Skip to main navigation menu Skip to main content Skip to site footer

Review Articles

Vol. 12 No. sp1 (2025): Recent Advances in Agriculture by Young Minds - II

Sustained release fertilizers: A pathway to increased crop yield and efficient nutrient utilization - A review

DOI
https://doi.org/10.14719/pst.8148
Submitted
9 March 2025
Published
17-10-2025

Abstract

Food scarcity has emerged as a critical global challenge due to the rapid increase in population, necessitating innovative agricultural solutions to enhance crop productivity. The Green Revolution introduced synthetic fertilizers to increase yields; however, their excessive and inefficient use has led to nutrient leaching, soil degradation and adverse environmental impacts. Sustained Release Fertilizers (SRFs) provide a sustainable alternative by ensuring a gradual and controlled release of nutrients in the rhizosphere, thereby optimizing nutrient uptake and improving plant growth. SRFs, including slow and controlled-release fertilizers, enhance nutrient use efficiency (NUE) by synchronizing nutrient availability with crop growth stages, reducing nutrient losses and minimizing environmental pollution. These fertilizers not only mitigate the negative effects of conventional fertilizers but also contribute to long-term soil fertility and water conservation. This review explores the mechanisms of SRFs, their types, external factors influencing nutrient release and their impact on crop yield and soil health. Furthermore, the integration of SRFs with precision agriculture and sustainable farming practices offers an effective strategy to improve agricultural productivity while reducing excessive fertilizer application. By addressing nutrient management challenges, SRFs represent a promising approach to ensuring future food security and promoting environmentally responsible agricultural practices.

References

  1. 1. HLEF. How to feed the world in 2050. Global agriculture towards 2050. Rome: HLEF; 2009.
  2. 2. Ain NU, Naveed M, Hussain A, Mumtaz MZ, Rafique M, Bashir MA, et al. Impact of coating of urea with Bacillus-augmented zinc oxide on wheat grown under salinity stress. Plants. 2020;9(10):1183. https://doi.org/10.3390/plants9101183
  3. 3. Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman H, et al. Nanotechnology in agriculture: current status, challenges and future opportunities. Sci Total Environ. 2020;721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778
  4. 4. FAO. World fertilizer trends and outlook to 2022. Rome: Food and Agriculture Organization of the United Nations; 2019.
  5. 5. Statista Research Department. Agricultural fertilizer consumption by country. Statista; 2023.
  6. 6. Gil-Ortiz R, Naranjo MÁ, Ruiz-Navarro A, Atares S, García C, Zotarelli L, et al. Enhanced agronomic efficiency using a new controlled-released, polymeric-coated nitrogen fertilizer in rice. Plants. 2020;9(9):1183. https://doi.org/10.3390/plants9091183
  7. 7. Lateef A, Nazir R, Jamil N, Alam S, Shah R, Khan MN, et al. Synthesis and characterization of environmentally friendly corncob biochar-based nanocomposite: a potential slow-release nanofertilizer for sustainable agriculture. Environ Nanotechnol Monit Manag. 2019;11:100212. https://doi.org/10.1016/j.enmm.2019.100212
  8. 8. Khan MN, Mobin M, Abbas ZK, Alamri SA. Fertilizers and their contaminants in soils, surface and groundwater. In: Ellis EC, Haff PK, Maslin MA, Richter DdeB, editors. Encyclopedia of the Anthropocene. Amsterdam: Elsevier; 2017. p. 225-40. http://doi.org/10.1016/B978-0-12-809665-9.09888-8
  9. 9. Azeem B, Kushaari K, Man ZB, Basit A, Thanh TH. Review on materials and methods to produce controlled release coated urea fertilizer. J Control Release. 2014;181(1):11-21. http://doi.org/10.1016/j.jconrel.2014.02.020
  10. 10. Kumar P, Deelip BS. Nutrient use efficiency: an overview. Just Agric. 2020;1(3):1-4.
