Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Enriched retted coir pith compost - A potential organic amendment for yield and quality improvement in Amaranthus tricolor

DOI
https://doi.org/10.14719/pst.8073
Submitted
4 March 2025
Published
06-10-2025

Abstract

Raw coir pith, due to its high carbon-to-nitrogen (C:N) ratio (>100:1) and high lignin, cellulose and polyphenol content, is unsuitable for direct application in crop production because of nutrient immobilization and phytotoxic effects. Composting converts raw coir pith into a stable, nutrient-rich organic amendment. This study evaluated the effect of enriched retted coir pith compost (ERCC), in combination with the recommended dose of fertilizers (RDF), on the growth, yield and quality of Amaranthus tricolor. A factorial experiment was conducted with two factors: RDF at three levels (100 %, 75 % and 50 %) and ERCC at three rates (18.5, 12.5 and 6.25 t ha-1), along with a control using farm yard manure (FYM) at 25 t ha-1. Application of 18.5 t ha-1 ERCC with 75 % RDF significantly enhanced plant growth and yield, resulting in a 62 % yield increase compared to the control. The lowest oxalate content (8.4 mg 100-1 g dry weight) was observed with 6.25 t ha-1 ERCC combined with 100 % or 50 % RDF, while the lowest nitrate content (1065 mg kg-1 dry weight) was recorded with 12.5 t ha-1 ERCC and 50 % RDF. The control recorded the highest oxalate (20.3 mg 100-1 g dry weight) and nitrate (3435 mg kg-1 dry weight) contents. Notably, the treatment with 18.5 t ha-1 ERCC and 75 % RDF also reduced oxalate and nitrate levels (14.75 mg 100-1 g and 1290 mg kg-1 dry weight, respectively). The study highlighted the benefits of ERCC as a suitable agricultural amendment for improved crop performance, yield and quality of Amaranthus.

