Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Early Access

Potential of natural bioactives in wound healing: A comprehensive review

DOI
https://doi.org/10.14719/pst.8055
Submitted
3 March 2025
Published
24-07-2025
Versions

Abstract

The wound healing process encompasses three key phases: inflammation, tissue regeneration and remodeling. Natural bioactive compounds have garnered significant interest due to their anti-inflammatory, antioxidant and antimicrobial properties, which facilitate healing. Compounds such as polyphenols, flavonoids and peptides aid wound repair by reducing oxidative stress, encouraging angiogenesis and stimulating cellular proliferation. Natural antimicrobials like honey and chitosan also play a vital role by preventing infections that commonly hinder healing. Bioactive-based wound dressing materials embedded with biologically active agents, including natural extracts, antimicrobials and growth factors, offer dual benefits: they protect while actively promoting healing. These dressings work by minimizing infection risk, modulating inflammation and enhancing tissue regeneration. Such innovations have demonstrated promise in managing chronic wounds and diabetic ulcers. Despite their potential, the clinical translation of bioactive-based therapies faces challenges, primarily concerning the stability and controlled release of active compounds. These limitations restrict their broader application. Emerging advancements in nanotechnology and biomaterials engineering are emerging as solutions to these challenges. By enabling targeted delivery, sustained release and improved bioavailability of natural bioactives, these technologies are set to significantly boost their therapeutic impact and reliability in modern wound care strategies.

References

  1. 1. Das S, Baker AB. Biomaterials and nanotherapeutics for enhancing skin wound healing. Front Bioeng Biotechnol. 2016;4:82. https://doi.org/10.3389/fbioe.2016.00082
  2. 2. Eming SA, Krieg T, Davidson JM. Inflammation in wound repair: molecular and cellular mechanisms. J Invest Dermatol. 2007;127(3):514-25. https://doi.org/10.1038/sj.jid.5700701
  3. 3. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453(7193):314-21. https://doi.org/10.1038/nature07039
  4. 4. Reinke JM, Sorg H. Wound repair and regeneration. Eur Surg Res. 2012;49(1):35-43. https://doi.org/10.1159/000339613
  5. 5. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, et al. Human skin wounds: a major and snowballing threat to public health and the economy. Wound Repair Regen. 2009;17(6):763-71. https://doi.org/10.1111/j.1524-475X.2009.00543.x
  6. 6. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999;341(10):738-46. https://doi.org/10.1056/NEJM199909023411006
  7. 7. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16(5):585-601. https://doi.org/10.1111/j.1524-475X.2008.00410.x
  8. 8. Murphy PS, Evans GRD. Advances in wound healing: a review of current wound healing products. Plast Surg Int. 2012;2012:190436. https://doi.org/10.1155/2012/190436
  9. 9. Pereira RF, Bártolo PJ. Traditional therapies for skin wound healing. Adv Wound Care. 2016;5(5):208-29. https://doi.org/10.1089/wound.2013.0506
  10. 10. Goldman R. Growth factors and chronic wound healing: past, present, and future. Adv Skin Wound Care. 2004;17(1):24-35. https://doi.org/10.1097/00129334-200401000-00012
  11. 11. Kopecki Z, Cowin AJ. The role of actin remodelling proteins in wound healing and tissue regeneration. In: Alexandrescu VA, editor. Wound healing - new insights into ancient challenges. UK IntechOpen; 2016. https://doi.org/10.5772/64673
  12. 12. Bowlby M, Blume P, Schmidt B, Donegan R. Safety and efficacy of becaplermin gel in the treatment of diabetic foot ulcers. Chronic Wound Care Manag Res. 2014;1:11. https://doi.org/10.2147/CWCMR.S64905