  11. 11. Baligar VC, Fageria NK, He ZL. Nutrient use efficiency in plants. Commun Soil Sci Plant Anal. 2001;32(7-8):921-50. https://doi.org/10.1081/CSS-100104098
  12. 12. Fixen PE, West FB. Nitrogen fertilizers: meeting contemporary challenges. Ambio. 2002;31(2):169-76. https://doi.org/10.1579/0044-7447-31.2.169
  13. 13. Tilman D, Balzer C, Hill J, Befort BL. Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA. 2011;108(50):20260-4. https://doi.org/10.1073/pnas.1116437108
  14. 14. Cordell D, Drangert JO, White S. The story of phosphorus: global food security and food for thought. Glob Environ Change. 2009;19(2):292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
  15. 15. Chen L, Xie Z, Zhuang X, Chen X, Jing X. Controlled release of urea encapsulated by starch-g-poly(l-lactide). Carbohydr Polym. 2008;72(2):342-8. https://doi.org/10.1016/j.carbpol.2007.09.021
  16. 16. Shaviv A. Advances in controlled-release fertilizers. Adv Agron. 2001;71:1-49. https://doi.org/10.1016/S0065-2113(01)71011-5
  17. 17. Timilsena YP, Adhikari R, Casey P, Muster T, Gill H, Adhikari B. Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. J Sci Food Agric. 2015;95(6):1131-42. https://doi.org/10.1002/jsfa.6812
  18. 18. Liang R, Liu M, Wu L. Controlled release NPK compound fertilizer with the function of water retention. React Funct Polym. 2007;67(9):769-79. https://doi.org/10.1016/j.reactfunctpolym.2007.05.006
  19. 19. Trenkel ME. Slow and controlled-release and stabilized fertilizers: an option for enhancing nutrient use efficiency in agriculture. Paris: International Fertilizer Industry Association; 2010. p. 1-163.
  20. 20. Ni B, Liu M, Luo S, Xie L, Wang Y. Environmentally friendly slow-release nitrogen fertilizer. J Agric Food Chem. 2011;59(18):10169-75. https://doi.org/10.1021/jf201772m
  21. 21. Liu X, Wu L, Wang J, Zhou W, Hu L, Lv J, et al. Self-assembled superhydrophobic bio-based controlled release fertilizer: fabrication, membrane properties, release characteristics and mechanism. J Clean Prod. 2022;378:134586. https://doi.org/10.1016/j.jclepro.2022.134586
  22. 22. Touchette BW, Cox DS. Enhanced plant performance in tomato (Lycopersicon esculentum) through seed encapsulation with controlled-release fertilizers. Arch Agron Soil Sci. 2023;69(14):2862-77. https://doi.org/10.1080/03650340.2023.2179620
  23. 23. Abd El-Aziz ME, Salama DM, Morsi SMM, Youssef AM, El-Sakhawy M. Development of polymer composites and encapsulation technology for slow-release fertilizers. Rev Chem Eng. 2022;38(5):603-16. https://doi.org/10.1515/revce-2020-0046
  24. 24. Xiaoyu N, Yuejin W, Zhengyan W, Lin W, Guannan Q, Lixiang Y. A novel slow-release urea fertiliser: physical and chemical analysis of its structure and study of its release mechanism. Biosyst Eng. 2013;115(3):274-82. https://doi.org/10.1016/j.biosystemseng.2013.04.001
  25. 25. Yu X, Li B. Release mechanism of a novel slow-release nitrogen fertilizer. Particuology. 2019;45:124-30. https://doi.org/10.1016/j.partic.2018.09.005
  26. 26. Luo W, Qian L, Liu W, Zhang X, Wang Q, Jiang H, et al. A potential Mg-enriched biochar fertilizer: excellent slow-release performance and release mechanism of nutrients. Sci Total Environ. 2021;768:144454. https://doi.org/10.1016/j.scitotenv.2020.144454
  27. 27. Pang L, Gao Z, Feng H, Wang S, Wang Q. Cellulose based materials for controlled release formulations of agrochemicals: a review of modifications and applications. J Control Release. 2019;316:105-15. https://doi.org/10.1016/j.jconrel.2019.11.004
  28. 28. Lakshani N, Wijerathne HS, Sandaruwan C, Kottegoda N, Karunarathne V. Release kinetic models and release mechanisms of controlled-release and slow-release fertilizers. ACS Agric Sci Technol. 2023;3(11):939-56. https://doi.org/10.1021/acsagscitech.3c00184
  29. 29. Annapurna S, Niketh S, DA, Madhu GM. Review on sustained fertilizers releases for agriculture systems. Int J Adv Res Eng Technol. 2020;11(10):1-7. https://doi.org/10.34218/IJARET.11.10.2020.001
