Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Dynamic interactions between biotic and abiotic stressors in plants: Mechanisms, crosstalk and sustainable mitigation strategies

DOI
https://doi.org/10.14719/pst.8094
Submitted
5 March 2025
Published
08-10-2025

Abstract

Abiotic and biotic stresses, whether occurring individually or in combination, have profound effects on plant growth, development and overall productivity. Abiotic stresses such as drought, salinity and extreme temperatures disrupt physiological processes, while biotic stresses from pathogens, pests and herbivores impair plant defenses and nutrient dynamics. When these stressors act simultaneously, they interact in complex ways, often exacerbating damage and creating unique challenges for plants. Research has shown that plants employ sophisticated signalling networks involving hormones such as abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA) and ethylene to coordinate responses to these stress combinations. These signalling pathways can have synergistic or antagonistic effects on stress tolerance, depending on the nature and timing of the stresses. Recent advancements in plant genetics, metabolomics, transcriptomics and genome-editing tools such as CRISPR-Cas (clustered regularly interspaced short palindromic repeats) are providing new insights into how plants adapt to dynamic environments and cope with concurrent stresses. Additionally, microbial inoculations, including arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR), are emerging as effective strategies to mitigate stress impacts by enhancing nutrient uptake, regulating hormone levels and improving overall plant resilience. This review emphasizes the need for an integrated approach to understanding the interactions between biotic and abiotic stressors. It highlights innovative strategies such as microbial applications, advanced breeding programs and biotechnological interventions to improve stress tolerance. Addressing these challenges is critical for developing resilient crop varieties capable of withstanding the impacts of climate change and ensuring sustainable agricultural productivity.

References

  1. 1. Gimenez E, Salinas M, Manzano-Agugliaro F. Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability. 2018;10(2):391. https://doi.org/10.3390/su10020391
  2. 2. Fich EA, Segerson NA, Rose JK. The plant polyester cutin: biosynthesis, structure, and biological roles. Annu Rev Plant Biol. 2016;67(1):207-33. https://doi.org/10.1146/annurev-arplant-043015-111929
  3. 3. Mittler R. Abiotic stress, the field environment and stress combination. Trends Plant Sci. 2006;11(1):15-9. https://doi.org/10.1016/j.tplants.2005.11.002
  4. 4. Zhu JK. Abiotic stress signaling and responses in plants. Cell. 2016;167(2):313-24. https://doi.org/10.1016/j.cell.2016.08.029
  5. 5. Prasad PV, Pisipati SR, Momčilović I, Ristic Z. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF‐Tu expression in spring wheat. J Agron Crop Sci. 2011;197(6):430-41. https://doi.org/10.1111/j.1439-037X.2011.00477.x
  6. 6. Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME. Decreased CO₂ availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environ Exp Bot. 2012;83:1-11. https://doi.org/10.1016/j.envexpbot.2012.04.001
  7. 7. Awasthi R, Kaushal N, Vadez V, Turner NC, Berger J, Siddique KH, et al. Individual and combined effects of transient drought and heat stress on carbon assimilation and seed filling in chickpea. Funct Plant Biol. 2014;41(11):1148-67. https://doi.org/10.1071/FP13340
  8. 8. Cvikrová M, Gemperlová L, Martincová O, Vanková R. Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiol Biochem. 2013;73:7-15. https://doi.org/10.1016/j.plaphy.2013.08.005
  9. 9. Casaretto JA, El-Kereamy A, Zeng B, Stiegelmeyer SM, Chen X, Bi YM, et al. Expression of OsMYB55 in maize activates stress-responsive genes and enhances heat and drought tolerance. BMC Genomics. 2016;17:1-5. https://doi.org/10.1186/s12864-016-2659-5