  13. 13. Philp D, Scheremeta B, Sibliss K, Zhou M, Fine EL, Nguyen M, et al. Thymosin beta4 promotes matrix metalloproteinase expression during wound repair. J Cell Physiol. 2006;208(1):195-200. https://doi.org/10.1002/jcp.20650
  14. 14. Khullar L, Harjai K, Chhibber S. Therapeutic and pro-healing potential of advanced wound dressings loaded with bioactive agents. Future Microbiol. 2023;18:43-63. https://doi.org/10.2217/fmb-2022-0162
  15. 15. Ho TT, Tran HA, Doan VK, Maitz J, Li Z, Wise SG, et al. Natural polymer-based materials for wound healing applications. Adv NanoBiomed Res. 2024;4(5):2300131. https://doi.org/10.1002/anbr.202300131
  16. 16. Thakur R, Jain N, Pathak R, Sandhu SS. Practices in wound healing studies of plants. Evid Based Complement Alternat Med. 2011;2011:438056. https://doi.org/10.1155/2011/438056
  17. 17. Oguntibeju OO. Medicinal plants and their effects on diabetic wound healing. Vet World. 2019;12(5):653-63. https://doi.org/10.14202/vetworld.2019.653-663
  18. 18. Madhan B, Subramanian V, Rao JR, Nair BU, Ramasami T. Stabilization of collagen using plant polyphenol: role of catechin. Int J Biol Macromol. 2005;37(1-2):47-53. https://doi.org/10.1016/j.ijbiomac.2005.08.005
  19. 19. Gupta J, Rani A, Kumar A, Kumar B. Potential of natural bioactive compounds in management of melasma. Plant Sci Today. 2024. https://doi.org/10.14719/pst.3164
  20. 20. Speisky H, Arias-Santé MF, Fuentes J. Oxidation of quercetin and kaempferol markedly amplifies their antioxidant, cytoprotective, and anti-inflammatory properties. Antioxidants. 2023;12(1):155. https://doi.org/10.3390/antiox12010155
  21. 21. Sevimli-Gür C, Onbasilar I, Atilla P, Genç R, Cakar N, Deliloglu-Gürhan I, et al. In vitro growth stimulatory and in vivo wound healing studies on cycloartane-type saponins of Astragalus genus. J Ethnopharmacol. 2011;134(3):844-50. https://doi.org/10.1016/j.jep.2011.01.030
  22. 22. Boakye YD, Agyare C, Ayande GP, Titiloye N, Asiamah EA, Danquah KO. Assessment of wound-healing properties of medicinal plants: the case of Phyllanthus muellerianus. Front Pharmacol. 2018;9:945. https://doi.org/10.3389/fphar.2018.00945
  23. 23. Dzialo M, Mierziak J, Korzun U, Preisner M, Szopa J, Kulma A. The potential of plant phenolics in prevention and therapy of skin disorders. Int J Mol Sci. 2016;17(2):160. https://doi.org/10.3390/ijms17020160
  24. 24. Guimarães I, Baptista-Silva S, Pintado M, Oliveira AL. Polyphenols: a promising avenue in therapeutic solutions for wound care. Appl Sci. 2021;11(3):1230. https://doi.org/10.3390/app11031230
  25. 25. Zawani M, Fauzi M. Epigallocatechin gallate: the emerging wound healing potential of multifunctional biomaterials for future precision medicine treatment strategies. Polymers. 2021;13(21):3656. https://doi.org/10.3390/polym13213656
  26. 26. Kaleci B, Koyuturk M. Efficacy of resveratrol in the wound healing process by reducing oxidative stress and promoting fibroblast cell proliferation and migration. Dermatol Ther. 2020;33(6):e14357. https://doi.org/10.1111/dth.14357
  27. 27. Bagnol R, Grijpma D, Eglin D, Moriarty TF. The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration. Carbohydr Polym. 2022;291:119550. https://doi.org/10.1016/j.carbpol.2022.119550
  28. 28. Caldwell MD. Bacteria and antibiotics in wound healing. Surg Clin North Am. 2020;100(4):757-76. https://doi.org/10.1016/j.suc.2020.05.007
  29. 29. Hartl L, Zach S, Seidl-Seiboth V. Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol. 2012;93(2):533-43. https://doi.org/10.1007/s00253-011-3723-3
  30. 30. Diban F, Di Lodovico S, Di Fermo P, D’Ercole S, D’Arcangelo S, Di Giulio M, et al. Biofilms in chronic wound infections: innovative antimicrobial approaches using the in vitro Lubbock chronic wound biofilm model. Int J Mol Sci. 2023;24(2):1004. https://doi.org/10.3390/ijms24021004