  30. 30. Wang C, Lv J, Coulter JA, Xie J, Yu J, Li J, et al. Slow-release fertilizer improves the growth, quality, and nutrient utilization of wintering Chinese chives (Allium tuberosum Rottler ex Spreng.). Agronomy. 2020;10(3):419. https://doi.org/10.3390/agronomy10030419
  31. 31. Zhang S, Shen T, Yang Y, Li YC, Wan Y, Zhang M, et al. Controlled-release urea reduced nitrogen leaching and improved nitrogen use efficiency and yield of direct-seeded rice. J Environ Manage. 2018;220:191-7. https://doi.org/10.1016/j.jenvman.2018.05.010
  32. 32. Chen Z, Liu T, Dong J, Chen G, Li Z, Zhou J, et al. Sustainable application for agriculture using biochar-based slow-release fertilizers: a review. ACS Sustain Chem Eng. 2023;11(1):1-12. https://doi.org/10.1021/acssuschemeng.2c05826
  33. 33. Ibrahim KRM, Babadi FE, Yunus R. Comparative performance of different urea coating materials for slow release. Particuology. 2014;17:165-72. https://doi.org/10.1016/j.partic.2014.03.009
  34. 34. Alshangiti D, Ghobashy MM, Alkhursani SA, Salem F, Al-Gahtany SA, Madani MM. Semi-permeable membrane fabricated from organoclay/PS/EVA irradiated by γ-rays for water purification from dyes. J Mater Res Technol. 2019;9(2):1-12. https://doi.org/10.1016/j.jmrt.2019.10.008
  35. 35. Yang D, Li Y, Liu S, Hou X, Li Z, Tang X, et al. Potential benefits of biochar in agricultural soils: a review. Pedosphere. 2017;27(4):645-61. https://doi.org/10.1016/S1002-0160(17)60375-8
  36. 36. Lo Piccolo E, Becagli M, Lauria G, Cantini V, Ceccanti C, Cardelli R, et al. Biochar as a soil amendment in the tree establishment phase: what are the consequences for tree physiology, soil quality and carbon sequestration? Sci Total Environ. 2022;844:157175. https://doi.org/10.1016/j.scitotenv.2022.157175
  37. 37. Marcińczyk M, Oleszczuk P. Biochar and engineered biochar as slow- and controlled-release fertilizers. J Clean Prod. 2022;339:130615. https://doi.org/10.1016/j.jclepro.2022.130615
  38. 38. Cen Z, Wei L, Muthukumarappan K, Sobhan A, McDaniel R. Assessment of a biochar-based controlled release nitrogen fertilizer coated with polylactic acid. J Soil Sci Plant Nutr. 2021;21(3):2007-19. https://doi.org/10.1007/s42729-021-00419-1
  39. 39. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4(9):835-64. https://doi.org/10.1002/mabi.200400043
  40. 40. Xu G, Lv Y, Sun J, Shao H, Wei L. Recent advances in biochar applications in agricultural soils: benefits and environmental implications. Clean Soil Air Water. 2012;40(10):1093-8. https://doi.org/10.1002/clen.201100738
  41. 41. Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal: a review. Biol Fertil Soils. 2002;35:219-30. https://doi.org/10.1007/s00374-002-0466-4
  42. 42. Li Y, Sun Y, Liao S, Zou G, Zhao T. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato. Agric Water Manag. 2017;186:139-46. https://doi.org/10.1016/j.agwat.2017.02.006
  43. 43. Cairo PC, de Armas JM, Artiles PT, Martin BD, Carrazana RJ, Lopez OR. Effects of zeolite and organic fertilizers on soil quality and yield of sugarcane. Aust J Crop Sci. 2017;11(6):733-8. https://doi.org/10.21475/ajcs.17.11.06.p501
  44. 44. Hermida L, Agustian J. Slow release urea fertilizer synthesized through recrystallization of urea incorporating natural bentonite using various binders. Environ Technol Innov. 2019;13:113-21. https://doi.org/10.1016/j.eti.2018.11.006
  45. 45. Ateş E, Uyanık N, Kızılcan N. Preparation of urea formaldehyde resin/layered silicate nanocomposites. Pigment Resin Technol. 2013;42(5):283-7. https://doi.org/10.1108/PRT-09-2012-0043
  46. 46. Santos BR, Bacalhau FB, Pereira TDS, Souza CF, Faez R. Chitosan-montmorillonite microspheres: a sustainable fertilizer delivery system. Carbohydr Polym. 2015;127:340-6. https://doi.org/10.1016/j.carbpol.2015.03.064
