Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. 3 (2025)

Assessing the impact of climate change on forest biomass and carbon sequestration in India: A systematic review

DOI
https://doi.org/10.14719/pst.8115
Submitted
6 March 2025
Published
06-07-2025 — Updated on 14-07-2025
Versions

Abstract

Forests are essential in combating climate change by functioning as carbon sinks, sequestering atmospheric carbon dioxide and storing it in biomass and soil. India, possessing various forest ecosystems, holds substantial potential for carbon sequestration. Climate change, marked by increasing temperatures, altered precipitation patterns and extreme weather phenomena, jeopardizes forest biomass and carbon sequestration. This systematic analysis evaluates the effects of climate change on forest biomass and carbon sequestration in several forest types in India. The study evaluates different methodologies for biomass estimation, including destructive, non-destructive and remote sensing approaches. It highlights the contributions of diverse forest types such as Himalayan forests, tropical rainforests, deciduous forests, mangroves and agroforestry systems in carbon sequestration. The findings indicate that while Indian forests act as vital carbon reservoirs, deforestation, land-use changes and climate-induced stressors have generally decreased the carbon sequestration potential of these forests by reducing biomass accumulation and increasing ecosystem stress, although variability exists across forest types. Sustainable forest management, afforestation and climate-resilient strategies are essential to enhance carbon storage. Integrating remote sensing technologies, ecological modeling and policy frameworks like REDD+ can aid in better monitoring and conservation efforts. This review provides insights into future strategies to strengthen India’s forest carbon sequestration capacity and mitigate climate change impacts.

References

  1. 1. Anaya JA, Chuvieco E, Palacios-Orueta A. Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management. 2009;257(4):1237-46. https://doi.org/10.1016/j.foreco.2008.11.016
  2. 2. Baishya R, Barik SK. Estimation of tree biomass, carbon pool and net primary production of an old-growth Pinus kesiya Royle ex. Gordon forest in north-eastern India. Annals of Forest Science. 2011;68:727-36. https://doi.org/10.1007/s13595-011-0089-8
  3. 3. Bhardwaj AK, Chandra KK. Biomass and carbon stocks of different tree plantations in entisol soil of Eastern Chhattisgarh India. Current World Environment. 2016;11(3):819-24. http://doi.org/10.12944/CWE.11.3.17
  4. 4. ISFR. India State of Forest Report. Forest Survey of India; 2021.
  5. 5. Gairola S, Sharma CM, Ghildiyal SK, Suyal S. Live tree biomass and carbon variation along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya (India). Current Science. 2011;100(2):1862-70.
  6. 6. Chavan SB, Dhillon RS, Sirohi C, Uthappa AR, Jinger D, Jatav HS, et al. Carbon sequestration potential of commercial agroforestry systems in Indo-Gangetic Plains of India: Poplar and eucalyptus-based agroforestry systems. Forests. 2023;14(3):559. https://doi.org/10.3390/f14030559
  7. 7. Chaturvedi RK, Raghubanshi AS. Assessment of carbon density and accumulation in mono-and multi-specific stands in Teak and Sal forests of a tropical dry region in India. Forest Ecology and Management. 2015;339:11-21. https://doi.org/10.1016/j.foreco.2014.12.002
  8. 8. Ekka A, Jiang Y, Pande S, van der Zaag P. How economically and environmentally viable are multiple dams in the upper Cauvery Basin, India? A hydro-economic analysis using a landscape-based hydrological model. Hydrology and Earth System Sciences. 2024;28(14):3219-41. https://doi.org/10.5194/hess-28-3219-2024
  9. 9. Khanna K, Kohli SK, Sharma N, Kour J, Devi K, Bhardwaj T, et al. Phytomicrobiome communications: Novel implications for stress resistance in plants. Frontiers in Microbiology. 2022;13:912701. https://doi.org/10.3389/fmicb.2022.912701