  10. 10. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, et al. Crop production under drought and heat stress: plant responses and management options. Front Plant Sci. 2017;8:1147. https://doi.org/10.3389/fpls.2017.01147
  11. 11. Huot B, Yao J, Montgomery BL, He SY. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol Plant. 2014;7(8):1267-87. https://doi.org/10.1093/mp/ssu049
  12. 12. Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90(5):856-67. https://doi.org/10.1111/tpj.13299
  13. 13. Varshney RK, Sinha P, Singh VK, Kumar A, Zhang Q, Bennetzen JL. 5Gs for crop genetic improvement. Trends Plant Sci. 2020;25(3):226-38. https://doi.org/10.1016/j.pbi.2019.12.004
  14. 14. Ramu VS, Paramanantham A, Ramegowda V, Mohan-Raju B, Udayakumar M, Senthil-Kumar M. Transcriptome analysis of sunflower genotypes with contrasting oxidative stress tolerance reveals individual- and combined- biotic and abiotic stress tolerance mechanisms. PLoS One. 2016;11(6):e0157522. https://doi.org/10.1371/journal.pone.0157522
  15. 15. Farvardin A, González-Hernández AI, Llorens E, García-Agustín P, Scalschi L, Vicedo B. The apoplast: a key player in plant survival. Antioxidants. 2020;9(7):604. https://doi.org/10.3390/antiox9070604
  16. 16. Rui Y, Dinneny JR. A wall with integrity: surveillance and maintenance of the plant cell wall under stress. New Phytol. 2020;225(4):1428-39. https://doi.org/10.1111/nph.16166
  17. 17. Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot. 2012;63(10):3523-43. https://doi.org/10.1093/jxb/ers100
  18. 18. Ramegowda V, Senthil-Kumar M. The interactive effects of simultaneous biotic and abiotic stresses on plants: mechanistic understanding from drought and pathogen combination. J Plant Physiol. 2015;176:47-54. https://doi.org/10.1016/j.jplph.2014.11.008
  19. 19. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol. 2006;9(4):436-42. https://doi.org/10.1016/j.pbi.2006.05.014
  20. 20. Kamatchi KM, Anitha K, Kumar KA, Senthil A, Kalarani MK, Djanaguiraman M. Impacts of combined drought and high-temperature stress on growth, physiology, and yield of crops. Plant Physiol Rep. 2024;29(1):28-36. https://doi.org/10.1007/s40502-023-00754-4
  21. 21. Nankishore A, Farrell AD. The response of contrasting tomato genotypes to combined heat and drought stress. J Plant Physiol. 2016;202:75-82. https://doi.org/10.1016/j.jplph.2016.07.006
  22. 22. Farooq M, Hussain M, Wahid A, Siddique KH. Drought stress in plants: an overview. In: Plant responses to drought stress. Berlin, Heidelberg: Springer; 2012. p. 1-33. https://doi.org/10.1007/978-3-642-32653-0_1
  23. 23. Lobell DB, Bänziger M, Magorokosho C, Vivek B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat Clim Change. 2011;1(1):42-5. https://doi.org/10.1038/nclimate1043
  24. 24. Siebers MH, Yendrek CR, Drag D, Locke AM, Rios Acosta L, Leakey ADB, et al. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress. Glob Change Biol. 2015;21(8):3114-25. https://doi.org/10.1111/gcb.12935
  25. 25. Prasad PV, Boote KJ, Allen LH Jr. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agric For Meteorol. 2006;139(3-4):237-51. https://doi.org/10.1016/j.agrformet.2006.07.003
  26. 26. Passioura J. The drought environment: physical, biological and agricultural perspectives. J Exp Bot. 2007;58(2):113-7. https://doi.org/10.1093/jxb/erl212
  27. 27. Nishiyama Y, Murata N. Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol. 2014;98:8777-96. https://doi.org/10.1007/s00253-014-6020-0
  28. 28. Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez‐Cadenas A. Plant adaptations to the combination of drought and high temperatures. Physiol Plant. 2018;162(1):2-12. https://doi.org/10.1111/ppl.12540
  29. 29. Pornsiriwong W, Estavillo GM, Chan KX, Tee EE, Ganguly D, Crisp PA, et al. A chloroplast retrograde signal, 3′-phosphoadenosine 5′-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. Elife. 2017;6:e23361. https://doi.org/10.7554/eLife.23361