  31. 31. Cadar E, Pesterau AM, Prasacu I, Ionescu AM, Pascale C, Dragan AM, et al. Marine antioxidants from marine collagen and collagen peptides with nutraceuticals applications: a review. Antioxidants. 2024;13(8):919. https://doi.org/10.3390/antiox13080919
  32. 32. Koria P. Delivery of growth factors for tissue regeneration and wound healing. BioDrugs. 2012;26(3):163-75. https://doi.org/10.2165/11631850-000000000-00000
  33. 33. Zommiti M, Feuilloley MGJ, Connil N. Update of probiotics in human world: a nonstop source of benefactions till the end of time. Microorganisms. 2020;8(12):1907. https://doi.org/10.3390/microorganisms8121907
  34. 34. Edwards R, Harding KG. Bacteria and wound healing. Curr Opin Infect Dis. 2004;17(2):91-6. https://doi.org/10.1097/00001432-200404000-00004
  35. 35. Md Fadilah NI, Shahabudin NA, Mohd Razif RA, Sanyal A, Ghosh A, Baharin KI, et al. Discovery of bioactive peptides as therapeutic agents for skin wound repair. J Tissue Eng. 2024;15:20417314241280359. https://doi.org/10.1177/20417314241280359
  36. 36. Steinstraesser L, Koehler T, Jacobsen F, Daigeler A, Goertz O, Langer S, et al. Host defense peptides in wound healing. Mol Med. 2008;14(7-8):528-37. https://doi.org/10.2119/2008-00002.Steinstraesser
  37. 37. Goldstein AL, Hannappel E, Sosne G, Kleinman HK. Thymosin ß4: a multi-functional regenerative peptide. Basic properties and clinical applications. Expert Opin Biol Ther. 2012;12(1):37-51. https://doi.org/10.1517/14712598.2012.634793
  38. 38. Tjabringa GS, Rabe KF, Hiemstra PS. The human cathelicidin LL-37: a multifunctional peptide involved in infection and inflammation in the lung. Pulm Pharmacol Ther. 2005;18(5):321-7. https://doi.org/10.1016/j.pupt.2005.01.001
  39. 39. Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, et al. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res. 2023;10(1):16. https://doi.org/10.1186/s40779-023-00448-w
  40. 40. Qin J, Chen F, Wu P, Sun G. Recent advances in bioengineered scaffolds for cutaneous wound healing. Front Bioeng Biotechnol. 2022;10:841583. https://doi.org/10.3389/fbioe.2022.841583
  41. 41. Jagga S, Hasnain MS, Nayak AK. Chitosan-based scaffolds in tissue engineering and regenerative medicine. In: Chitosan in Biomedical Applications. Elsevier; 2022. p. 329-54. https://doi.org/10.1016/B978-0-12-821058-1.00014-9
  42. 42. Polverino G, Russo F, D’Andrea F. Bioactive dressing: a new algorithm in wound healing. J Clin Med. 2024;13(9):2488. https://doi.org/10.3390/jcm13092488
  43. 43. Cano Sanchez M, Lancel S, Boulanger E, Neviere R. Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants. 2018;7(8):98. https://doi.org/10.3390/antiox7080098
  44. 44. Simões D, Miguel SP, Ribeiro MP, Coutinho P, Mendonça AG, Correia IJ. Recent advances on antimicrobial wound dressing: a review. Eur J Pharm Biopharm. 2018;127:130-41. https://doi.org/10.1016/j.ejpb.2018.02.022
  45. 45. Ullah A, Ullah M, Lee GJ, Lim SI. A review of recent advances in nanotechnology for the delivery of therapeutics in wound healing. J Pharm Investig. 2025;55(1):33-54. https://doi.org/10.1007/s40005-024-00692-9
  46. 46. Nuutila K, Singh M, Eriksson E. Gene therapy in skin and wound healing. Gene Therapy in Reconstructive and Regenerative Surgery. 2018:11-35. https://doi.org/10.1007/978-3-319-78957-6_2
  47. 47. O’Callaghan S, Galvin P, O’Mahony C, Moore Z, Derwin R. “Smart” wound dressings for advanced wound care: a review. J Wound Care. 2020;29(7):394-406. https://doi.org/10.12968/jowc.2020.29.7.394
  48. 48. Brooker C, Tronci G. A collagen-based theranostic wound dressing with visual, long-lasting infection detection capability. Int J Biol Macromol. 2023;236:123866. https://doi.org/10.1016/j.ijbiomac.2023.123866
  49. 49. Mukherjee R, Samanta S, Jha A, Sarkar PG. A comparative study of effectiveness of honey and povidone iodine in healing of surgical wound. IJCMSR. 2018;3:142-6. https://doi.org/10.21276/ijcmsr.2018.3.4.32
