis and necroptosis in MCF–7 breast cancer cells. Bratisl Lek Listy. 2017;118(2):123–8. https://doi.org/10.4149/BLL_2017_025
  114. 114. Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anticancer effects. Biomed Pharmacother. 2020;121:109604. https://doi.org/10.1016/j.biopha.2019.109604
  115. 115. Mohamed L, Chakraborty S, ArulJothi KN, Mabasa L, Sayah K, Costa–Lotufo LV, et al. Galenia africana plant extract exhibits cytotoxicity in breast cancer cells by inducing multiple programmed cell death pathways. Saudi Pharm J. 2020;28(10):1155–65. https://doi.org/10.1016/j.jsps.2020.08.004
  116. 116. Kubik J, Waszak L, Adamczuk G, Humeniuk E, Iwan M, Adamczuk K, et al. Phytochemical analysis and anticancer properties of extracts of Centaurea castriferrei Borbas & Waisb Genus of Centaurea L. Molecules. 2022;27(21):7537. https://doi.org/10.3390/molecules27217537
  117. 117. Kuruppu AI, Paranagama P, Goonasekara CL. Medicinal plants commonly used against cancer in traditional medicine formulae in Sri Lanka. Saudi Pharm J. 2019;27(4):565–73. https://doi.org/10.1016/j.jsps.2019.02.004
  118. 118. Luo Y, Li T, Long R, Guo Q, Wei L, Wang X. Exploring targets and related mechanisms of Scutellaria baicalensis for treating non–small cell lung cancer based on network pharmacology. Pharmacol Res Mod Chinese Med. 2024;10:100381. https://doi.org/10.1016/j.prmcm.2024.100381
  119. 119. Cetinkaya M, Baran Y. Therapeutic potential of luteolin on cancer. Vaccines (Basel). 2023;11(3):554. https://doi.org/10.3390/vaccines11030554
  120. 120. Mena J, Elgueta E, Espinola–Gonzales F, Cardenas H, Orihuela PA. Hydroethanolic extracts of the Aristotelia chilensis (Maqui) berry reduces cellular viability and invasiveness in the endometrial cancer cell line Ishikawa. Integr Cancer Ther. 2021;20:15347354211007560. https://doi.org/10.1177/15347354211007560
  121. 121. Moore J, Yousef M, Tsiani E. Anticancer Effects of Rosemary (Rosmarinus officinalis L.) Extract and Rosemary Extract Polyphenols. Nutrients. 2016;8(11):731. https://doi.org/10.3390/nu8110731
  122. 122. Jaglanian A, Termini D, Tsiani E. Rosemary (Rosmarinus officinalis L.) extract inhibits prostate cancer cell proliferation and survival by targeting Akt and mTOR. Biomed Pharmacother. 2020;131:110717. https://doi.org/10.1016/j.biopha.2020.110717
  123. 123. Liu J, Bai J, Jiang G, Li X, Wang J, Wu D, et al. Anti–tumor effect of Pinus massoniana bark proanthocyanidins on ovarian cancer through induction of cell apoptosis and inhibition of cell migration. PLoS One. 2015;10(11):e0142157. https://doi.org/10.1371/journal.pone.0142157
  124. 124. Raimi IO, Kopaopa BG, Mugivhisa LL, Lewu FB, Amoo SO, Olowoyo JO. An ethnobotanical survey of medicinal plants used by traditional healers for the treatment of cancer in Hammanskraal and Winterveld, Tshwane Metropolitan Municipality, South Africa. Afr Health Sci. 2021;21(4):1746–53. https://doi.org/10.4314/ahs.v21i4.31
  125. 125. Chen HM, Wu YC, Chia YC, Chang FR, Hsu HK, Hsieh YC, et al. Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS–mediated anticancer activity in human prostate cancer cells. Cancer Lett. 2009;286(2):161–71. https://doi.org/10.1016/j.canlet.2009.05.040
  126. 126. Perrone D, Ardito F, Giannatempo G, Dioguardi M, Troiano G, Lo Russo L, et al. Biological and therapeutic activities and anticancer properties of curcumin. Exp Ther Med. 2015;10(5):1615–23. https://doi.org/10.3892/etm.2015.2749
  127. 127. Dasaroju S, Gottumukkala KM. Current trends in the research of Emblica officinalis (Amla): A pharmacological perspective. Int J Pharm Sci Rev Res. 2014;24(2):150–9.
