Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 4 (2025)

The effect of manganese oxide and zinc oxide nanoparticles on seed germination characteristics and biochemical changes in Cichorium intybus L.

DOI
https://doi.org/10.14719/pst.8145
Submitted
9 March 2025
Published
17-10-2025 — Updated on 24-10-2025
Versions

Abstract

In this experimental study, the effects of two nanoparticles (NPs), zinc oxide and manganese oxide NPs, on the seed germination characteristics, seed development and biochemical changes in chicory (Cichorium intybus) were investigated. The concentrations of NPs were set to 0.1, 0.05 and 0.01 g/L. The total number of groups, including the control group, was seven. After preparation and disinfection, the seeds were planted in pots. Subsequently, a series of tests, including microscopic studies, measurement of photosynthetic pigments, quantitative protein assays, enzyme activity assays, carbohydrate assays and germination rate and percentage assays, were conducted. The results show that both NPs (ZnO NPs and MgO NPs), at low concentrations of 0.01 and 0.05 g/L, significantly increased the measured biological factors (p < 0.05). The 0.05 g/L dose yielded the most significant increase for both NPs. When the concentration of the NPs was increased to 0.1 g/L, a reduction in the biological factors in chicory was observed. These effects are likely due to the excessive accumulation of nanoparticles, disruption in water absorption and transport and increased generation of free radicals causing toxic stress. These results suggest that the low-dose usage of mentioned NPs led to improved qualitative and quantitative growth of plants, especially chicory.

