Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Evaluation of antimicrobial, antioxidant and antidiabetic properties of green synthesized selenium nanoparticles from Catharanthus roseus

DOI
https://doi.org/10.14719/pst.8085
Submitted
4 March 2025
Published
16-10-2025

Abstract

The bio-reduction of selenite (Se (IV)) generates nanoparticles with sizes ranging between 30 and 300 nm. Biological properties of Se nanoparticles are dependent on the nanoparticle size; smaller particles have greater activity. The green SeNPs (selenium nanoparticles) are prepared by mixing of plant leaves methanolic extracts of Centella asiatica, Azadirachta indica, Ocimum tenuiflorum, Murraya koenigii and Catharanthus roseus with sodium selenite. This mixture was stirred which gave a dispersion of SeNPs conjugated with plants phytoconstituents. Among these plants, C. roseus showed high yield of SeNPs and purification of the nanoparticles was performed by alkaline lysis. The visualization and characterization of nanoparticles were performed by UV-Visible spectroscopy, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The antioxidant activity of nanoparticles was determined by ABTS, DPPH and FRAP assays. The anti-bacterial activity was carried out for Streptococcus mutans, Staphylococcus aureus and Escherichia coli and anti-fungal activity was carried out for Candida albicans, Aspergillus niger and Aspergillus flavus using well diffusion method. The suspension solution confirms the formation of SeNPs showed (285 nm) by UV analysis. Screening analysis showed enormous phytoconstituents in leaves methanolic extract and simultaneously, the synthesized SeNPs by FT-IR spectrum confirmed the presence of functional groups which were associated with bioactive molecules. XRD study exhibits the nano-crystalline nature of SeNPs. SEM analysis revealed that the biosynthesized selenium nanoparticles were oval with size range of 195 nm. Green synthesized SeNPs were found to possess significant antioxidant activity (IC50 403.571, 477.48 and 60.090 µg/mL) and SeNPs showed strong antimicrobial action, with A. flavus showing the lowest zone of inhibition (9 mm) and S. mutans showing the highest zone of inhibition (35 mm). The synthesis of thermodynamically stable aqueous SeNPs has been aided by the active phytoconstituents found in C. roseus leaves extract, which are effective reducing agents. The present results support the advantages of green method to produce Se NPs having potential activities.