  128. 128. Ghasemzadeh A, Jaafar HZ, Rahmat A. Optimization protocol for the extraction of 6–gingerol and 6–shogaol from Zingiber officinale var. rubrum Theilade and improving antioxidant and anticancer activity using response surface methodology. BMC Complement Altern Med. 2015;15:1–0. https://doi.org/10.1186/s12906-015-0718-0
  129. 129. Lee IC, Choi BY. Withaferin–A–A natural anticancer agent with pleitropic mechanisms of action. Int J Mol Sci. 2016;17(3):290. https://doi.org/10.3390/ijms17030290
  130. 130. Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol. 2020;10:1614. https://doi.org/10.3389/fphar.2019.01614
  131. 131. Morshed AH, Paul S, Hossain A, Basak T, Hossain MS, Hasan MM, et al. Baicalein as promising anticancer agent: A comprehensive analysis on molecular mechanisms and therapeutic perspectives. Cancers (Basel). 2023;15(7):2128. https://doi.org/10.3390/cancers15072128
  132. 132. Pandey N, Tyagi G, Kaur P, Pradhan S, Rajam MV, Srivastava T. Allicin overcomes hypoxia mediated cisplatin resistance in lung cancer cells through ROS mediated cell death pathway and by suppressing hypoxia inducible factors. Cell Physiol Biochem. 2020;54(4):748–66. https://doi.org/10.33594/000000253
  133. 133. Seo YJ, Kim BS, Chun SY, Park YK, Kang KS, Kwon TG. Apoptotic effects of Genistein, biochanin–A and apigenin on LNCaP and PC–3 cells by p21 through transcriptional inhibition of polo–like kinase–1. J Korean Med Sci. 2011;26(11):1489–94. https://doi.org/10.3346/jkms.2011.26.11.1489
  134. 134. Zhu Y, Fang J, Wang H, Fei M, Tang T, Liu K, et al. Baicalin suppresses proliferation, migration and invasion in human glioblastoma cells via Ca2+–dependent pathway. Drug Des Devel Ther. 2018;2:3247–61. https://doi.org/10.2147/DDDT.S176403
  135. 135. Li G, Zhang C, Liang W, Zhang Y, Shen Y, Tian X. Berberine regulates the Notch1/PTEN/PI3K/AKT/mTOR pathway and acts synergistically with 17–AAG and SAHA in SW480 colon cancer cells. Pharm Biol. 2021;59(1):21–30. https://doi.org/10.1080/13880209.2020.1865407
  136. 136. Yang SY, Kim NH, Cho YS, Lee H, Kwon HJ. Convallatoxin, a dual inducer of autophagy and apoptosis, inhibits angiogenesis in vitro and in vivo. PLoS One. 2014;9(3):e91094. https://doi.org/10.1371/journal.pone.0091094
  137. 137. Deng S, Shanmugam MK, Kumar AP, Yap CT, Sethi G, Bishayee A. Targeting autophagy using natural compounds for cancer prevention and therapy. Cancer. 2019;125(8):1228–46. https://doi.org/10.1002/cncr.31978
  138. 138. Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y. Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal–regulated kinase signaling pathways. Mol Pharmacol. 2007;72(1):29–39. https://doi.org/10.1124/mol.106.033167
  139. 139. Yuan CH, Horng CT, Lee CF, Chiang NN, Tsai FJ, Lu CC, et al. Epigallocatechin gallate sensitizes cisplatin resistant oral cancer CAR cell apoptosis and autophagy through stimulating AKT/STAT3 pathway and suppressing multidrug resistance 1 signaling. Environ Toxicol. 2017;32(3):845–55. https://doi.org/10.1002/tox.22284
  140. 140. Li WY, Ng YF, Zhang H, Guo ZD, Guo DJ, Kwan YW, et al. Emodin elicits cytotoxicity in human lung adenocarcinoma A549 cells through inducing apoptosis. Inflammopharmacology. 2014;22:127–34. https://doi.org/10.1007/s10787-013-0186-4
  141. 141. Zhao Q, Zhao M, Parris AB, Xing Y, Yang X. Genistein targets the cancerous inhibitor of PP2A to induce growth inhibition and apoptosis in breast cancer cells. Int J Oncol. 2016;49(3):1203–10. https://doi.org/10.3892/ijo.2016.3588
  142. 142. Wang Y, Liu Z, Liu Q, Han Y, Zang Y, Zhang H, et al. Honokiol suppressed pancreatic cancer progression via miR–101/Mcl–1 axis. Cancer Manag Res. 2020:5243–54. https://doi.org/10.2147/CMAR.S237323