References

  1. 1. Janda K, Gutowska I, Geszke-Moritz M, Jakubczyk K. The common cichory (Cichorium intybus L.) as a source of extracts with health-promoting properties—A review. Molecules. 2021;26(6):1814. https://doi.org/10.3390/molecules26061814
  2. 2. Al-Snafi AE. Medical importance of Cichorium intybus – A review. IOSR J Pharm. 2016;6(3):41-56. https://doi.org/10.9790/3013-0702014358
  3. 3. Street RA, Sidana J, Prinsloo G. Cichorium intybus: traditional uses, phytochemistry, pharmacology, and toxicology. Evid Based Complement Alternat Med. 2013;2013:579319. https://doi.org/10.1155/2013/579319
  4. 4. McNeil SE. Nanotechnology for the biologist. J Leukoc Biol. 2005;78(3):585-94. https://doi.org/10.1189/jlb.0205074
  5. 5. Mukhopadhyay SS. Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl. 2014;7:63-71. https://doi.org/10.2147/NSA.S39409
  6. 6. Sabir S, Arshad M, Chaudhari SK. Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications. Sci World J. 2014;2014:925494. https://doi.org/10.1155/2014/925494
  7. 7. Rashed MH, Hoque TS, Jahangir MMR, Hashem MA. Manganese as a micronutrient in agriculture: crop requirement and management. J Environ Sci Nat Resour. 2019;12(1-2):225-42. https://doi.org/10.3329/jesnr.v12i1-2.52040
  8. 8. Nemček L, Šebesta M, Urík M, Bujdoš M, Dobročka E, Vávra I. Impact of bulk ZnO, ZnO nanoparticles and dissolved Zn on early growth stages of barley—A pot experiment. Plants. 2020;9(10):1365. https://doi.org/10.3390/plants9101365
  9. 9. Alavi E, Tajadod G, Jafari Marandi S, Arbabian S. Vicia faba seed: a bioindicator of phytotoxicity, genotoxicity, and cytotoxicity of light crude oil. Environ Sci Pollut Res. 2023;30(8):21043-51. https://doi.org/10.1007/s11356-022-22456-1
  10. 10. Tajadod G, Farzamisepehr M, Kalami Z. B-Glucan contents in calli of Oryza sativa L.var Hashemi under different nutritional treatments. Iran J Plant Physiol. 2012;2(3):471-5.
  11. 11. Jafari Marandi S, Tajadod G, Peyvandi M. Development of male and female reproduction organs in Moldavian dragonhead, Dracocephalum moldavica L. (Lamiaceae). Iran J Plant Biol. 2023;14(4):21-38.
  12. 12. Roohizadeh G, Arbabian S, Tajadod G, Majd A, Salimpour F. The study of nano silica effects on the total protein content and the activities of catalase, peroxidase and superoxide dismutase of Vicia faba L. Tropical Plant Res. 2015;2(1):47-50.
  13. 13. Rai-Kalal P, Jajoo A. Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiol Biochem. 2021;160:341-51. https://doi.org/10.1016/j.plaphy.2021.01.034
  14. 14. Parveen A, Siddiqui ZA. Zinc oxide nanoparticles affect growth, photosynthetic pigments, proline content and bacterial and fungal diseases of tomato. Arch Phytopathol Plant Prot. 2021;54(17-18):1519-38. https://doi.org/10.1080/03235408.2021.1920935
  15. 15. Azam M, Bhatti HN, Khan A, Zafar L, Iqbal M. Zinc oxide nano-fertilizer application (foliar and soil) effect on the growth, photosynthetic pigments, and antioxidant system of maize cultivar. Biocatal Agric Biotechnol. 2022;42:102343. https://doi.org/10.1016/j.bcab.2022.102343
  16. 16. Elshoky HA, Yotsova E, Farghali MA, Farroh KY, El-Sayed K, Elzorkany HE, et al. Impact of foliar spray of zinc oxide nanoparticles on the photosynthesis of Pisum sativum L. under salt stress. Plant Physiol Biochem. 2021;167:607-18. https://doi.org/10.1016/j.plaphy.2021.08.021
  17. 17. Samsoon S, Azam M, Khan A, Ashraf M, Bhatti HN, Alshawwa SZ, et al. Green-synthesized MnO2 nanofertilizer impact on growth, photosynthetic pigment, and non-enzymatic antioxidant of Vigna unguiculata cultivar. Biomass Convers Biorefinery. 2024;14:26943-52. https://doi.org/10.1007/s13399-022-03686-5
  18. 18. Faizan M, Bhat JA, El-Serehy HA, Moustakas M, Ahmad P. Magnesium oxide nanoparticles (MgO-NPs) alleviate arsenic toxicity in soybean by modulating photosynthetic function, nutrient uptake, and antioxidant potential. Metals. 2022;12(12):2030. https://doi.org/10.3390/met12122030
  19. 19. Jiang M, Wang J, Rui M, Yang L, Shen J, Chu H, et al. OsFTIP7 determines metallic oxide nanoparticles response and tolerance by regulating auxin biosynthesis in rice. J Hazard Mater. 2021;403:123946. https://doi.org/10.1016/j.jhazmat.2020.123946
  20. 20. Xu QS, Hu JZ, Xie KB, Yang HY, Du KH, Shi GX. Accumulation and acute toxicity of silver in Potamogeton crispus L. J Hazard Mater. 2010;173(1-3):186-93. https://doi.org/10.1016/j.jhazmat.2009.08.073
  21. 21. Wang XP, Li QQ, Pei ZM, Wang SC. Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol Plant. 2018;62:801-8. https://doi.org/10.1007/s10535-018-0804-5
  22. 22. Esparham E, Saeidisar S, Mahmoodzadeh H, Hadi MR. The effects of zinc oxide (ZnO) nanoparticles on the germination, biochemical, and ultrastructural cell characteristics of Ricinus communis. Cell Tissue J. 2017;8(2):151-64.
  23. 23. Mauchamp A, Methy M. Submergence-induced damage of photosynthetic apparatus in Phragmites australis. Environ Exp Bot. 2004;51(3):227-35. https://doi.org/10.1016/j.envexpbot.2003.11.002
  24. 24. Khan MA, Shirazi MU, Khan MA, Mujtaba SM, Islam E, Mumtaz S, et al. Role of proline, K/Na ratio, and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). Pak J Bot. 2009;41(2):633-8.