  47. 47. Naik MR, Kumar BK, Manasa K. Polymer coated fertilizers as advance technique in nutrient management. Asian J Soil Sci. 2017;12(1):228-32. https://doi.org/10.15740/HAS/AJSS/12.1/228-232
  48. 48. Mulder WJ, Gosselink RJA, Vingerhoeds MH, Harmsen PFH, Eastham D. Lignin based controlled release coatings. Ind Crops Prod. 2011;34(1):915-20. https://doi.org/10.1016/j.indcrop.2011.02.011
  49. 49. Naz MY, Sulaiman SA. Slow release coating remedy for nitrogen loss from conventional urea: a review. J Control Release. 2016;225:109-20. https://doi.org/10.1016/j.jconrel.2016.01.037
  50. 50. Majeed Z, Ramli NK, Mansor N, Man Z. A comprehensive review on biodegradable polymers and their blends used in controlled-release fertilizer processes. Rev Chem Eng. 2015;31(1):69-95. https://doi.org/10.1515/revce-2014-0033
  51. 51. Niu Y, Li H. Controlled release of urea encapsulated by starch-g-poly(vinyl acetate). Ind Eng Chem Res. 2012;51(38):12173-7. https://doi.org/10.1021/ie301580v
  52. 52. Lawrencia D, Wong SK, Low DYS, Goh BH, Goh JK, Ruktanonchai UR, et al. Controlled release fertilizers: a review on coating materials and mechanism of release. Plants. 2021;10(2):1-26. https://doi.org/10.3390/plants10020238
  53. 53. Youssef AM, El-gendy A, Kamel S. Evaluation of corn husk fibers reinforced recycled low density polyethylene composites. Mater Chem Phys. 2014;147(3):878-84. https://doi.org/10.1016/j.matchemphys.2014.12.004
  54. 54. Youssef AM, Hasanin MS, El-Aziz MEA, Darwesh OM. Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers. Heliyon. 2019;5(7):e01332. https://doi.org/10.1016/j.heliyon.2019.e01332
  55. 55. Torrisi B, Trinchera A, Rea E, Allegra M, Roccuzzo G, Intrigliolo F. Effects of organo-mineral glass-matrix based fertilizers on citrus Fe chlorosis. Eur J Agron. 2013;44:32-7. https://doi.org/10.1016/j.eja.2012.07.007
  56. 56. Kottegoda N, Munaweera I, Madusanka N, Karunaratne V. A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci. 2011;101(1):73-8.
  57. 57. Duan Q, Jiang S, Chen F, Li Z, Ma L, Song Y, et al. Fabrication, evaluation methodologies and models of slow-release fertilizers: a review. Ind Crops Prod. 2023;192:116078. https://doi.org/10.1016/j.indcrop.2023.116078
  58. 58. Yang Y, Xu L, Wang J, Meng Q, Zhong S, Gao Y, et al. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydr Polym. 2022;283:119161. https://doi.org/10.1016/j.carbpol.2022.119161
  59. 59. Wang X, Kuai J, Yu J, Liu X. Effects of controlled/slow-released nitrogen fertilizers on physiological characteristics and quality of melon under substrate cultivation. J Plant Nutr Fertil. 2016;22(3):847-54.
  60. 60. Ikeda S, Suzuki K, Kawahara M, Noshiro M, Takahashi N. An assessment of urea-formaldehyde fertilizer on the diversity of bacterial communities in onion and sugar beet. Microbes Environ. 2014;29(2):231-4. https://doi.org/10.1264/jsme2.ME13137
  61. 61. Huerfano Salinas X, Menéndez S, Bolaños-Benavides MM, González-Moro MB, Estavillo JM, González-Murua C. The nitrification inhibitor 3,4-dimethylpyrazole phosphate decreases leaf nitrate content in lettuce while maintaining yield and N₂O emissions in the savanna of Bogotá. Plant Soil Environ. 2016;62(12):533-9. https://doi.org/10.17221/708/2016-PSE
  62. 62. Pengthamkeerati P, Modtad A. Nitrification inhibitor effects on nitrous oxide emission, nitrogen transformation, and maize (Zea mays L.) yield in loamy sand soil in Thailand. Commun Soil Sci Plant Anal. 2016;47(7):875-87. https://doi.org/10.1080/00103624.2016.1146757
  63. 63. Fan XH, Li YC. Nitrogen release from slow-release fertilizers as affected by soil type and temperature. Soil Sci Soc Am J. 2010;74(5):1635-41. https://doi.org/10.2136/sssaj2009.0378
  64. 64. Sempeho SI, Kim HT, Mubofu E, Hilonga A. Meticulous overview on the controlled release fertilizers. Adv Chem. 2014;2014:1-16. https://doi.org/10.1155/2014/363071