  10. 10. Choudhary B, Dhar V, Pawase AS. Blue carbon and the role of mangroves in carbon sequestration: Its mechanisms, estimation, human impacts and conservation strategies for economic incentives. Journal of Sea Research. 2024;199:102504. https://doi.org/10.1016/j.seares.2024.102504
  11. 11. Zhu JJ, Yan B. Blue carbon sink function and carbon neutrality potential of mangroves. Science of the Total Environment. 2022;822:153438. https://doi.org/10.1016/j.scitotenv.2022.153438
  12. 12. Morris RL, Fest B, Stokes D, Jenkins C, Swearer SE. The coastal protection and blue carbon benefits of hybrid mangrove living shorelines. Journal of Environmental Management. 2023;331:117310. https://doi.org/10.1016/j.jenvman.2023.117310
  13. 13. Chowdhury A, Naz A, Sharma SB, Dasgupta R. Changes in salinity, mangrove community ecology, and organic blue carbon stock in response to cyclones at Indian Sundarbans. Life. 2023;13(7):1539. https://doi.org/10.3390/life13071539
  14. 14. Albrecht A, Kandji ST. Carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems & Environment. 2003;99(1-3):15-27. https://doi.org/10.1016/S0167-8809(03)00138-5
  15. 15. Bangroo SA, Ali T, Mahdi SS, Najar GR, Sofi JA. Carbon and greenhouse gas mitigation through soil carbon sequestration potential of adaptive agriculture and agroforestry systems. Range Management and Agroforestry. 2013;34(1):1-11.
  16. 16. Huang L, Liu J, Shao Q, Xu X. Carbon sequestration by forestation across China: Past, present, and future. Renewable and Sustainable Energy Reviews. 2012;16(2):1291-9. https://doi.org/10.1016/j.rser.2011.10.004
  17. 17. Böttcher H, Lindner M. Managing forest plantations for carbon sequestration today and in the future. In: Ecosystem goods and services from plantation forest. Routledge; 2010. p. 43-76. https://doi.org/10.4324/9781849776417
  18. 18. Kongsager R, Napier J, Mertz O. The carbon sequestration potential of tree crop plantations. Mitigation and Adaptation Strategies for Global Change. 2013;18:1197-213. https://doi.org/10.1007/s11027-012-9417-z
  19. 19. Jin S, Zhang E, Guo H, Hu C, Zhang Y, Yan D. Comprehensive evaluation of carbon sequestration potential of landscape tree species and its influencing factors analysis: Implications for urban green space management. Carbon Balance and Management. 2023;18(1):17. https://doi.org/10.1186/s13021-023-00238-w
  20. 20. Strohbach MW, Arnold E, Haase D. The carbon footprint of urban green space-A life cycle approach. Landscape and Urban Planning. 2012;104(2):220-9. https://doi.org/10.1016/j.landurbplan.2011.10.013
  21. 21. Zhang X, Huang H, Tu K, Li R, Zhang X, Wang P, et al. Effects of plant community structural characteristics on carbon sequestration in urban green spaces. Scientific Reports. 2024;14(1):7382. https://doi.org/10.1038/s41598-024-57789-2
  22. 22. Vashum KT, Jayakumar S. Methods to estimate above-ground biomass and carbon stock in natural forests-a review. Journal of Ecosystem & Ecography. 2012;2(4):1-7. http://doi.org/10.4172/2157-7625.1000116
  23. 23. Salunkhe O, Khare PK, Sahu TR, Singh S. Estimation of tree biomass reserves in tropical deciduous forests of Central India by non-destructive approach. Tropical Ecology. 2016;57(2):153-61.
  24. 24. Murali KS, Bhat DM, Ravindranath NH. Biomass estimation equations for tropical deciduous and evergreen forests. International Journal of Agricultural Resources, Governance and Ecology. 2005;4(1):81-92. https://doi.org/10.1504/IJARGE.2005.006440
  25. 25. Gibbs HK, Brown S, Niles JO, Foley JA. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters. 2007;2(4):045023. https://doi.org/10.1088/1748-9326/2/4/045023
  26. 26. Vashum KT, Jayakumar S. Methods to estimate above-ground biomass and carbon stock in natural forests-a review. Journal of Ecosystem & Ecography. 2012;2(4):1-7. http://doi.org/10.4172/2157-7625.1000116
  27. 27. Swami HR. Study of organic productivity, nutrient cycling and small water shade hydrology in natural forests and in monoculture plantations in Chikmagalur district. Karnataka, Final paper, Sri Jagadguru Chandrashekhara Bharti Memorial College, Sringeri, India; 1989.