  50. 50. Robson V, Dodd S, Thomas S. Standardized antibacterial honey (Medihoney) with standard therapy in wound care: randomized clinical trial. J Adv Nurs. 2009;65(3):565-75. https://doi.org/10.1111/j.1365-2648.2008.04923.x
  51. 51. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Scientific World J. 2013;2013:162750. https://doi.org/10.1155/2013/162750
  52. 52. Middleton E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52(4):673-751. https://doi.org/10.1016/S0031-6997(24)01472-8
  53. 53. Manach C, Williamson G, Morand C, Scalbert A, Rémésy C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr. 2005;81(1 Suppl):230S-42S. https://doi.org/10.1093/ajcn/81.1.230S
  54. 54. Wang HK. The therapeutic potential of flavonoids. Expert Opin Investig Drugs. 2000;9(9):2103-19. https://doi.org/10.1517/13543784.9.9.2103
  55. 55. He J, Giusti MM. Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol. 2010;1:163-87. https://doi.org/10.1146/annurev.food.080708.100754
  56. 56. Setchell KDR, Clerici C. Equol: pharmacokinetics and biological actions. J Nutr. 2010;140(7):1363S-8S. https://doi.org/10.3945/jn.109.119784
  57. 57. Landge MM. Review of selected herbal phytoconstituents for wound healing treatment. J Pharmacogn Phytochem. 2024;13(3):208-15. https://doi.org/10.22271/phyto.2024.v13.i3c.14961
  58. 58. Barreto RSS, Albuquerque-Júnior RLC, Araújo AAS, Almeida JRGS, Santos MRV, Barreto AS, et al. A systematic review of the wound-healing effects of monoterpenes and iridoid derivatives. Molecules. 2014;19(1):846-62. https://doi.org/10.3390/molecules19010846
  59. 59. Marinelli L, Cacciatore I, Eusepi P, Dimmito MP, Di Rienzo A, Reale M, et al. In vitro wound-healing properties of water-soluble terpenoids loaded on halloysite clay. Pharmaceutics. 2021;13(8):1117. https://doi.org/10.3390/pharmaceutics13081117
  60. 60. Mahizan NA, Yang SK, Moo CL, Song AAL, Chong CM, Chong CW, et al. Terpene derivatives as a potential agent against antimicrobial resistance (AMR) pathogens. Molecules. 2019;24(14):2631. https://doi.org/10.3390/molecules24142631
  61. 61. Pereira Beserra F, Sergio Gushiken LF, Vieira AJ, Augusto Bérgamo D, Luísa Bérgamo P, Oliveira de Souza M, et al. From inflammation to cutaneous repair: topical application of lupeol improves skin wound healing in rats by modulating the cytokine levels, NF-?B, Ki-67, growth factor expression, and distribution of collagen fibers. Int J Mol Sci. 2020;21(14):4952. https://doi.org/10.3390/ijms21144952
  62. 62. Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JP. Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients. 2010;2(11):1106-31. https://doi.org/10.3390/nu2111106
  63. 63. Ibrahim NI, Wong SK, Mohamed IN, Mohamed N, Chin KY, Ima-Nirwana S, et al. Wound healing properties of selected natural products. Int J Environ Res Public Health. 2018;15(11):2360. https://doi.org/10.3390/ijerph15112360
  64. 64. Johnson JB, Broszczak DA, Mani JS, Anesi J, Naiker M. A cut above the rest: oxidative stress in chronic wounds and the potential role of polyphenols as therapeutics. J Pharm Pharmacol. 2022;74(4):485-502. https://doi.org/10.1093/jpp/rgab038
  65. 65. Sharma R. Polyphenols in health and disease: practice and mechanisms of benefits. In: Polyphenols in human health and disease. Academic Press; 2014. p. 757-78. https://doi.org/10.1016/B978-0-12-398456-2.00059-1
  66. 66. Utpal BK, Sutradhar B, Zehravi M, Sweilam SH, Panigrahy UP, Urs D, et al. Polyphenols in wound healing: unlocking prospects with clinical applications. Naunyn Schmiedebergs Arch Pharmacol. 2024;1-27. https://doi.org/10.1007/s00210-024-03538-1
  67. 67. Schilrreff P, Alexiev U. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment. Int J Mol Sci. 2022;23(9):4928. https://doi.org/10.3390/ijms23094928
  68. 68. Apeku E, Tantuoyir MM, Zheng R, Tanye N. Exploring the polarization of M1 and M2 macrophages in the context of skin diseases. Mol Biol Rep. 2024;51(1):269. https://doi.org/10.1007/s11033-023-09014-y