  25. 25. Ansari SA, Husain Q, Qayyum S, Azam A. Designing and surface modification of zinc oxide nanoparticles for biomedical applications. Food Chem Toxicol. 2011;49(9):2107-15. https://doi.org/10.1016/j.fct.2011.05.029
  26. 26. Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, et al. Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem. 2017;110:118-27. https://doi.org/10.1016/j.plaphy.2016.07.020
  27. 27. Zhang Y, Chen L, Sun R, Lv R, Du T, Li Y, et al. Multienzymatic antioxidant activity of manganese-based nanoparticles for protection against oxidative cell damage. ACS Biomater Sci Eng. 2022;8(2):638-48. https://doi.org/10.1021/acsbiomaterials.1c01123
  28. 28. Tian H, Ghorbanpour M, Kariman K. Manganese oxide nanoparticle-induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.). Ind Crops Prod. 2018;126:403-14. https://doi.org/10.1016/j.indcrop.2018.10.021
  29. 29. Salehi H, Cheheregani Rad A, Raza A, Djalovic I, Prasad PV. The comparative effects of manganese nanoparticles and their counterparts (bulk and ionic) in Artemisia annua plants via seed priming and foliar application. Front Plant Sci. 2023;13:1098772. https://doi.org/10.3389/fpls.2022.1098772
  30. 30. Yang L, Watts DJ. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett. 2005;158(2):122-32. https://doi.org/10.1016/j.toxlet.2005.03.003
  31. 31. Oberdörster G, Stone V, Donaldson K. Toxicology of nanoparticles: a historical perspective. Nanotoxicology. 2007;1(1):2-25. https://doi.org/10.1080/17435390701314761
  32. 32. Lei Z, Mingyu S, Xiao W, Chao L, Chunxiang Q, Liang C, et al. Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biol Trace Elem Res. 2008;121:69-79. https://doi.org/10.1007/s12011-007-8021-7
  33. 33. Rawashdeh RY, Harb AM, AlHasan AM. Biological interaction levels of zinc oxide nanoparticles: lettuce seeds as case study. Heliyon. 2020;6(5):e03924. https://doi.org/10.1016/j.heliyon.2020.e03924
  34. 34. Salama DM, Osman SA, Abd El-Aziz ME, Abd Elwahed MS, Shaaban EA. Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatal Agric Biotechnol. 2019;18:101083. https://doi.org/10.1016/j.bcab.2019.101083
  35. 35. Zaeem A, Drouet S, Anjum S, Khurshid R, Younas M, Blondeau JP, et al. Effects of biogenic zinc oxide nanoparticles on growth and oxidative stress response in flax seedlings vs. in vitro cultures: a comparative analysis. Biomolecules. 2020;10(6):918. https://doi.org/10.3390/biom10060918
  36. 36. Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, et al. Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: A detailed molecular, biochemical, and biophysical study. Environ Sci Technol. 2013;47(22):13122-31. https://doi.org/10.1021/es403146b
  37. 37. Del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB. Reactive oxygen species and reactive nitrogen species in peroxisomes production, scavenging, and role in cell signaling. Plant Physiol. 2006;141(2):330-5. https://doi.org/10.1104/pp.106.078204
  38. 38. Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, et al. Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biol. 2009;9(1):45. https://doi.org/10.1186/1471-2229-9-45
  39. 39. Heidarian AR, Kord H, Mostafavi KH, Lak AP. Investigating Fe and Zn foliar application on yield and its components of soybean (Glycine max L.) at different growth stages. J Agric Biotechnol Sustain Dev. 2011;3:189-97.
  40. 40. Zareii A, Abbaspour H, Peyvandi M, Majd A. Oxidative stress responses and toxicity of green synthesized silver nanoparticles (AgNPs) on basil (Ocimum basilicum) seedlings. J Chem Health Risks. 2023;13(4):691-9. https://doi.org/10.22034/jchr.2023.1973089.1574
  41. 41. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem. 2011;59(8):3485-98. https://doi.org/10.1021/jf104517j
  42. 42. Prakash MG, Chung IM. Determination of zinc oxide nanoparticles toxicity in root growth in wheat (Triticum aestivum L.) seedlings. Acta Biol Hung. 2016;67(3):286-96. https://doi.org/10.1556/018.67.2016.3.7
  43. 43. Liu R, Zhang H, Lal R. Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut. 2016;227:1-14. https://doi.org/10.1007/s11270-015-2765-7
  44. 44. Siddiqui ZA, Parveen A, Ahmad L, Hashem A. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci Hortic. 2019;249:374-82. https://doi.org/10.1016/j.scienta.2019.01.059
  45. 45. Rani P, Kaur G, Rao KV, Singh J, Rawat M. Impact of green synthesized metal oxide nanoparticles on seed germination and seedling growth of Vigna radiata (mung bean) and Cajanus cajan (red gram). J Inorg Organomet Polym Mater. 2020;30:4053-62. https://doi.org/10.1007/s10904-020-01519-8
  46. 46. Van Dongen JT, Ammerlaan AM, Wouterlood M, Van Aelst AC, Borstlap AC. Structure of the developing pea seed coat and the post-phloem transport pathway of nutrients. Ann Bot. 2003;91(6):729-37. https://doi.org/10.1093/aob/mcg078
  47. 47. Slowing I, Trewyn BG, Lin VSY. Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. J Am Chem Soc. 2006;128(46):14792-3. https://doi.org/10.1021/ja065209p
  48. 48. Morla S, Rao CR, Chakrapani R. Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Biol Phys Sci. 2011;1(2):328.
  49. 49. Lin D, Xing B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol. 2008;42(15):5580-5. https://doi.org/10.1021/es800422x

Downloads

Download data is not yet available.