  65. 65. Shaviv A, Raban S, Zaidel E. Modeling controlled nutrient release from polymer coated fertilizers: diffusion release from single granules. Environ Sci Technol. 2003;37(10):2251-6. https://doi.org/10.1021/es011462v
  66. 66. Irfan SA, Razali R, KuShaari KZ, Mansor N, Azeem B, Ford Versypt AN. A review of mathematical modeling and simulation of controlled-release fertilizers. J Control Release. 2018;271:45-54. https://doi.org/10.1016/j.jconrel.2017.12.017
  67. 67. Salimi M, Motamedi E, Motesharezedeh B, Hosseini HM, Alikhani HA. Starch-g-poly(acrylic acid-co-acrylamide) composites reinforced with natural char nanoparticles toward environmentally benign slow-release urea fertilizers. J Environ Chem Eng. 2020;8(3):103743. https://doi.org/10.1016/j.jece.2020.103743
  68. 68. Olad A, Zebhi H, Salari D, Mirmohseni A, Reyhani Tabar A. Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater Sci Eng C. 2018;90:333-40. https://doi.org/10.1016/j.msec.2018.04.083
  69. 69. Du CW, Zhou JM, Shaviv A. Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. J Polym Environ. 2006;14(3):223-30. https://doi.org/10.1007/s10924-006-0018-z
  70. 70. Emami N, Razmjou A, Noorisafa F, Korayem AH, Zarrabi A, Ji C. Fabrication of smart magnetic nanocomposite asymmetric membrane capsules for the controlled release of nitrate. Environ Nanotechnol Monit Manag. 2017;8:233-43. https://doi.org/10.1016/j.enmm.2017.09.001
  71. 71. Bi S, Barinelli V, Sobkowicz MJ. Degradable controlled-release fertilizer composite prepared via extrusion: fabrication, characterization, and release mechanisms. Polymers (Basel). 2020;12(2):301. https://doi.org/10.3390/polym12020301
  72. 72. Versino F, Urriza M, Garcia MA. Eco-compatible cassava starch films for fertilizer controlled-release. Int J Biol Macromol. 2019;133:1008-14. https://doi.org/10.1016/j.ijbiomac.2019.04.170
  73. 73. Nardi P, Neri U, Di Matteo G, Trinchera A, Napoli R, Farina R, et al. Nitrogen release from slow-release fertilizers in soils with different microbial activities. Pedosphere. 2018;28(2):332-40. https://doi.org/10.1016/S1002-0160(18)60018-3
  74. 74. Hartmann C, Lesturgez G. Physical properties of tropical sandy soils: a large range of behaviours. In: Management of tropical sandy soils for sustainable agriculture. Bangkok: FAO; 2005. p. 148-58.
  75. 75. Kaufmann RK, Cleveland CJ. Environmental science. New York: McGraw-Hill; 2008. 552 p.
  76. 76. Food and Agriculture Organization of the United Nations. Home. Rome: FAO; 2024.
  77. 77. Fan XH, Li YC, Alva AK. Effects of temperature and soil type on ammonia volatilization from slow-release nitrogen fertilizers. Commun Soil Sci Plant Anal. 2011;42(10):1111-22. https://doi.org/10.1080/00103624.2011.566963
  78. 78. Das BK, Rubel RI, Gupta S, Wu Y, Wei L, Brözel VS. Impacts of biochar-based controlled-release nitrogen fertilizers on soil prokaryotic and fungal communities. Agriculture. 2022;12(11):1706. https://doi.org/10.3390/agriculture12111706
  79. 79. Nongbet A, Mishra AK, Mohanta YK, Mahanta S, Ray MK, Khan M, et al. Nanofertilizers: a smart and sustainable attribute to agriculture. Plants. 2022;11(19):2587. https://doi.org/10.3390/plants11192587
  80. 80. Anderson VM, Archbold DD, Geneve RL, Ingram DL, Jacobsen KL. Fertility source and drought stress effects on plant growth and essential oil production of Calendula officinalis. HortScience. 2016;51(4):342-8. https://doi.org/10.21273/HORTSCI.51.4.342
  81. 81. Ahmed S, Stepp JR. Beyond yields: climate change effects on specialty crop quality and agroecological management. Elementa. 2016;4:000092. https://doi.org/10.12952/journal.elementa.000092
  82. 82. Akhter M, Shah GA, Niazi MBK, Mir S, Jahan Z, Rashid MI. Novel water-soluble polymer coatings control NPK release rate, improve soil quality and maize productivity. J Appl Polym Sci. 2021;138(42):51040. https://doi.org/10.1002/app.51040