  30. 30. Panikulangara TJ, Eggers-Schumacher G, Wunderlich M, Stransky H, Schöffl F. Galactinol synthase 1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol. 2004;136(2):3148-58. https://doi.org/10.1104/pp.104.042606
  31. 31. Li W, Zheng F, Zhang S, Lv F. A comprehensive analysis of the Arabidopsis thaliana gene expression in response to osmotic, cold, and heat stresses based on RNA-Seq data. Sci Rep. 2015;5:15178. https://doi.org/10.1038/srep15178
  32. 32. Obata T, Witt S, Lisec J, Palacios-Rojas N, Florez-Sarasa I, Yousfi S, et al. Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiol. 2015;169(4):2665-83. https://doi.org/10.1104/pp.15.01164
  33. 33. Conde A, Silva P, Agasse A, Conde C, Gerós H. Mannitol transport and mannitol dehydrogenase activities are coordinated in Olea europaea under salt and osmotic stresses. Plant Cell Physiol. 2011;52(10):1766-75. https://doi.org/10.1093/pcp/pcr121
  34. 34. Munns R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002;25(2):239-50. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  35. 35. Yoon HS, Kim SY, Kim IS. Stress response of plant H+-PPase-expressing transgenic Escherichia coli and Saccharomyces cerevisiae: a potentially useful mechanism for the development of stress-tolerant organisms. J Appl Genet. 2013;54:129-33. https://doi.org/10.1007/s13353-012-0117-x
  36. 36. Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress. Physiol Plant. 2008;133(3):481-9. https://doi.org/10.1111/j.1399-3054.2008.01090.x
  37. 37. Lugan R, Niogret MF, Leport L, Guégan JP, Larher FR, Savouré A, et al. Metabolome and water homeostasis analysis of Thellungiella salsuginea suggests that dehydration tolerance is a key response to osmotic stress in this halophyte. Plant J. 2010;64(2):215-29. https://doi.org/10.1111/j.1365-313X.2010.04323.x
  38. 38. Rivero RM, Mestre TC, Mittler RO, Rubio F, Garcia‐Sanchez FR, Martinez V. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 2014;37(5):1059-73. https://doi.org/10.1111/pce.12199
  39. 39. Song L, Jiang Y, Zhao H, Hou M. Acquired thermotolerance in plants. Plant Cell Tissue Organ Cult. 2012;111:265-76. https://doi.org/10.1007/s11240-012-0198-6
  40. 40. Takahashi S, Murata N. How do environmental stresses accelerate photoinhibition? Trends Plant Sci. 2008;13(4):178-82. https://doi.org/10.1016/j.tplants.2008.01.005
  41. 41. Kumar RR, Goswami S, Sharma SK, Singh K, Rai GK, Singh M, et al. Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. Plant Biochem Biotechnol. 2013;22(4):16-26. https://doi.org/10.1007/s13562-012-0106-5
  42. 42. Rahman MM, Hasanuzzaman M, Anee TI, Fujita M. Jasmonic acid priming augments antioxidant defense and mitigates oxidative damage in soybean under combined heat and drought stress. Plant Physiol Biochem. 2024;202:107908. https://doi.org/10.1016/j.plaphy.2023.108193
  43. 43. Chen L, Yang H, Fang Y, Guo W, Chen H, Zhang X, et al. Overexpression of GmMYB14 improves high-density yield and drought tolerance of soybean through regulating plant architecture mediated by the brassinosteroid pathway. Plant Biotechnol J. 2021;19(4):702-16. https://doi.org/10.1111/pbi.13496
  44. 44. Singh S, Parihar P, Singh R, Singh VP, Prasad SM. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci. 2016;6:1143. https://doi.org/10.3389/fpls.2015.01143
  45. 45. Emamverdian A, Ding Y, Mokhberdoran F, Xie Y. Heavy metal stress and some mechanisms of plant defense response. Sci World J. 2015;2015:756120. https://doi.org/10.1155/2015/756120
  46. 46. Rivero L, Scholl R, Holomuzki N, Crist D, Grotewold E, Brkljacic J, et al. Signal integration under combined stress: hierarchy and trade-offs. Trends Plant Sci. 2022;27(5):498-510. https://doi.org/10.1016/j.tplants.2022.03.007
  47. 47. Gupta A, Rico-Medina A, Caño-Delgado AI. ABA-pathway dominance in drought-pathogen cross-talk. New Phytol. 2020;227(1):54-69. https://doi.org/10.1111/nph.16451