  28. 28. Singh KP. Mineral nutrients in tropical dry deciduous forest and savanna ecosystems in India. In: Mineral nutrients in tropical forest and savanna ecosystems. Blackwell; 1989. p. 153-68.
  29. 29. Anaya JA, Chuvieco E, Palacios-Orueta A. Aboveground biomass assessment in Colombia: A remote sensing approach. Forest Ecology and Management. 2009;257(4):1237-46. https://doi.org/10.1016/j.foreco.2008.11.016
  30. 30. Arora G, Chaturvedi S, Kaushal R, Nain A, Tewari S, Alam NM, et al. Growth, biomass, carbon stocks, and sequestration in an age series of Populus deltoides plantations in Tarai region of central Himalaya. Turkish Journal of Agriculture and Forestry. 2014;38(4):550-60. https://doi.org/10.3906/tar-1307-94
  31. 31. Flint EP, Richards JF. Trends in carbon content of vegetation in South and Southeast Asia associated with changes in land use. In: Effects of land-use change on atmospheric CO2 concentrations: South and Southeast Asia as a case study. New York (NY): Springer New York; 1994. p. 201-99.
  32. 32. Dadhwal VK, Pandya N, Vora AB. Carbon cycle for Indian forest ecosystem: a preliminary estimate. Global change studies: scientific results from ISRO-GBP; 1998. p. 411-30.
  33. 33. Manhas RK, Negi JD, Kumar R, Chauhan PS. Temporal assessment of growing stock, biomass and carbon stock of Indian forests. Climatic Change. 2006;74:191-221. https://doi.org/10.1007/s10584-005-9011-4
  34. 34. Chhabra A, Palria S, Dadhwal VK. Growing stock-based forest biomass estimate for India. Biomass and Bioenergy. 2002;22(3):187-94. https://doi.org/10.1016/S0961-9534(01)00068-X
  35. 35. Haripriya GS. Carbon budget of the Indian forest ecosystem. Climatic Change. 2003;56(3):291-319. https://doi.org/10.1023/A:1021724313715
  36. 36. Kaul M, Mohren GM, Dadhwal VK. Phytomass carbon pool of trees and forests in India. Climatic Change. 2011;108:243-59. https://doi.org/10.1007/s10584-010-9986-3
  37. 37. Sheikh MA, Kumar M, Bussman RW, Todaria NP. Forest carbon stocks and fluxes in physiographic zones of India. Carbon Balance and Management. 2011;6:15. https://doi.org/10.1186/1750-0680-6-15
  38. 38. Richards JF, Flint EP. Historic Land Use and Carbon Estimates for South and Southeast Asia: 1880-1980 (NDP-046). Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States); 1994. https://doi.org/10.3334/CDIAC/lue.ndp046
  39. 39. Hingane LS. Some aspects of carbion dioxide exchange between atmosphere and Indian plant biota. Climatic Change. 1991;18(4):425-35. https://doi.org/10.1007/BF00142970
  40. 40. Dadhwal VK. Recent changes [1982-1991] in forest phytomass carbon pool in India estimated using growing stock and remote sensing-based forest inventories. Journal of Tropical Forestry. 1997;13:182-8. https://cir.nii.ac.jp/crid/1570009750107581312
  41. 41. Dadhwal VK. A preliminary estimate of biogeochemical cycle of carbon for India. Science and Culture. 1993;59:9-13.