  83. 83. Tian X, Li C, Zhang M, Li T, Lu Y, Liu L. Controlled-release urea improved crop yields and mitigated nitrate leaching under cotton-garlic intercropping system in a 4-year field trial. Soil Tillage Res. 2018;175:158-67. https://doi.org/10.1016/j.still.2017.08.015
  84. 84. Geng J, Sun Y, Zhang M, Li C, Yang Y, Liu Z, et al. Long-term effects of controlled-release urea application on crop yields and soil fertility under rice-oilseed rape rotation system. Field Crops Res. 2015;184:65-73. https://doi.org/10.1016/j.fcr.2015.09.003
  85. 85. Qu Z, Qi X, Shi R, Zhao Y, Hu Z, Chen Q, et al. Reduced N fertilizer application with optimal blend of controlled-release urea and urea improves tomato yield and quality in greenhouse production system. J Soil Sci Plant Nutr. 2020;20(4):1884-94. https://doi.org/10.1007/s42729-020-00261-7
  86. 86. Gil-Ortiz R, Naranjo MÁ, Ruiz-Navarro A, Caballero-Molada M, Atares S, García C, et al. Agronomic assessment of a controlled-release polymer-coated urea-based fertilizer in maize. Plants. 2021;10(3):562. https://doi.org/10.3390/plants10030562
  87. 87. Bah A, Husni MHA, Teh CBS, Rafii MY, Syed Omar SR, Ahmed OH. Reducing runoff loss of applied nutrients in oil palm cultivation using controlled-release fertilizers. Adv Agric. 2014;2014:285382. https://doi.org/10.1155/2014/285382
  88. 88. Fernando M, Munaweera I, Kottegoda N. Preparation and characterization of NPK nutrient loaded electrospun cellulose acetate nanofiber mat to be used as a slow-release fertilizer. In: Proceedings of the 27th International Forestry and Environment Symposium; 2023. p. 124.
  89. 89. Syed S, Wang X, Prasad TNVKV, Lian B. Bio-organic mineral fertilizer for sustainable agriculture: current trends and future perspectives. Minerals. 2021;11(12):1331. https://doi.org/10.3390/min11121331
  90. 90. Kumar N, Shambhavi S, Das A. Soil biological indicators associated with nitrogen mineralization patterns in rice soils under long-term integrated nutrient management. Soil Use Manag. 2023;39(2):605-16. https://doi.org/10.1111/sum.12893
  91. 91. Viancelli A, Michelon W. Climate change and nitrogen dynamics: challenges and strategies for a sustainable future. Nitrogen. 2024;5:688-701. https://doi.org/10.3390/nitrogen5040045
  92. 92. Khan N, Ray RL, Sargani GR, Ihtisham M, Khayyam M. Current progress and future prospects of agriculture technology: gateway to sustainable agriculture. Sustainability. 2021;13(9):4883. https://doi.org/10.3390/su13094883
  93. 93. Donald DG. Conifer seedling mineral nutrition – R. van den Driessche; 1990. p. 135.
  94. 94. Hangs RD, Knight JD, Van Rees KCJ. Nitrogen accumulation by conifer seedlings and competitor species from nitrogen-labeled controlled-release fertilizer. Soil Sci Soc Am J. 2003;67(1):300-8. https://doi.org/10.2136/sssaj2003.0300
  95. 95. Fan Z, Moore JA, Wenny DL. Growth and nutrition of container-grown ponderosa pine seedlings with controlled-release fertilizer incorporated in the root plug. Ann For Sci. 2004;61:117-24. https://doi.org/10.1051/forest:2003086
  96. 96. Kubavat D, Trivedi K, Vaghela P, Prasad K, Vijay Anand GK, Trivedi H, et al. Characterization of a chitosan-based sustained release nanofertilizer formulation used as a soil conditioner while simultaneously improving biomass production of Zea mays L. Land Degrad Dev. 2020;31(17):2734-46. https://doi.org/10.1002/ldr.3646
  97. 97. Shen MC, Zhang YZ, Bo GD, Yang B, Wang P, Ding ZY, et al. Microbial responses to the reduction of chemical fertilizers in the rhizosphere soil of flue-cured tobacco. Front Bioeng Biotechnol. 2022;9:821779. https://doi.org/10.3389/fbioe.2021.821779
  98. 98. Atafar Z, Mesdaghinia A, Nouri J, Homaee M, Yunesian M, Ahmadimoghaddam M, et al. Effect of fertilizer application on soil heavy metal concentration. Environ Monit Assess. 2010;160(1-4):83-9. https://doi.org/10.1007/s10661-008-0659-x
  99. 99. Priyadharshir S. Impact of indiscriminate use of fertilizers and pesticides. Your Article Library; 2020.