References

  1. 1. Ramamurthy CH, Sampath KS, Arunkumar P, Kumar MS, Sujatha V, Premkumar K, et al. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng. 2013;36(8):1131-9. https://doi.org/10.1007/s00449-012-0867-1
  2. 2. Kasivelu G, Basha SK, Kumar VG, Ganesan S. Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis Geitler). J Mater Sci. 2008;43(15):5115-22. https://doi.org/10.1007/s10853-008-2745-4
  3. 3. Scarano G, Morelli E. Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum Bohlin) in response to Cd. Plant Sci. 2003;165(4):803-10. https://doi.org/10.1016/S0168-9452(03)00274-7
  4. 4. Lengke MF, Fleet ME, Southam G. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver (I) nitrate complex. Langmuir. 2007;23(5):2694-9. https://doi.org/10.1021/la0613124
  5. 5. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng. 2002;78(5):583-8. https://doi.org/10.1002/bit.10233
  6. 6. Rautaray D, Ahmad A, Sastry M. Biosynthesis of CaCO3 crystals of complex morphology using a fungus and an actinomycete. J Am Chem Soc. 2003;125(48):14656-7. https://doi.org/10.1021/ja0374877
  7. 7. Anshup, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TS, et al. Growth of gold nanoparticles in human cells. Langmuir. 2005;21(25):11562-7. https://doi.org/10.1021/la0519249
  8. 8. Prakash V, Jaiswal N, Srivastava M. A review on medicinal properties of Centella asiatica. Asian J Pharm Clin Res. 2017;10(10):69-74. https://doi.org/10.22159/ajpcr.2017.v10i10.20760
  9. 9. Reddy S, Suraj S, Poorav D. An overview of phytochemicals seen in plant sources. Int J Pharmacogn Life Sci. 2023;4(1):55-9. https://doi.org/10.33545/27072827.2023.v4.i1a.76
  10. 10. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae. 2014;6(1):35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44
  11. 11. Balaji TK, Shivaji KR, Krishna RK, Balasaheb KN. Medicinal uses of neem (Azadirachta indica) in human life: a review. Int J Life Sci. 2018:A10:181-4.
  12. 12. Prakash PA, Gupta N. Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian J Physiol Pharmacol. 2005;49(2):125-31.
  13. 13. Gahlawat DK, Jakhar S, Dahiya P. Murraya koenigii (L.) Spreng: an ethnobotanical, phytochemical and pharmacological review. J Pharmacogn Phytochem. 2014;3(3):109-19.
  14. 14. Saini SC, Reddy GB. A review on curry leaves (Murraya koenigii): versatile multi-potential medicinal plant. Am J Phytomed Clin Ther. 2015;3(4):363-8.
  15. 15. Kaushik SH, Tomar RS, Gupta MO, Mishra RK. An overview of Catharanthus roseus and medicinal properties of their metabolites against important diseases. Eur Acad Res. 2017;5(2):1237-47.
  16. 16. Syeda AM, Riazunnisa K. Data on GC-MS analysis, in vitro anti-oxidant and anti-microbial activity of the Catharanthus roseus and Moringa oleifera leaf extracts. Data Brief. 2020;29:105258. https://doi.org/10.1016/j.dib.2020.105258
  17. 17. Kabesh K, Senthilkumar P, Ragunathan R, Kumar RR. Phytochemical analysis of Catharanthus roseus plant extract and its antimicrobial activity. Int J Pure Appl Biosci. 2015;3(2):162-72.
  18. 18. Srivastava N, Mukhopadhyay M. Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst Eng. 2015;38(9):1723-30. https://doi.org/10.1007/s00449-015-1413-8
  19. 19. Alagesan V, Venugopal S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience. 2019;9(1):105-16. https://doi.org/10.1007/s12668-018-0566-8
  20. 20. Torres SK, Campos VL, León CG, Rodríguez-Llamazares SM, Rojas SM, González M, et al. Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res. 2012;14(11):1236. https://doi.org/10.1007/s11051-012-1236-3
  21. 21. Shaikh JR, Patil M. Qualitative tests for preliminary phytochemical screening: an overview. Int J Chem Stud. 2020;8(2):603-8. https://doi.org/10.22271/chemi.2020.v8.i2i.8834
  22. 22. Ghutke TD, Kadam RG, Rengarajan C, Nausheed R. Phytochemical analysis and therapeutic profiling of Helianthus annuus: a comprehensive qualitative and quantitative study. Plant Sci Arc. 2024;9(3):31-7. https://doi.org/10.51470/PSA.2024.9.3.31
  23. 23. Wadhwani SA, Gorain M, Banerjee P, Shedbalkar UU, Singh R, Kundu GC, et al. Green synthesis of selenium nanoparticles using Acinetobacter sp. SW30: optimization, characterization and its anticancer activity in breast cancer cells. Int J Nanomedicine. 2017;12:6841-55. https://doi.org/10.2147/IJN.S139212
  24. 24. Garcia EJ, Oldoni TL, Alencar SM, Reis A, Loguercio AD, Grande RH. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz Dent J. 2012;23:22-7. https://doi.org/10.1590/S0103-64402012000100004
  25. 25. Madhanraj R, Eyini M, Balaji P. Antioxidant assay of gold and silver nanoparticles from edible basidiomycetes mushroom fungi. Free Radic Antioxid. 2017;7(2):137-42. https://doi.org/10.5530/fra.2017.2.20
  26. 26. Noreen H, Semmar N, Farman M, McCullagh JS. Measurement of total phenolic content and antioxidant activity of aerial parts of medicinal plant Coronopus didymus. Asian Pac J Trop Med. 2017;10(8):792-801. https://doi.org/10.1016/j.apjtm.2017.07.024
