Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Endophytic bacteria from Lantana camara and their effects on cowpea (Vigna unguiculata) germination and growth

DOI
https://doi.org/10.14719/pst.8165
Submitted
10 March 2025
Published
23-07-2025
Versions

Abstract

Invasive weeds represent a promising but underexplored reservoir of beneficial endophytes. In this study, root-associated bacterial endophytes were isolated from Lantana camara, an aggressive invasive weed collected from a farm in Surat, South Gujarat, India. A total of 12 isolates were obtained and evaluated for key plant growth-promoting (PGP) traits, including phosphate and potassium solubilization, growth on nitrogen-free medium, siderophore and indole-3-acetic acid (IAA) production and hydrogen cyanide (HCN) production. Based on in vitro screening, selected isolates were assessed for their bioinoculant potential in Vigna unguiculata (L.) Walp. cv. Pant Grain Cowpea-14 (PGCP-14) under controlled conditions. Treatments included endophyte-inoculated seeds, uninoculated controls and seeds treated with either chemical fertilizer (CF) or farmyard manure (FYM). Among the isolates, strains LCR5 and LCR7 showed significantly enhanced germination (100 %) and superior performance across multiple growth parameters, including seedling vigor index, root and shoot length, plant height and biomass accumulation. Molecular identification using 16S rRNA gene sequencing confirmed LCR5 as Paenibacillus graminis (GenBank accession no. QR554129) and LCR7 as Bacillus safensis (GenBank accession no. OQ619180). The findings highlight the biofertilizer potential of these endophytic strains in promoting the growth of cowpea, a key leguminous crop cultivated in the Surat region.