  100. 100. Kontárová S, Přikryl R, Škarpa P, Kriška T, Antošovský J, Gregušková Z, et al. Slow-release nitrogen fertilizers with biodegradable poly(3-hydroxybutyrate) coating: their effect on the growth of maize and the dynamics of N release in soil. Polymers (Basel). 2022;14(20):4290. https://doi.org/10.3390/polym14204290
  101. 101. van Wijk D, Teurlincx S, Brederveld RJ, de Klein JJM, Janssen ABG, Kramer L, et al. Smart nutrient retention networks: a novel approach for nutrient conservation through water quality management. Inl Waters. 2022;12(1):138-53. https://doi.org/10.1080/20442041.2021.1978199
  102. 102. Li Z, Zhang M. Progress in the preparation of stimulus-responsive cellulose hydrogels and their application in slow-release fertilizers. Polymers (Basel). 2023;15(10):2207. https://doi.org/10.3390/polym15102207
  103. 103. Eddarai EM, Mouzahim M El, Ragaoui B, Eladaoui S, Bourd Y, Bellaouchou A, et al. Review of current trends in chitosan-based controlled and slow-release fertilizer: from green chemistry to circular economy. Int J Biol Macromol. 2024;242:134982. https://doi.org/10.1016/j.ijbiomac.2024.134982
  104. 104. Tovihoudji PG, Sossa EL, Egah J, Agbangba EC, Akponikpe PBI, Yabi JA. Resource endowment and sustainable soil fertility management strategies in maize farming systems in northern Benin. Front Sustain Resour Manag. 2024;3:1354981. https://doi.org/10.3389/fsrma.2024.1354981
  105. 105. Larison M. Is it better to use fast or slow-release lawn fertilizer. Sam’s Turf Care; 2024.
  106. 106. Kirk-Ballard H. Timing is everything with fertilizer. LSU AgCenter; 2022.
  107. 107. Robbins J. Slow-release fertilizers. In: International Workshop on Enhanced Efficiency Fertilizers. IFA; 2005. p. 1-32.
  108. 108. Mary S, Kavitha RS, Asha DR. Impact of eco-friendly liquid organic fertilizer on plant growth in Eleusine coracana L. J Environ Biol Sci. 2023;37(2):2010-1. https://doi.org/10.59467/JEBS.2023.37.109
  109. 109. Bhardwaj AK, Rajwar D, Yadav RK, Chaudhari SK, Sharma DK. Nitrogen availability and use efficiency in wheat crop as influenced by the organic-input quality under major integrated nutrient management systems. Front Plant Sci. 2021;12:697792. https://doi.org/10.3389/fpls.2021.697792
  110. 110. Bhardwaj AK, Malik K, Chejara S, Rajwar D, Narjary B, Chandra P. Integration of organics in nutrient management for rice-wheat system improves nitrogen use efficiency via favorable soil biological and electrochemical responses. Front Plant Sci. 2023;13:1078325. https://doi.org/10.3389/fpls.2022.1078325
  111. 111. Mustaffa MRAF, Pandian K, Chitraputhirapillai S, Kuppusamy S, Dhanushkodi K. Synthesis of biochar-embedded slow-release nitrogen fertilizers: mesocosm and field scale evaluation for nitrogen use efficiency, growth and rice yield. Soil Use Manag. 2024;40(1):1-17. https://doi.org/10.1111/sum.12987
  112. 112. Urmi TA, Rahman MM, Islam MM, Islam MA, Jahan NA, Mia MAB, et al. Integrated nutrient management for rice yield, soil fertility, and carbon sequestration. Plants. 2022;11(1):1-17. https://doi.org/10.3390/plants11010093
  113. 113. Vejan P, Khadiran T, Abdullah R, Ahmad N. Controlled release fertilizer: a review on developments, applications and potential in agriculture. J Control Release. 2021;339:321-34. https://doi.org/10.1016/j.jconrel.2021.10.003
  114. 114. Govil S, Van Duc Long N, Escribà-Gelonch M, Hessel V. Controlled-release fertiliser: recent developments and perspectives. Ind Crops Prod. 2024;219:117185. https://doi.org/10.1016/j.indcrop.2024.117185