  42. 42. Salunkhe O, Khare PK, Kumari R, Khan ML. A systematic review on the aboveground biomass and carbon stocks of Indian forest ecosystems. Ecological Processes. 2018;7(1):1-2. https://doi.org/10.1186/s13717-018-0130-z
  43. 43. Lal M, Singh R. Carbon sequestration potential of Indian forests. Environmental Monitoring and Assessment. 2000;60:315-27. https://doi.org/10.1023/A:1006139418804
  44. 44. Kirby KR, Potvin C. Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. Forest Ecology and Management. 2007;246(2-3):208-21. https://doi.org/10.1016/j.foreco.2007.03.072
  45. 45. Sprengel L, Hamann A, Wu S, Spiecker H. Carbon sequestration potential of eight economically important tree species in Northeast China under climate change. Forest Ecology and Management. 2023;545:121299. https://doi.org/10.1016/j.foreco.2023.121299
  46. 46. Holtmann A, Huth A, Pohl F, Rebmann C, Fischer R. Carbon sequestration in mixed deciduous forests: The influence of tree size and species composition derived from model experiments. Forests. 2021;12(6):726. https://doi.org/10.3390/f12060726
  47. 47. Robert E, Lenz P, Bergeron Y, de Lafontaine G, Bouriaud O, Isabel N, et al. Future carbon sequestration potential in a widespread transcontinental boreal tree species: Standing genetic variation matters!. Global Change Biology. 2024;30(6):e17347. https://doi.org/10.1111/gcb.17347
  48. 48. Paul KI, Roxburgh SH, England JR, de Ligt R, Larmour JS, Brooksbank K, et al. Improved models for estimating temporal changes in carbon sequestration in above-ground biomass of mixed-species environmental plantings. Forest Ecology and Management. 2015;338:208-18. https://doi.org/10.1016/j.foreco.2014.11.025
  49. 49. Vijaya Venkata Raman S, Iniyan S, Goic R. A review of climate change, mitigation and adaptation. Renewable and Sustainable Energy Reviews. 2012;16(1):878-97. https://doi.org/10.1016/j.rser.2011.09.009
  50. 50. Wan KK, Li DH, Pan W, Lam JC. Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications. Applied Energy. 2012;97:274-82. https://doi.org/10.1016/j.apenergy.2011.11.048
  51. 51. Desh Bandhu DB. A study of the productive structure of northern tropical dry deciduous forests near Varanasi. I. Stand structure and non-photosynthetic biomass. Tropical Ecology. 1970;11(1):90-104.
  52. 52. Singh RP. Biomass, nutrient and productivity structure of a stand of dry deciduous forest of Varanasi. Tropical Ecology. 1975;16(1):4-109.
  53. 53. Ranawat MP, Vyas LN. Litter production in deciduous forests of Koriyat, Udaipur (South Rajasthan), India. Biologia. 1975;30:41-7.
  54. 54. Kaul ON, Sharma DC, Tandon VN, Srivastava PB. Organic matter and plant nutrients in a teak (Tectona grandis) plantation. Indian Forester. 1979;105 (8):573-82.
  55. 55. Singh KP. Mineral nutrients in tropical dry deciduous forest and savanna ecosystems in India. Blackwell Scientific Publications; 1989. p. 153-68.
  56. 56. Negi JD, Bahuguna VK, Sharma DC. Biomass production and distribution of nutrients in 20 years old teak (Tectona grandis) and gamar (Gmelina arborea) plantations in Tripura. Indian Forester. 1990;116(9):681-6.
  57. 57. George M, Varghees G, Manivachakam P. Nutrient cycling in Indian tropical dry deciduous forest ecosystem. In: Proceedings of the Seminar on Forest Productivity. Dehradun: Forest Research Institute; 1990. p. 289-97.
  58. 58. Negi MS, Tandon VN, Rawat HS. Biomass and nutrient distribution in young teak (Tectona grandis Linn. F) plantations in Tarai region of Uttar Pradesh. Indian Forester. 1995;121(6):455-64.
  59. 59. Pande PK. Biomass and productivity in some disturbed tropical dry deciduous teak forests of Satpura plateau, Madhya Pradesh. Tropical Ecology. 2005;46(2):229-39.
  60. 60. Salunkhe O, Khare PK. Aboveground biomass and carbon stock of tropical deciduous forest ecosystems of Madhya Pradesh, India. International Journal of Ecology and Environmental Sciences. 2017;42(5):75-81.