  48. 48. Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. Networking by small-molecule hormones in plant immunity. Annu Rev Phytopathol. 2014;52:1-28. https://doi.org/10.1146/annurev-phyto-082712-102340
  49. 49. Choudhary A, Senthil-Kumar M. Drought attenuates plant defence against bacterial pathogens by suppressing the expression of CBP60g/SARD1 during combined stress. Plant Cell Environ. 2022;45(4):1127-45. https://doi.org/10.1111/pce.14275
  50. 50. Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R. Abiotic and biotic stress combinations. New Phytol. 2014;203(1):32-43. https://doi.org/10.1111/nph.12797
  51. 51. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Bowles DJ, Dixon RA. Antagonistic interaction between abscisic acid and salicylic acid signaling pathways modulates basal resistance of tomato to Botrytis cinerea. Plant Physiol. 2004;136(2):522-31. https://doi.org/10.1105/tpc.104.025833
  52. 52. Das P, Khare P, Singh RP, Yadav V, Tripathi P, Kumar A, et al. Arsenic-induced differential expression of oxidative stress and secondary metabolite content in two genotypes of Andrographis paniculata. J Hazard Mater. 2021;406:124302. https://doi.org/10.1016/j.jhazmat.2020.124302
  53. 53. Dixit S, Sivalingam PN, Baskaran RM, Senthil-Kumar M, Ghosh PK. Plant responses to concurrent abiotic and biotic stress: unravelling physiological and morphological mechanisms. Plant Physiol Rep. 2024;29(1):6-17. https://doi.org/10.1007/s40502-023-00766-0
  54. 54. Mayek-Pérez N, García-Espinosa R, López-Castañeda C, Acosta-Gallegos JA, Simpson J. Water relations, histopathology and growth of common bean during pathogenesis of Macrophomina phaseolina under drought stress. Physiol Mol Plant Pathol. 2002;60(4):185-95. https://doi.org/10.1006/pmpp.2001.0388
  55. 55. Ramegowda V, Senthil-Kumar M, Ishiga Y, Kaundal A, Udayakumar M, Mysore KS. Drought stress acclimation imparts tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana. Int J Mol Sci. 2013;14(5):9497-513. https://doi.org/10.3390/ijms14059497
  56. 56. Asselbergh B, De Vleesschauwer D, Höfte M. Global switches and fine-tuning—ABA modulates plant pathogen defense. Mol Plant Microbe Interact. 2008;21(6):709-19. https://doi.org/10.1094/MPMI-21-6-0709
  57. 57. de Torres-Zabala M, Truman W, Bennett MH, Lafforgue G, Mansfield JW, Egea PR, et al. Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. EMBO J. 2007;26:1434-43. https://doi.org/10.1038/sj.emboj.7601575
  58. 58. Mohr PG, Cahill DM. Abscisic acid influences the susceptibility of Arabidopsis to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol. 2003;30(4):461-9. https://doi.org/10.1071/FP02231
  59. 59. Asselbergh B, Curvers K, França SC, Audenaert K, Vuylsteke M, Van Breusegem F, et al. Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol. 2007;144(4):1863-77. https://doi.org/10.1104/pp.107.099226
  60. 60. Kusajima M, Yasuda M, Kawashima A, Nojiri H, Yamane H, Nakajima M, et al. Suppressive effect of abscisic acid on systemic acquired resistance in tobacco plants. J Gen Plant Pathol. 2010;76:161-7. https://doi.org/10.1007/s10327-010-0218-5
  61. 61. Anderson JP, Badruzsaufari E, Schenk PM, Manners JM, Desmond OJ, Ehlert C, et al. Antagonistic interaction between abscisic acid and jasmonate-ethylene signaling pathways modulates defense gene expression and disease resistance in Arabidopsis. Plant Cell. 2004;16(12):3460-79. https://doi.org/10.1105/tpc.104.025833
  62. 62. Sánchez-Vallet A, López G, Ramos B, Delgado-Cerezo M, Riviere MP, Llorente F, et al. Disruption of abscisic acid signaling constitutively activates Arabidopsis resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant Physiol. 2012;160(4):2109-24. https://doi.org/10.1104/pp.112.200154
  63. 63. Robertson WK, McClanahan E, Smith MS. Nematode-induced root damage and its influence on insect feeding. J Nematol. 2008;40(1):25-32.