References

  1. 1. Martínez-Núñez M, Ruiz-Rivas M, Vera-Hernández PF, Bernal-Muñoz R, Luna-Suárez S, Rosas-Cárdenas FF. The phenological growth stages of different amaranth species grown in restricted spaces based in BBCH code. S Afr J Bot. 20191;124:436-43. https://doi.org/10.1016/j.sajb.2019.05.035
  2. 2. Chávez-Servín JL, Cabrera-Baeza HF, Jiménez Ugalde EA, Mercado-Luna A, de la Torre-Carbot K, Escobar-García K, et al. Comparison of chemical composition and growth of Amaranth (Amaranthus hypochondriacus) between greenhouse and open field systems. Int J Agric Biol. 2017;19(3):577. https://doi.org/10.17957/IJAB/15.0341
  3. 3. Zuwariah I, Syahida M, Faridah H, Rodhiah R, Mohd Fakhri H. Screening of vitamin, mineral and antioxidants in selected vegetables, fruit and grains for the elderly. Food Res. 2021;5:122-31. https://doi.org/10.26656/fr.2017.5(S1).020
  4. 4. Farooqi ZUR, Sabir M, Ahmad HR, Shahbaz M, Smith J. Reclaimed salt-affected soils can effectively contribute to carbon Reclaimed salt-affected soils can effectively contribute to carbon sequestration and food grain production: evidence from Pakistan. sequestration and food grain production: evidence from Pakistan. J Appl Sci. 2023;13:1436. https://doi.org/10.3390/app13031436
  5. 5. Leogrande R, Vitti C. Use of organic amendments to reclaim saline and sodic soils: a review. Arid Land Res Manag. 2019;33(1):1-21. https://doi.org/10.1080/15324982.2018.1498038
  6. 6. Libutti A, Russo D, Lela L, Ponticelli M, Milella L, Rivelli AR. Enhancement of yield, phytochemical content and biological activity of a leafy vegetable (Beta vulgaris L. var. cycla) by using organic amendments as an alternative to chemical fertilizer. Plants. 2023;12(3):569. https://doi.org/10.3390/plants12030569
  7. 7. Prabhu SR, Thomas GV. Biological conversion of coir pith into a value-added organic resource and its application in agri-horticulture: current status, prospects and perspective. J Plant Crops. 2002;30(1):1-7.
  8. 8. Abad M, Noguera P, Puchades R, Maquieira A, Noguera V. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresour Technol. 2002;82(3):241-5. https://doi.org/10.1016/S0960-8524(01)00189-4
  9. 9. Shah S, Venkatramanan V, Prasad R, editors. Bio-valorization of waste: trends and perspectives. Springer; 2021. p. 356. https://doi.org/10.1007/978-981-15-9696-4
  10. 10. Stelte W, Reddy N, Barsberg S, Sanadi AR. Coir from coconut processing waste as a raw material for applications beyond traditional uses. Bio Resour. 2023;18(1):2187-212. https://doi.org/10.15376/biores.18.1
  11. 11. Nagarajan R, Manickam TS, Kothandaraman GV. Manurial value of coir pith. Madras Agric J. 1985;72:533-5.
  12. 12. Lyu RT, Huang CH. Supplementation of manure compost with Trichoderma asperellum improves the nutrient uptake and yield of edible amaranth under field conditions. Sustainability. 2022;14(9):5389. https://doi.org/10.3390/su14095389
  13. 13. Srinivasan S, Mathana T, Angayarkanni A. Effect of coir pith compost, bone meal powder and panchagavya on yield attributes, yield and harvest index of barnyard millet cv. CO2 in sandy loam soil. Plant Arch. 2021;21(1):179-82. https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.025
  14. 14. Kumar S, Ganesh P. Effect of different bio-composting techniques on physico-chemical and biological changes in coir pith. Int J Recent Sci Res. 2012;3(11):914-8.
  15. 15. Bhatt M, Singh AP, Singh V, Kala DC, Kumar V. Long-term effect of organic and inorganic fertilizers on soil physico-chemical properties of a silty clay loam soil under rice-wheat cropping system in Tarai region of Uttarakhand. J Pharmacogn Phytochem. 2019;8(1):2113-8.
  16. 16. Zhou W, Ma Q, Wu L, Hu R, Jones DL, Chadwick DR, et al. The effect of organic manure or green manure incorporation with reductions in chemical fertilizer on yield-scaled N2O emissions in a citrus orchard. Agric Ecosyst Environ. 2022;326:107806. https://doi.org/10.1016/j.agee.2021.107806
  17. 17. Aufhammer W, Kaul HP, Herz P, Nalborczyk E, Dalbiak A, Gontarczyk M. Grain yield formation and nitrogen uptake of amaranth. Eur J Agron. 1995;4(3):379-86. https://doi.org/10.1016/S1161-0301(14)80039-7
  18. 18. Thenmozhi S, Paulraj C. Effect of composts on yield of Amaranthus and soil fertility. Agric Sci Digest. 2010;30(2):90-7.
  19. 19. Yadav S, Asati DK, Barche DS. Effect of integrated nutrient management strategies on growth and yield of Amaranthus (Amaranthus tricolor L.). Pharma Innov J. 2022;11:2545-9.
  20. 20. Patel RS, Pankhaniya RM, Bartwal D, Katara AR. Effect of nutrient management on growth, yield and economics of grain amaranth (Amaranthus hypochondriacus L.) under south Gujarat conditions. Pharma Innov J. 2022;11(6):1307-10.
  21. 21. Kerala Agricultural University. Package of Practices Recommendations: Crops. 15th edition. Thrissur: Kerala Agricultural University; 2016. 401p.
  22. 22. Kerala Agricultural University Infotech Portal [Internet] [cited 2025 Jan 02]. Centre for e-Learning. Kerala Agriculture University.
  23. 23. Misra RD, Ahmed M. Manual on irrigation agronomy. South Asia Books; 1987.
  24. 24. Ribeiro JE. Optimizing harvesting procedures of Amaranthus hybridus L. and A. tricolor L. under different watering regimes during hot and cool seasons in southern Mozambique. PhD Dissertation. Stellenbosch: Stellenbosch University; 2017.