  61. 61. Salunkhe O, Khare PK, Sahu TR, Singh S. Above ground biomass and carbon stocking in tropical deciduous forests of state of Madhya Pradesh, India. Taiwania. 2014;59(4):353-9.
  62. 62. Ibaraki S, Knapp W. Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: a review. International Journal of Automation Technology. 2012;6(2):110-24. https://doi.org/10.20965/ijat.2012.p0110
  63. 63. Lancaster DG, Richter D, Curl RF, Tittel FK. Real-time measurements of trace gases using a compact difference-frequency-based sensor operating at 3.5 µm. Applied Physics B: Lasers & Optics. 1998;67:339-45 https://doi.org/10.1007/s003400050513
  64. 64. Sheese PE, Walker KA, Boone CD, McLinden CA, Bernath PF, Bourassa AE, et al. Validation of ACE-FTS version 3.5 NO y species profiles using correlative satellite measurements. Atmospheric Measurement Techniques. 2016;9(12):5781-810. https://doi.org/10.5194/amt-9-5781-2016
  65. 65. Dishaw MT, Strong DM. Supporting software maintenance with software engineering tools: A computed task–technology fit analysis. Journal of Systems and Software. 1998;44(2):107-20. https://doi.org/10.1016/S0164-1212(98)10048-1
  66. 66. Wolf-Schnurrbusch UE, Ceklic L, Brinkmann CK, Iliev ME, Frey M, Rothenbuehler SP, et al. Macular thickness measurements in healthy eyes using six different optical coherence tomography instruments. Investigative Ophthalmology & Visual Science. 2009;50(7):3432-7. https://doi.org/10.1167/iovs.08-2970
  67. 67. Sheikh MA, Kumar M, Bussman RW, Todaria NP. Forest carbon stocks and fluxes in physiographic zones of India. Carbon Balance and Management. 2011;6:15. https://doi.org/10.1186/1750-0680-6-15
  68. 68. Segura M, Kanninen M. Allometric models for tree volume and total aboveground biomass in a tropical humid forest in Costa Rica. Biotropica: The Journal of Biology and Conservation. 2005;37(1):2-8. https://doi.org/10.1111/j.1744-7429.2005.02027.x
  69. 69. Sun J, Mao F, Du H, Li X, Xu C, Zheng Z, et al. Improving the simulation accuracy of the net ecosystem productivity of subtropical forests in China: Sensitivity analysis and parameter calibration based on the BIOME-BGC model. Forests. 2024;15(3):552. https://doi.org/10.3390/f15030552
  70. 70. Wu Y, Wang X, Ouyang S, Xu K, Hawkins BA, Sun OJ. A test of BIOME-BGC with dendrochronology for forests along the altitudinal gradient of Mt. Changbai in northeast China. Journal of Plant Ecology. 2017;10(3):415-25. https://doi.org/10.1093/jpe/rtw076
  71. 71. Hare W. Assessment of knowledge on impacts of climate change–contribution. Arctic. 2003;100(6):25-35.
  72. 72. Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H. Assessing the impact of climate change on water resources in Iran. Water Resources Research. 2009;45(10). https://doi.org/10.1029/2008WR007615
  73. 73. Moriondo M, Giannakopoulos C, Bindi M. Climate change impact assessment: the role of climate extremes in crop yield simulation. Climatic Change. 2011;104(3):679-701. https://doi.org/10.1007/s10584-010-9871-0
  74. 74. Hitz S, Smith J. Estimating global impacts from climate change. Global Environmental Change. 2004;14(3):201-18. https://doi.org/10.1016/j.gloenvcha.2004.04.010
  75. 75. Jones RN. An environmental risk assessment/management framework for climate change impact assessments. Natural Hazards. 2001;23(2):197-230. https://doi.org/10.1023/A:1011148019213
  76. 76. Sahoo A. Assessment of biomass and total carbon stock in a tropical wet evergreen rainforest of Eastern Himalaya along a disturbance gradient. Assessment. 2017;4(1).