  27. 27. Perez C. Antibiotic assay by agar-well diffusion method. Acta Biol Med Exp. 1990;15:113-5.
  28. 28. Balan K, Qing W, Wang Y, Liu X, Palvannan T, Wang Y, et al. Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Adv. 2016;6(46):40162-8. https://doi.org/10.1039/C5RA24391B
  29. 29. Yadav M, Chatterji S, Gupta SK, Watal G. Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int J Pharm Pharm Sci. 2014;6(5):539-42.
  30. 30. Thite SV, Chavan YR, Aparadh VT, Kore BA. Preliminary phytochemical screening of some medicinal plants. Int J Pharm Chem Biol Sci. 2013;3(1):87-90.
  31. 31. Malhotra S, Welling MN, Mantri SB, Desai K. In vitro and in vivo antioxidant, cytotoxic, and anti-chronic inflammatory arthritic effect of selenium nanoparticles. J Biomed Mater Res B Appl Biomater. 2016;104(5):993-1003. https://doi.org/10.1002/jbm.b.33448
  32. 32. Reddy V, Torati RS, Oh S, Kim C. Biosynthesis of gold nanoparticles assisted by Sapindus mukorossi Gaertn. fruit pericarp and their catalytic application for the reduction of p-nitroaniline. Ind Eng Chem Res. 2013;52(2):556-64. https://doi.org/10.1021/ie302037c
  33. 33. Sathishkumar M, Sneha K, Yun YS. Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity. Bioresour Technol. 2010;101(20):7958-65. https://doi.org/10.1016/j.biortech.2010.05.051
  34. 34. Zook JM, MacCuspie RI, Locascio LE, Halter MD, Elliott JT. Stable nanoparticle aggregates/agglomerates of different sizes and the effect of their size on hemolytic cytotoxicity. Nanotoxicology. 2011;5(4):517-30. https://doi.org/10.3109/17435390.2010.536615
  35. 35. Bantz C, Koshkina O, Lang T, Galla HJ, Kirkpatrick CJ, Stauber RH, et al. The surface properties of nanoparticles determine the agglomeration state and the size of the particles under physiological conditions. Beilstein J Nanotechnol. 2014;5:1774-86. https://doi.org/10.3762/bjnano.5.188
  36. 36. Fritea L, Laslo V, Cavalu S, Costea T, Vicas SI. Green biosynthesis of selenium nanoparticles using parsley (Petroselinum crispum) leaves extract. Studia Univ Vasile Goldis Arad Ser Stiintele Vietii. 2017;27(3):203-8.
  37. 37. Zhang H, Zhou H, Bai J, Li Y, Yang J, Ma Q, et al. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids Surf A Physicochem Eng Asp. 2019;571:9-16. https://doi.org/10.1016/j.colsurfa.2019.02.070
  38. 38. Coccia F, Tonucci L, Bosco D, Bressan M, d'Alessandro N. One-pot synthesis of lignin-stabilised platinum and palladium nanoparticles and their catalytic behaviour in oxidation and reduction reactions. Green Chem. 2012;14(4):1073-8. https://doi.org/10.1039/c2gc16524d
  39. 39. Panahi-Kalamuei M, Salavati-Niasari M, Hosseinpour-Mashkani SM. Facile microwave synthesis, characterization, and solar cell application of selenium nanoparticles. J Alloys Compd. 2014;617:627-32. https://doi.org/10.1016/j.jallcom.2014.07.174
  40. 40. Indhira D, Krishnamoorthy M, Ameen F, Bhat SA, Arumugam K, Ramalingam S, et al. Biomimetic facile synthesis of zinc oxide and copper oxide nanoparticles from Elaeagnus indica for enhanced photocatalytic activity. Environ Res. 2022;212:113323. https://doi.org/10.1016/j.envres.2022.113323
  41. 41. Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, et al. Plant-mediated zinc oxide nanoparticles: advances in the new millennium towards understanding their therapeutic role in biomedical applications. Pharmaceutics. 2021;13(10):1662. https://doi.org/10.3390/pharmaceutics13101662
  42. 42. Abdel-Moneim AM, El-Saadony MT, Shehata AM, Saad AM, Aldhumri SA, Ouda SM, et al. Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi J Biol Sci. 2022;29(2):1197-209. https://doi.org/10.1016/j.sjbs.2021.09.046
  43. 43. Nayak V, Singh KR, Singh AK, Singh RP. Potentialities of selenium nanoparticles in biomedical science. New J Chem. 2021;45(6):2849-78. https://doi.org/10.1039/D0NJ05884J
  44. 44. Boroumand S, Safari M, Shaabani E, Shirzad M, Faridi-Majidi R. Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater Res Express. 2019;6(8):0850d8. https://doi.org/10.1088/2053-1591/ab2558
  45. 45. Kokila K, Elavarasan N, Sujatha V. Diospyros montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J Chem. 2017;41(15):7481-90. https://doi.org/10.1039/C7NJ01124E
  46. 46. Gunti L, Dass RS, Kalagatur NK. Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front Microbiol. 2019;10:931. https://doi.org/10.3389/fmicb.2019.00931
  47. 47. Vyas J, Rana SH. Antioxidant activity and biogenic synthesis of selenium nanoparticles using the leaf extract of Aloe vera. Int J Curr Pharm Res. 2017;9(4):147-52. https://doi.org/10.22159/ijcpr.2017v9i4.20981
  48. 48. Riaz Z, Ali MN, Qureshi Z, Mohsin M. In vitro investigation and evaluation of novel drug based on polyherbal extract against type 2 diabetes. J Diabetes Res. 2020;2020(1):7357482. https://doi.org/10.1155/2020/7357482

Downloads

Download data is not yet available.