References

  1. 1. Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N, et al. Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Anton Leeuw. 2020;113:1075-107. https://doi.org/10.1007/s10482-020-01429-y
  2. 2. Nazir A, Rahman HA. Secrets of plants: endophytes. Int J Plant Biol. 2018;9(1):7810. https://doi.org/10.4081/pb.2018.7810
  3. 3. Fatema K, Mahmud NU, Gupta DR, Siddiqui MN, Sakif TI, Sarker A, et al. Enhancing rice growth and yield with weed endophytic bacteria Alcaligenes faecalis and Metabacillus indicus under reduced chemical fertilization. PLoS One. 2024;19(5):e0296547. https://doi.org/10.1371/journal.pone.0296547
  4. 4. Luu T, Phi Q, Nguyen T, Dinh V, Pham B, Do T. Antagonistic activity of endophytic bacteria isolated from weed plant against stem end rot pathogen of pitaya in Vietnam. Egypt J Biol Pest Control. 2021;31(1):14. https://doi.org/10.1186/s41938-021-00362-0
  5. 5. Khan M, Gao J, Chen X, Zhang M, Yang F, Du Y, et al. Isolation and characterization of plant growth-promoting endophytic bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. Biomed Res Int 2020:1–17. https://doi.org/10.1155/2020/8650957
  6. 6. Patel S. A weed with multiple utility: Lantana camara. Rev Environ Sci Biotechnol. 2011;10:341-51. https://doi.org/10.1007/s11157-011-9254-7
  7. 7. Negi GC, Sharma S, Vishvakarma SC, Samant SS, Maikhuri RK, Prasad RC, et al. Ecology and use of Lantana camara in India. Bot Rev. 2019;85(2):109-30. https://doi.org/10.1007/s12229-019-09209-8
  8. 8. Parmar P, Sindhu SS. Potassium solubilization by rhizosphere bacteria: influence of nutritional and environmental conditions. J Microbiol Res. 2013;3(1):25-31.
  9. 9. Troup RS. The silviculture of Indian tress. (1921). Vol. I-III. Oxford: Clarendon Press.
  10. 10. Kumar A, Singh R, Yadav A, Giri DD, Singh PK, Pandey KD. Isolation and characterization of bacterial endophytes of Curcuma longa L. 3 Biotech. 2016;6:1-8. https://doi.org/10.1007/s13205-016-0393-y
  11. 11. Panigrahi S, Dash D, Rath C. Characterization of endophytic bacteria with plant growth promoting activities isolated from six medicinal plants. J Exp Biol Agric Sci. 2018;6(5):782-91. http://doi.org/10.18006/2018.6(5).782.791
  12. 12. Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, et al. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol. 2001;67(11):5285-93. https://doi.org/10.1128/AEM.67.11.5285-5293.2001
  13. 13. Lynn TM, Win HS, Kyaw EP, Latt ZK, Yu SS. Characterization of phosphate solubilizing and potassium decomposing strains and study on their effects on tomato cultivation. Int J Innov Appl Stud. 2013;3(4):959-66.
  14. 14. Bouizgarne B, Bakki M, Boutasknit A, Banane B, El Ouarrat H, Ait El Maalem S, et al. Phosphate and potash solubilizing bacteria from Moroccan phosphate mine showing antagonism to bacterial canker agent and inducing effective tomato growth promotion. Front Plant Sci. 2023;14:970382. https://doi.org/10.3389/fpls.2023.970382
  15. 15. Rajawat MV, Singh S, Saxena AK. A new spectrophotometric method for quantification of potassium solubilized by bacterial cultures. Indian J Exp Biol. 2014;52:261-6.
  16. 16. Louden BC, Haarmann D, Lynne AM. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ. 2011;12(1):51-3. https://doi.org/10.1128/jmbe.v12i1.249
  17. 17. Gordon SA, Weber RP. Colorimetric estimation of indole acetic acid. Plant Physiol. 1951;26(1):192. https://doi.org/10.1104/pp.26.1.192
  18. 18. Bhutani N, Maheshwari R, Suneja P. Isolation and characterization of plant growth promoting endophytic bacteria isolated from Vigna radiata. Indian J Agric Res. 2018;52(6):596-603.
  19. 19. Abdul-Baki AA, Anderson JD. Vigour determination in soybean seed by multiple criteria. Crop Sci. 1973;13(6):630. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  20. 20. Siva M, Sreeja SJ, Thara SS, Heera G, Anith KN. Screening and evaluation of bacterial endophytes of cowpea [Vigna unguiculata (L.) Walp.] for plant growth promotion and biocontrol potential. Plant Sci Today. 2024;11(2). https://doi.org/10.14719/pst.2600
  21. 21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406-2. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  22. 22. Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol. 2021;38(7):3022-7. https://doi.org/10.1093/molbev/msab120
  23. 23. Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, et al. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci. 2018;9:1473. https://doi.org/10.3389/fpls.2018.01473
  24. 24. Janardhan BS, Vijayan K. Types of endophytic bacteria associated with traditional medicinal plant Lantana camara Linn. Pharmacogn J. 2012;4(32):20-3. https://doi.org/10.5530/pj.2012.32.4
  25. 25. Jensen HL, Petersen EJ, De PK, Bhattacharya R. A new nitrogen-fixing bacterium: Derxia gummosa nov. gen. nov. spec. Arch Mikrobiol. 1960;36:182-95. https://doi.org/10.1007/BF00412286
  26. 26. Baldani JI, Baldani VL, Seldin L, Döbereiner J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Evol Microbiol. 1986;36(1):86-93. https://doi.org/10.1099/00207713-36-1-86
  27. 27. Fang K, Bao ZS, Chen L, Zhou J, Yang ZP, Dong XF, et al. Growth-promoting characteristics of potential nitrogen-fixing bacteria in the root of an invasive plant Ageratina adenophora. Peer J. 2019;7:e7099. https://doi.org/10.7717/peerj.7099