  64. 64. Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, et al. The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Front Plant Sci. 2019;10:1349. https://doi.org/10.3389/fpls.2019.01349
  65. 65. Jiang Z, van Zanten M, Sasidharan R. Mechanisms of plant acclimation to multiple abiotic stresses. Commun Biol. 2025;8:655. https://doi.org/10.1038/s42003-025-08077-w
  66. 66. Berens ML, Wolinska KW, Spaepen S, Ziegler J, Nobori T, Nair A, et al. Leaf age-dependent variation in stress hormone cross-talk. Proc Natl Acad Sci USA. 2019;116(6):2364-73. https://doi.org/10.1073/pnas.1817233116
  67. 67. Saijo Y, Loo EP. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 2020;225(1):87-104. https://doi.org/10.1111/nph.15989
  68. 68. Li W, Zhang Q, Sun J, Wang L, Chen D, Liu Y, et al. PBS3: a versatile player in and beyond salicylic acid signaling. New Phytol. 2023;237(3):1027-1042. https://doi.org/10.1111/nph.18558
  69. 69. Prasch CM, Sonnewald U. Heat, drought, and virus stress alter signaling in Arabidopsis. Plant Physiol. 2013;162(4):1849-66. https://doi.org/10.1104/pp.113.221044
  70. 70. Zarattini M, Farjad M, Launay A, Cannella D, Soulié MC, Bernacchia G, et al. Abiotic stress effects on gene expression in plant-pathogen interactions. J Exp Bot. 2021;72(4):1020-33. https://doi.org/10.1093/jxb/eraa531
  71. 71. Onaga G, Wydra KD, Koopmann B, Séré Y, von Tiedemann A. Elevated temperature increases in planta expression levels of virulence related genes in Magnaporthe oryzae and compromises resistance in Oryza sativa cv. Nipponbare. Funct Plant Biol. 2016;44(3):358-71. https://doi.org/10.1071/FP16151
  72. 72. Anfoka G, Moshe A, Fridman L, Amrani L, Rotem OR, Kolot M, et al. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures. Sci Rep. 2016;6:19715. https://doi.org/10.1038/srep19715
  73. 73. Hamann E, Blevins C, Franks SJ, Jameel MI, Anderson JT. Climate change alters plant–herbivore interactions. New Phytol. 2021;229(4):1894-910. https://doi.org/10.1111/nph.17036
  74. 74. Javed T, Shabbir R, Ali A, Martel G, Ren X, Kousar R, Rao AQ, Shahid AA, Chung G, Siddique KH, Liu S. Transcription Factors in Plant Stress Responses: Current and Future Prospects. Int J Mol Sci. 2020;21(7):2738. https://doi.org/10.3390/plants9040491
  75. 75. Zandalinas SI, Fichman Y, Devireddy AR, Sengupta S, Azad RK, Mittler R. Systemic signaling during abiotic stress combination. Proc Natl Acad Sci USA. 2020;117(24):13810-20. https://doi.org/10.1073/pnas.2005077117
  76. 76. Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot. 2011;62(14):4731-48. https://doi.org/10.1093/jxb/err210
  77. 77. Brotman Y, Landau U, Pnini S, Lisec J, Balazadeh S, Mueller-Roeber B, et al. The LysM receptor-like kinase LysM RLK1 is required to activate defense and abiotic-stress responses induced by overexpression of fungal chitinases in Arabidopsis plants. Mol Plant. 2012;5(5):1113-24. https://doi.org/10.1093/mp/sss021
  78. 78. Kim YS, An C, Park S, Gilmour SJ, Wang L, Renna L, et al. CAMTA-mediated regulation of salicylic acid immunity pathway genes in Arabidopsis exposed to low temperature and pathogen infection. Plant Cell. 2017;29(10):2465-77. https://doi.org/10.1105/tpc.16.00865
  79. 79. Bibi F, Rahman A. Climate change impacts on agriculture and mitigation strategies. Agriculture. 2023;13(8):1508. https://doi.org/10.3390/agriculture13081508
  80. 80. Rai N, Rai SP, Sarma BK. Prospects for abiotic stress tolerance in crops utilizing phyto- and bio-stimulants. Front Sustain Food Syst. 2021;5:754853. https://doi.org/10.3389/fsufs.2021.754853
  81. 81. Vives-Peris V, De Ollas C, Gómez-Cadenas A, Pérez-Clemente RM. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep. 2020;39(1):3-17. https://doi.org/10.1007/s00299-019-02447-5
  82. 82. Evelin H, Giri B, Kapoor R. Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza. 2012;22:203-17. https://doi.org/10.1007/s00572-011-0392-0