  115. 115. Sim DHH, Tan IAW, Lim LLP, Hameed BH. Encapsulated biochar-based sustained release fertilizer for precision agriculture: a review. J Clean Prod. 2021;303:127018. https://doi.org/10.1016/j.jclepro.2021.127018
  116. 116. Xiang L, Liu S, Ye S, Yang H, Song B, Qin F, et al. Potential hazards of biochar: the negative environmental impacts of biochar applications. J Hazard Mater. 2021;420:126611. https://doi.org/10.1016/j.jhazmat.2021.126611
  117. 117. Raiesi Ardali T, Ma’mani L, Chorom M, Motamedi E, Fathi Gharebaba M. A biocompatible NPK+Fe+Zn slow release fertilizer: synthesis and its evaluation in tomato plant growth improvement. Sci Rep. 2024;14(1):1-12. https://doi.org/10.1038/s41598-024-55152-z
  118. 118. Li X, Li Z. Global trends and current advances in slow/controlled-release fertilizers: a bibliometric analysis from 1990 to 2023. Agriculture. 2024;14(9):1502. https://doi.org/10.3390/agriculture14091502
  119. 119. Bucci G, Bentivoglio D, Finco A. Precision agriculture as a driver for sustainable farming systems: state of art in literature and research. Quality. 2018;(Nov):1-9. https://doi.org/10.3280/QU2018-004004
  120. 120. Jia Y, Hu Z, Ba Y, Qi W. Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency. Chem Biol Technol Agric. 2021;8(1):1-11. https://doi.org/10.1186/s40538-020-00205-4
  121. 121. Chen Z, Wang Q, Ma J, Zou P, Jiang L. Impact of controlled-release urea on rice yield, nitrogen use efficiency and soil fertility in a single rice cropping system. Sci Rep. 2020;10:67110. https://doi.org/10.1038/s41598-020-67110-6
  122. 122. Mohan A, PM. Use of organic acid coated phosphatic fertilizer to improve growth and phosphorus use efficiency of brinjal. Madras Agric J. 2020;107(7-9):1-5. https://doi.org/10.29321/MAJ.2020.000369
  123. 123. Lyu Y, Yang X, Pan H, Zhang X, Cao H, Ulgiati S, et al. Impact of fertilization schemes with different ratios of urea to controlled release nitrogen fertilizer on environmental sustainability, nitrogen use efficiency and economic benefit of rice production: a case study from Southwest China. J Clean Prod. 2021;293:126198. https://doi.org/10.1016/j.jclepro.2021.126198
  124. 124. L Gao H, Cheng G, Lu W, Lu D. Differences of yield and nitrogen use efficiency under different applications of slow release fertilizer in spring maize. J Integr Agric. 2021;20(2):554-64. https://doi.org/10.1016/S2095-3119(20)63315-9
  125. 125. Sun H, Zhou S, Zhang J, Zhang X, Wang C. Effects of controlled-release fertilizer on rice grain yield, nitrogen use efficiency, and greenhouse gas emissions in a paddy field with straw incorporation. F Crop Res. 2020;253:107814. https://doi.org/10.1016/j.fcr.2020.107814
  126. 126. Ghafoor I, Habib-ur-Rahman M, Ali M, Afzal M, Ahmed W, Gaiser T, et al. Slow-release nitrogen fertilizers enhance growth, yield, nitrogen use efficiency in wheat and reduce nitrogen losses under an arid environment. Environ Sci Pollut Res. 2021;28(32):43528-43. https://doi.org/10.1007/s11356-021-13700-4
  127. 127. Fan Z, Chen J, Zhai S, Ding X, Zhang H, Sun S, et al. Optimal blends of controlled-release urea and conventional urea improved nitrogen use efficiency in wheat and maize with reduced nitrogen application. J Soil Sci Plant Nutr. 2021;21(2):1103-11. https://doi.org/10.1007/s42729-021-00425-z
  128. 128. Ali I, Mustafa A, Yaseen M, Imran M. Polymer-coated DAP helps in enhancing growth, yield and phosphorus use efficiency of wheat (Triticum aestivum L.). J Plant Nutr. 2017;40(16):4167-76. https://doi.org/10.1080/01904167.2017.1363714

Downloads

Download data is not yet available.