  77. 77. Guo Y, Zeng Z, Wang J, Zou J, Shi Z, Chen S. Research advances in mechanisms of climate change impacts on soil organic carbon dynamics. Environmental Research Letters. 2023;18(10):103005. https://doi.org/10.1088/1748-9326/acfa12acfa12
  78. 78. He H, Liu J, Shu Z, Chen Y, Pan Z, Peng C, et al. Microbially driven iron cycling facilitates organic carbon accrual in decadal biochar-amended soil. Environmental Science & Technology. 2024;58(28):12430-40. https://doi.org/10.1021/acs.est.3c09003
  79. 79. Mustafa G, Hussain S, Liu Y, Ali I, Liu J, Bano H. Microbiology of wetlands and the carbon cycle in coastal wetland mediated by microorganisms. Science of the Total Environment. 2024;954:175734. https://doi.org/10.1016/j.scitotenv.2024.175734
  80. 80. Prajapati S, Choudhary S, Kumar V, Dayal P, Srivastava R, Gairola A, et al. Carbon sequestration: A key strategy for climate change mitigation towards a sustainable future. Emerging Trends Climate Change. 2023;2(2):1-4. http://doi.org/10.18782/2583-4770.128
  81. 81. Yadava PS. Ecological studies on forest ecosystem of Manipur. Final Technical Report, Action-oriented Himalayan eco-development research project, Department of Life Sciences, Manipur University, Imphal, India; 1986.
  82. 82. Austin JE. Managing in developing countries: strategic analysis and operating techniques. Simon and Schuster; 1990.
  83. 83. Ledo A, Smith P, Zerihun A, Whitaker J, Vicente-Vicente JL, Qin Z, et al. Changes in soil organic carbon under perennial crops. Global Change Biology. 2020;26(7):4158-68. https://doi.org/10.1111/gcb.15120
  84. 84. Ferchaud F, Vitte G, Mary B. Changes in soil carbon stocks under perennial and annual bioenergy crops. Global Change Biology Bioenergy. 2016;8(2):290-306. https://doi.org/10.1111/gcbb.12249
  85. 85. Bhattacharyya SS, Ros GH, Furtak K, Iqbal HM, Parra-Saldívar R. Soil carbon sequestration–An interplay between soil microbial community and soil organic matter dynamics. Science of the Total Environment. 2022;815:152928. https://doi.org/10.1016/j.scitotenv.2022.152928
  86. 86. Condron L, Stark C, O’Callaghan M, Clinton P, Huang Z. The role of microbial communities in the formation and decomposition of soil organic matter. Soil Microbiology and Sustainable Crop Production; 2010. p. 81-118. https://doi.org/10.1007/978-90-481-9479-7_4
  87. 87. Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, et al. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science. 2018;11(5):1062-176. https://doi.org/10.1039/C7EE02342A
  88. 88. Boot-Handford ME, Abanades JC, Anthony EJ, Blunt MJ, Brandani S, Mac Dowell N, et al. Carbon capture and storage update. Energy & Environmental Science. 2014;7(1):130-89. https://doi.org/10.1039/C3EE42350F
  89. 89. Mwenketishi GT, Benkreira H, Rahmanian N. A comprehensive review on carbon dioxide sequestration methods. Energies. 2023;16(24):7971. https://doi.org/10.3390/en16247971
  90. 90. Selosse S, Ricci O. Carbon capture and storage: Lessons from a storage potential and localization analysis. Applied Energy. 2017;188:32-44. https://doi.org/10.1016/j.apenergy.2016.11.117
  91. 91. Gabrielli P, Gazzani M, Mazzotti M. The role of carbon capture and utilization, carbon capture and storage, and biomass to enable a net-zero-CO2 emissions chemical industry. Industrial & Engineering Chemistry Research. 2020;59(15):7033-45. https://doi.org/10.1021/acs.iecr.9b06579
  92. 92. Cavaliere P. Clean ironmaking and steelmaking processes: efficient technologies for greenhouse emissions abatement. Springer Nature; 2019. p. 485-553. https://doi.org/10.1007/978-3-030-21209-4_1

Downloads

Download data is not yet available.