  25. 25. Watson DJ. The dependence of net assimilation rate on leaf-area index. Ann Bot. 1958;22(1):37-54.
  26. 26. Gaya UI, Alimi S. Spectrophotometric determination of nitrate in vegetables using phenol. J Appl Sci Environ Manag. 2006;10(1):79-83. https://doi.org/10.4314/jasem.v10i1.17311
  27. 27. Karamad D, Khosravi-Darani K, Hosseini H, Tavasoli S. Analytical procedures and methods validation for oxalate content estimation. Biointerface Res Appl Chem. 2019;9(5):4305. https://doi.org/10.33263/briac95.305310
  28. 28. Gopinath PP, Parsad R, Joseph B, Adarsh VS. GrapesAgri1: collection of shiny apps for data analysis in agriculture. J Open Source Softw. 2021;6(63):3437. https://doi.org/10.21105/joss.03437
  29. 29. Raksun A, Merta IW, Mertha IG, Ilhamdi ML. The effect of vermicompost and NPK fertilizer on the growth of Spinach (Amaranthus tricolor). J Pijar Mipa. 2022;17(5):691-5. https://doi.org/10.29303/jpm.v17i5.3464
  30. 30. Dehariya P, Mishra D, Dhakad R, Kumar A. Studies on different levels of nitrogen application on growth and yield of Amaranthus (Amaranthus tricolor L.). Int J Curr Microbiol Appl Sci. 2019;8:1423-7. https://doi.org/10.20546/ijcmas.2019.804.165
  31. 31. Rahman MJ, Uddain J, Halim MA. Effect of different levels of nitrogen and spacing on the growth and yield of stem amaranth (Amaranthus lividis L.). J Sher-e-Bangla Agric Univ. 2007;1(1):13-18.
  32. 32. Aisha HA, Hafez MM, Asmaa RM, Shafeek MR. Effect of Bio and chemical fertilizers on growth, yield and chemical properties of spinach plant (Spinacia oleracea L.). Middle East J Agric Res. 2013;2(1):16-20.
  33. 33. Aerts R. The effect of increased nutrient availability on leaf turnover and aboveground productivity of two evergreen ericaceous shrubs. Oecologia. 1989;78:115-20. https://doi.org/10.1007/bf00377206
  34. 34. Oikawa S, Hikosaka K, Hirose T. Leaf lifespan and lifetime carbon balance of individual leaves in a stand of an annual herb, Xanthium canadense. New Phytol. 2006;172(1):104-16. https://doi.org/10.1111/j.1469-8137.2006.01813.x
  35. 35. Fageria NK, Moreira A. The role of mineral nutrition on root growth of crop plants. Adv Agron. 2011;110:251-331. https://doi.org/10.1016/B978-0-12-385531-2.00004-9
  36. 36. Fageria NK, The use of nutrients in crop plants. Cereal Res Commun. 2009;37:149-50. https://doi.org/10.1093/aob/mcp227
  37. 37. Yang C, Yang L, Yang Y, Ouyang Z. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manag. 2004;70(1):67-81. https://doi.org/10.1016/j.agwat.2004.05.003
  38. 38. Thakur DS, Patel SR. Growth and sink potential of rice as influenced by the split application of potassium with FYM in Inceptisols of Eastern Central India. J Potassium Res. 1998;14(2):73-7.
  39. 39. Tesfaye K, Walker S, Tsubo M. Radiation interception and radiation use efficiency of three grain legumes under water deficit conditions in a semi-arid environment. Eur J Agron. 2006;25(1):60-70. https://doi.org/10.1016/j.eja.2006.04.014
  40. 40. Cheenuri S. Studies on effect of integrated nutrient management on growth and yield of red Amaranthus (Amaranthus cruentus L.) var. Arun under Southern Telangana conditions. [Dissertation]. College of Horticulture, Rajendranagar, Hyderabad: Sri Konda Laxman Telangana State Horticulture University, Mulugu, Siddipet; 2021.
  41. 41. Vipitha VP, Geethakumari VL. Comparative analysis of performance of bio-organic composite manures on growth, productivity and economics of Amaranthus. Indian J Agric Res. 2016;50(2):146-9. https://doi.org/10.18805/ijare.v0iOF.9426
  42. 42. Ghimire S, Chhetri BP, Shrestha J. Efficacy of different organic and inorganic nutrient sources on the growth and yield of bitter gourd (Momordica charantia L.). Heliyon. 2023;9(11):87-9. https://doi.org/10.1016/j.heliyon.2023.e22135
  43. 43. Srinivasan V, Hamza S, Sadanandan AK. Evaluation of composted coir pith with chemical and biofertilizers on nutrient availability, yield and quality of black pepper (Piper nigrum L.). J Spices Aromatic Crops. 2005;14(1):15-20.
  44. 44. Marquez-Quiroz C, Lopez-Espinosa T, Sanchez-Chavez E, Garcia-Banuelos M, De la Cruz-Lazaro E, Reyes-Carrillo JL. Effect of vermicompost tea on yield and nitrate reductase enzyme activity in Saladette tomato. J Soil Sci Plant Nutr. 2014;14:223-31. https://doi.org/10.4067/S0718-95162014005000018
  45. 45. Onyango CM, Shibairo SI, Imungi JK, Harbinson J. The physico-chemical characteristics and some nutritional values of vegetable amaranth sold in Nairobi-Kenya. Ecol Food Nutr. 2008;47(4):382-98. https://doi.org/10.1080/03670240802003926
  46. 46. Kyriacou MC, Soteriou GA, Colla G, Rouphael Y. The occurrence of nitrate and nitrite in Mediterranean fresh salad vegetables and its modulation by preharvest practices and postharvest conditions. Food Chem 2019;285:468-77. https://doi.org/10.1016/j.foodchem.2019.02.001
  47. 47. Radek M, Savage GP. Oxalates in some Indian green leafy vegetables. Int J Food Sci Nutr. 2008;59:246-60. https://doi.org/10.1080/09637480701791176
  48. 48. Streeter JG. Effects of nitrogen and calcium supply on the accumulation of oxalate in soybean seeds. Crop Sci. 2005;45:1464-8. https://doi.org/10.2135/cropsci.2004.0207
  49. 49. Xu HW, Ji XM, He ZH, Shi WP, Zhu GH, Niu JK, et al. Oxalate accumulation and regulation is independent of glycolate oxidase in rice leaves J Exp Bot. 2006;57(9):1899-908. https://doi.org/10.1093/jxb/erj131

Downloads

Download data is not yet available.