  143. 143. Johnson JL, Dia VP, Wallig M, De Mejia EG. Luteolin and gemcitabine protect against pancreatic cancer in an orthotopic mouse model. Pancreas. 2015;44(1):144–51. https://doi.org/10.1097/MPA.0000000000000215
  144. 144. Young AN, Herrera D, Huntsman AC, Korkmaz MA, Lantvit DD, Mazumder S, et al. Phyllanthusmin derivatives induce apoptosis and reduce tumor burden in high–grade serous ovarian cancer by late–stage autophagy inhibition. Mol Cancer Ther. 2018;17(10):2123–35. https://doi.org/10.1158/1535-7163.MCT-17-1195
  145. 145. Salvi A, Young AN, Huntsman AC, Pergande MR, Korkmaz MA, Rathnayake RA, et al. PHY34 inhibits autophagy through V–ATPase V0A2 subunit inhibition and CAS/CSE1L nuclear cargo trafficking in high grade serous ovarian cancer. Cell Death Dis. 2022;13(1):45. https://doi.org/10.1038/s41419-021-04495-w
  146. 146. Park SJ, Yu SB, Kim YH, Kim IR, Park HR, Park BS. Autophagy inhibition promotes quercetin induced apoptosis in MG–63 human osteosarcoma cells. Int J Oral Biol. 2015;40(2):85–91. https://doi.org/10.11620/IJOB.2015.40.2.085
  147. 147. Radapong S, Chan K, Sarker SD, Ritchie KJ. Oxyresveratrol modulates genes associated with apoptosis, cell cycle control and DNA repair in MCF-7 cells. Front Pharmacol. 2021;12:694562. https://doi.org/10.3389/fphar.2021.694562
  148. 148. Duan WJ, Li QS, Xia MY, Tashiro SI, Onodera S, Ikejima T. Silibinin activated p53 and induced autophagic death in human fibrosarcoma HT1080 cells via reactive oxygen species–p38 and c-Jun N-terminal kinase pathways. Biol Pharm Bull. 2011;34(1):47–53. https://doi.org/10.1248/bpb.34.47
  149. 149. Kritsanawong S, Innajak S, Imoto M, Watanapokasin R. Antiproliferative and apoptosis induction of αα-mangostin in T47D breast cancer cells. Int J Oncol. 2016;48(5):2155–65. https://doi.org/10.3892/ijo.2016.3399
  150. 150. Zhang F, Ma H, Wang ZL, Li WH, Liu H, Zhao YX. The PI3K/AKT/mTOR pathway regulates autophagy to induce apoptosis of alveolar epithelial cells in chronic obstructive pulmonary disease caused by PM2. 5 particulate matter. J Int Med Res. 2020;48(7):0300060520927919. https://doi.org/10.1177/0300060520927919
  151. 151. Demir K, Turgut R, Sentürk S, Isıklar H, Gunalan E. The Therapeutic Effects of Bioactive Compounds on Colorectal Cancer via PI3K/Akt/mTOR Signaling Pathway: A Critical Review. Food Sci Nutr. 2024;12(12):9951–73. https://doi.org/10.1002/fsn3.4534
  152. 152. Wang L, Klionsky DJ, Shen HM. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol. 2023;24(3):186–203. https://doi.org/10.1038/s41580-022-00529-z
  153. 153. Sayed N, Khurana A, Godugu C. Pharmaceutical perspective on the translational hurdles of phytoconstituents and strategies to overcome. J Drug Deliv Sci Technol. 2019;53:101201. https://doi.org/10.1016/j.jddst.2019.101201
  154. 154. Lekhak N, Bhattarai HK. Phytochemicals in cancer chemoprevention: preclinical and clinical studies. Cancer Control. 2024;31:10732748241302902. https://doi.org/10.1177/10732748241302902
  155. 155. Shakibaei M, Mobasheri A, Lueders C, Busch F, Shayan P, Goel A. Curcumin enhances the effect of chemotherapy against colorectal cancer cells by inhibition of NF-κκB and Src protein kinase signaling pathways. PLoS One. 2013;8(2):e57218. https://doi.org/10.1371/journal.pone.0057218
  156. 156. Zheng J, Lee HC, bin Sattar MM, Huang Y, Bian JS. Cardioprotective effects of epigallocatechin-3-gallate against doxorubicin-induced cardiomyocyte injury. Eur J Pharmacol. 2011;652(1-3):82–8. https://doi.org/10.1016/j.ejphar.2010.10.082

Downloads

Download data is not yet available.