  83. 83. Liu C, Ravnskov S, Liu F, Rubæk GH, Andersen MN. Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J Agric Sci. 2018;156(1):46-58. https://doi.org/10.1017/S0021859618000023
  84. 84. Moradtalab N, Hajiboland R, Aliasgharzad N, Hartmann TE, Neumann G. Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy. 2019;9(1):41. https://doi.org/10.3390/agronomy9010041
  85. 85. Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci. 2019;10:1068. https://doi.org/10.3389/fpls.2019.01068
  86. 86. Gupta A, Rai S, Bano A, Khanam A, Sharma S, Pathak N. Comparative evaluation of different salt-tolerant plant growth-promoting bacterial isolates in mitigating the induced adverse effect of salinity in Pisum sativum. Biointerface Res Appl Chem. 2021;11(5):13141-54. https://doi.org/10.33263/BRIAC115.1314113154
  87. 87. Sarkar J, Chakraborty B, Chakraborty U. Plant growth promoting rhizobacteria protect wheat plants against temperature stress through antioxidant signalling and reducing chloroplast and membrane injury. J Plant Growth Regul. 2018;37(4):1396-412. https://doi.org/10.1007/s00344-018-9789-8
  88. 88. Singh RK, Singh P, Li HB, Yang LT, Li YR. Soil–plant–microbe interactions: use of nitrogen-fixing bacteria for plant growth and development in sugarcane. In: Plant-microbe interactions in agro-ecological perspectives. Singapore: Springer; 2017. p. 35-59. https://doi.org/10.1007/978-981-10-5813-4_3
  89. 89. Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol. 2017;8:971. https://doi.org/10.3389/fmicb.2017.00971
  90. 90. Grobelak A, Napora A, Kacprzak MJ. Using plant growth-promoting rhizobacteria (PGPR) to improve plant growth. Ecol Eng. 2015;84:22-8. https://doi.org/10.1016/j.ecoleng.2015.07.019
  91. 91. Khanna K, Kohli SK, Ohri P, Bhardwaj R, Al-Huqail AA, Siddiqui MH, et al. Microbial fortification improved photosynthetic efficiency and secondary metabolism in Lycopersicon esculentum plants under Cd stress. Biomolecules. 2019;9(10):581. https://doi.org/10.3390/biom9100581
  92. 92. Bicer S, Erdinc C, Comlekcioglu N. A comparative analysis of co-inoculation of microbial biostimulants at different irrigation levels under field conditions on the cucumber growth. Gesunde Pflanzen. 2023;75(4):1237-56. https://doi.org/10.1007/s10343-022-00804-1
  93. 93. Hamidian M, Movahhedi-Dehnavi M, Sayyed RZ, Almalki WH, Gafur A, Fazeli-Nasab B. Co-application of Mycorrhiza and methyl jasmonate regulates morpho-physiological and antioxidant responses of Crocus sativus (Saffron) under salinity stress conditions. Sci Rep. 2023;13(1):7378. https://doi.org/10.1038/s41598-023-34359-6
  94. 94. Goicoechea N, Antolín MC. Increased nutritional value in food crops. Microb Biotechnol. 2017;10(5):1004-7. https://doi.org/10.1111/1751-7915.12764
  95. 95. Bijalwan P, Jeddi K, Saini I, Sharma M, Kaushik P, Hessini K. Mitigation of saline conditions in watermelon with mycorrhiza and silicon application. Saudi J Biol Sci. 2021;28(7):3678-84. https://doi.org/10.1016/j.sjbs.2021.05.019
  96. 96. Hashem A, Abd_Allah EF, Alqarawi AA, Al Huqail AA, Egamberdieva D, Wirth S. Alleviation of cadmium stress in Solanum lycopersicum L. by arbuscular mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J Biol Sci. 2016;23(2):272-81. https://doi.org/10.1016/j.sjbs.2015.11.002
  97. 97. Nogales A, Ribeiro H, Nogales-Bueno J, Hansen LD, Gonçalves EF, Coito JL, et al. Response of mycorrhizal ‘Touriga Nacional’ variety grapevines to high temperatures measured by calorespirometry and near-infrared spectroscopy. Plants. 2020;9(11):1499. https://doi.org/10.3390/plants9111499
  98. 98. De Oliveira VH, Montanha GS, Carvalho HW, Mazzafera P, de Andrade SA. Mycorrhizal symbiosis alleviates Mn toxicity and downregulates Mn transporter genes in Eucalyptus tereticornis under contrasting soil phosphorus. Plant Soil. 2023;489(1):361-83. https://doi.org/10.1007/s11104-023-06024-4

Downloads

Download data is not yet available.