  28. 28. Rout ME, Chrzanowski TH. The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant Soil. 2009;315:163-72. https://doi.org/10.1007/s11104-008-9740-z
  29. 29. Abdel-Hamid MS, Fouda A, El-Ela HK, El-Ghamry AA, Hassan SE. Plant growth promoting properties of bacterial endophytes isolated from roots of Thymus vulgaris L. and investigate their role as biofertilizers to enhance the essential oil contents. Biomol Concepts. 2021;12(1):175-96. https://doi.org/10.1515/bmc-2021-0019
  30. 30. Amri M, Rjeibi MR, Gatrouni M, Mateus DM, Asses N, Pinho HJ, et al. Isolation, identification, and characterization of phosphate-solubilizing bacteria from Tunisian soils. Microorganisms. 2023;11(3):783. https://doi.org/10.3390/microorganisms11030783
  31. 31. Azizah H, Rahajeng SM, Jatmiko YD. Isolation and screening of phosphate and potassium solubilizing endophytic bacteria in maize (Zea mays L.). J Exp Life Sci. 2020;10(3):165-70. https://doi.org/10.21776/ub.jels.2020.010.03.04
  32. 32. Marag PS, Suman A. Growth stage and tissue specific colonization of endophytic bacteria having plant growth promoting traits in hybrid and composite maize (Zea mays L.). Microbiol Res. 2018;214:101-13. https://doi.org/10.1016/j.micres.2018.05.016
  33. 33. Varga T, Hixson KK, Ahkami AH, Sher AW, Barnes ME, Chu RK, et al. Endophyte-promoted phosphorus solubilization in Populus. Front Plant Sci. 2020;11:567918. https://doi.org/10.3389/fpls.2020.567918
  34. 34. Puri A, Padda KP, Chanway CP. In vitro and in vivo analyses of plant-growth-promoting potential of bacteria naturally associated with spruce trees growing on nutrient-poor soils. Appl Soil Ecol. 2020;149:103538. https://doi.org/10.1016/j.apsoil.2020.103538
  35. 35. Chauhan H, Bagyaraj DJ, Sharma A. Plant growth-promoting bacterial endophytes from sugarcane and their potential in promoting growth of the host under field conditions. Exp Agric. 2013;49(1):43-52. https://doi.org/10.1017/S0014479712001019
  36. 36. Mattos KA, Padua VLM, Romerio A, Hallack LF, Neves BC, Ulisses TMU, et al. Endophytic colonization of rice (Oryza sativa L) by the diazotrophic bacteria Burkholderia kururiensis and its ability. Ann Acad Bras Cienc. 2008;80(3):477-93. https://doi.org/10.1590/S0001-37652008000300009
  37. 37. Khianngam S, Meetum P, Chiangmai PN, Tanasupawat S. Identification and optimization of indole-3-acetic acid production of endophytic bacteria and their effects on plant growth. Trop Life Sci Res. 2023;34(1):219. https://doi.org/10.21315/tlsr2023.34.1.12
  38. 38. Patel MV, Patel RK. Indole-3-acetic acid (IAA) production by endophytic bacteria isolated from saline desert, the Little Runn of Kutch. CIBTech J Microbiol. 2014;3(2):17-28.
  39. 39. Saepen S, Jos S, Roseline R. Indole-3-acetic acid in microbial and microorganism and microorganism plant signalling. FEMS Microbiol Rev. 2007;31(4):425-48. https://doi.org/10.1111/j.1574-6976.2007.00072.x
  40. 40. Mohite B. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr. 2013;13(3):638-49. https://doi.org/10.4067/S0718-95162013005000051
  41. 41. Ferreira CM, Vilas-Boas Â, Sousa CA, Soares HM, Soares EV. Comparison of five bacterial strains producing siderophores with ability to chelate iron under alkaline conditions. AMB Express. 2019;9(1):78. https://doi.org/10.1186/s13568-019-0796-3
  42. 42. Brígido C, Singh S, Menéndez E, Tavares MJ, Glick BR, Félix MD, et al. Diversity and functionality of culturable endophytic bacterial communities in chickpea plants. Plants. 2019;8(2):42. https://doi.org/10.3390/plants8020042
  43. 43. Shanmugaiah V, Nithya K, Harikrishnan H, Jayaprakashvel M, Balasubramanian N. Biocontrol mechanisms of siderophores against bacterial plant pathogens. In: Sustainable approaches to controlling plant pathogenic bacteria. CRC Press; 2015. p. 167-90.
  44. 44. Fgaier H, Eberl HJ. Antagonistic control of microbial pathogens under iron limitations by siderophore producing bacteria in a chemostat setup. J Theor Biol. 2011;273(1):103-14. https://doi.org/10.1016/j.jtbi.2010.12.034
  45. 45. Bergey DH. Bergey's manual of determinative bacteriology. Lippincott Williams & Wilkins; 1994.
  46. 46. Ma Y, Látr A, Rocha I, Freitas H, Vosátka M, Oliveira RS. Delivery of inoculum of Rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy. 2019;9(1):33. https://doi.org/10.3390/agronomy9010033
  47. 47. Grady EN, MacDonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact. 2016;15:1-8. https://doi.org/10.1186/s12934-016-0603-7
  48. 48. Sansinenea E. Bacillus spp.: as plant growth-promoting bacteria. In: Secondary metabolites of plant growth promoting rhizo microorganisms: discovery and applications. Singapore: Springer; 2019. p. 225-37. https://doi.org/10.1007/978-981-13-5862-3_11
  49. 49. Taheri E, Tarighi S, Taheri P. Characterization of root endophytic Paenibacillus polymyxa isolates with biocontrol activity against Xanthomonas translucens and Fusarium graminearum. Biol Control. 2022;174:105031. https://doi.org/10.1016/j.biocontrol.2022.105031
  50. 50. Akinrinlola RJ, Yuen GY, Drijber RA, Adesemoye AO. Evaluation of Bacillus strains for plant growth-promotion potentials on corn (Zea mays), wheat (Triticum aestivum) and soybean (Glycine max). Int J Microbiol. 2018;2018:5686874.

Downloads

Download data is not yet available.