  69. 69. Geana EI, Ciucure CT, Tamaian R, Marinas IC, Gaboreanu DM, Stan M, et al. Antioxidant and wound healing bioactive potential of extracts obtained from bark and needles of softwood species. Antioxidants. 2023;12(7):1383. https://doi.org/10.3390/antiox12071383
  70. 70. Roshni PT, Rekha PD. Essential oils: a potential alternative with promising active ingredients for pharmaceutical formulations in chronic wound management. Inflammopharmacology. 2024;32(6):3611-30. https://doi.org/10.1007/s10787-024-01571-3
  71. 71. Trinh XT, Long NV, Van Anh LT, Nga PT, Giang NN, Chien PN, et al. A comprehensive review of natural compounds for wound healing: targeting bioactivity perspective. Int J Mol Sci. 2022;23(17):9573. https://doi.org/10.3390/ijms23179573
  72. 72. Criollo-Mendoza MS, Contreras-Angulo LA, Leyva-López N, Gutiérrez-Grijalva EP, Jiménez-Ortega LA, Heredia JB. Wound healing properties of natural products: mechanisms of action. Molecules. 2023;28(2):598. https://doi.org/10.3390/molecules28020598
  73. 73. Inacio PA, Chaluppe FA, Aguiar GF, Coelho CD, Vieira RP. Effects of hydrolyzed collagen as a dietary supplement on fibroblast activation: a systematic review. Nutrients. 2024;16(11):1543. https://doi.org/10.3390/nu16111543
  74. 74. Oryan A, Alemzadeh E, Moshiri A. Biological properties and therapeutic activities of honey in wound healing: a narrative review and meta-analysis. J Tissue Viability. 2016;25(2):98-118. https://doi.org/10.1016/j.jtv.2015.12.002
  75. 75. Yang H, Song L, Sun B, Chu D, Yang L, Li M, et al. Modulation of macrophages by a paeoniflorin-loaded hyaluronic acid-based hydrogel promotes diabetic wound healing. Mater Today Bio. 2021;12:100139. https://doi.org/10.1016/j.mtbio.2021.100139
  76. 76. El Salmawi KM. Gamma radiation-induced crosslinked PVA/chitosan blends for wound dressing. J Macromol Sci A. 2007;44(5):541-5. https://doi.org/10.1080/10601320701235891
  77. 77. Binkowska W, Szpicer A, Stelmasiak A, Wojtasik-Kalinowska I, Póltorak A. Microencapsulation of polyphenols and their application in food technology. Appl Sci. 2024;14(24):11954. https://doi.org/10.3390/app142411954
  78. 78. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807-18. https://doi.org/10.1021/mp700113r
  79. 79. Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, et al. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res. 2024;11(1):1-62. https://doi.org/10.1186/s40779-024-00576-x
  80. 80. Srivastava GK, Martinez-Rodriguez S, Md Fadilah NI, Looi Qi Hao D, Markey G, Shukla P, et al. Progress in wound-healing products based on natural compounds, stem cells, and microRNA-based biopolymers in the European, USA, and Asian markets: opportunities, barriers, and regulatory issues. Polymers. 2024;16(9):1280. https://doi.org/10.3390/polym16091280
  81. 81. Sahana TG, Rekha PD. Biopolymers: applications in wound healing and skin tissue engineering. Mol Biol Rep. 2018;45:2857-67. https://doi.org/10.1007/s11033-018-4296-3
  82. 82. Kim JH, Kwon S, Seol JE, Kim MH, Kim SD. Regulatory framework for drug-device combination products in the United States, Europe, and Korea. Ther Innov Regul Sci. 2024;58(5):796-806. https://doi.org/10.1007/s43441-024-00661-2
  83. 83. Jordan SA, Cunningham DG, Marles RJ. Assessment of herbal medicinal products: challenges, and opportunities to increase the knowledge base for safety assessment. Toxicol Appl Pharmacol. 2010;243(2):198-216. https://doi.org/10.1016/j.taap.2009.12.005
  84. 84. Pistollato F, Madia F, Corvi R, Munn S, Grignard E, Paini A, et al. Current EU regulatory requirements for the assessment of chemicals and cosmetic products: challenges and opportunities for introducing new approach methodologies. Arch Toxicol. 2021;95:1867-97. https://doi.org/10.1007/s00204-021-03034-y

Downloads

Download data is not yet available.