Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Early Access

Optimizing the cultivation of lettuce (Lactuca sativa L. var. longifolia) in hydroponic systems: A comparative system evaluation

DOI
https://doi.org/10.14719/pst.8198
Submitted
12 March 2025
Published
04-12-2025

Abstract

The study investigates the impact of five hydroponic systems viz., Nutrient Film Technique (NFT), Deep Flow Technique (DFT), Ebb and Flow System (EFS), Dutch Bucket (DB) and Floating Raft System (RFS) on the growth and yield of lettuce (Lactuca sativa L.) for the variety Green Wave. The experiment was conducted at the experimental farm of CSK HPKV, Palampur, this research aimed to identify the most efficient system for enhancing lettuce growth, considering parameters such as leaf area index (LAI), number of leaves per plant, number of pickings, stem thickness, stem length, plant height, days to marketable maturity, yield per plant, yield per square meter and root length. The study, designed as a completely randomized experiment, revealed that the NFT system consistently outperformed other systems across most growth parameters, including LAI, number of leaves per plant, stem length, plant height, days to marketable maturity, yield per plant and yield per square meter. The RFS exhibited the highest number of pickings, suggesting quicker harvest cycles. Conversely, the DB system showed the longest time to maturity and root length, indicating less efficient nutrient uptake. The B:C ratio proved that the highest return is given by NFT hydroponic system for the variety Green Wave. These findings highlight NFT as the superior system for lettuce production, providing insights for growers to optimize their hydroponic operations for maximal productivity and crop quality.

References

  1. 1. Kratky BA. Growing lettuce in three non-aerated, non-circulated hydroponic systems. J Veg Crop Prod. 2005;11:35-41. https://doi.org/10.1300/J484v11n02_04
  2. 2. Arcos B, Benavides O, Rodríguez M. Evaluación de dos sustratos y dos dosis de fertilización en condiciones hidropónicas bajo invernadero en lechuga (Lactuca sativa L.). Rev Mex Cienc Agríc. 2011;28:95-108.
  3. 3. Savvas D, Passam HC. Hydroponic production of vegetables and ornamentals. Embryo Publ.; 2002.
  4. 4. Massa DL, Incrocci R, Maggini G, Carmassi CA, Campiotti L, Pardossi A. Strategies to decrease water drainage and nitrate emission from soilless cultures of greenhouse tomato. Agric Water Manag. 2010;97:971-80. https://doi.org/10.1016/j.agwat.2010.01.029
  5. 5. Sánchez del Castillo FL, González-Molina EDC, Moreno-Pérez JPP, Reyes-González CE. Dinámica nutrimental y rendimiento de pepino cultivado en hidroponía con y sin recirculación de la solución nutritiva. Rev Fitotec Mex. 2014;37:261-9. https://doi.org/10.35196/rfm.2014.3.261
  6. 6. Kotsiras AA, Vlachodimitropoulou N, Gerakaris A, Bakas D. Innovative harvest practices of Butterhead, Lollo Rosso, and Batavia Green lettuce (Lactuca sativa L.) grown in floating hydroponic system to maintain quality and improve storability. Sci Hortic. 2016;201:1-9. https://doi.org/10.1016/j.scienta.2016.01.021
  7. 7. Resh HM. Hydroponic food production. CRC Press; 2012.
  8. 8. Agcaoli SO. Enhancing the growth and yield of lettuce (Lactuca sativa L.) in hydroponic system using magnetized irrigation water. Recol Multidiscip Res J. 2019;7:15-28. https://doi.org/10.32871/rmrj1907.02.02
  9. 9. Food and Agriculture Organization. Annual Agricultural Production and Status Report. FAO Publications; 2019-2020.
  10. 10. Department of Agriculture, Himachal Pradesh, Ministry of Agriculture, Government of India. State Agriculture Statistical Report. Government Printing Press, Shimla; 2022-2023.
  11. 11. Adams P. Nutrition of greenhouse vegetables in hydroponics and other systems. Acta Hortic. 2002;609:33-43.
  12. 12. Chowdhury M, Samarakoon UC, Altland JE. Evaluation of hydroponic systems for organic lettuce production in controlled environments. Front Plant Sci. 2024;15:1401089. https://doi.org/10.3389/fpls.2024.1401089
  13. 13. Kumarac K, Kumaric K, Acharya S, Tsewanga T, Mishraa A, Vermaa A, et al. Evaluation of spinach and lettuce production in NFT systems in greenhouse, room, and open environments at Leh, India. Eur Chem Bull. 2023.
  14. 14. Raviv M, Lieth JH. Soilless culture: theory and practice. Elsevier; 2008.
  15. 15. Jones JB. Hydroponics: a practical guide for the soilless grower. CRC Press; 2005. https://doi.org/10.1201/9781420037708
  16. 16. Nitu OA, Ivan ES, Tronac AS, Arshad A. Optimizing lettuce growth in nutrient film technique hydroponics: effect of elevated oxygen concentrations in the root zone under LED illumination. Agronomy. 2024;14(9):1896. https://doi.org/10.3390/agronomy14091896
  17. 17. Dutta M, Deepali G, Sahu S, Limkar S, Singh P, Mishra A, et al. Evaluation of growth responses of lettuce and energy efficiency of substrate and smart hydroponics systems. Sensors. 2023;23:1875. https://doi.org/10.3390/s23041875
  18. 18. Acharya S, Kumari K, Sharma N, Tiwari VK, Chaurasia OP. Yield and quality attributes of lettuce and spinach grown in different hydroponic systems. J Soil Water Conserv. 2021;20:342-9. https://doi.org/10.5958/2455-7145.2021.00043.6
  19. 19. Sublett WL, Barickman TC, Sams CE. The effect of environment and nutrients on hydroponic lettuce yield, quality, and phytonutrients. Horticulturae. 2018;4(1):1-15. https://doi.org/10.3390/horticulturae4040048
  20. 20. Suharjo S, Suai. Growth analysis of lettuce (Lactuca sativa L.) using Nutrient Film Technique (NFT) in hydroponic systems. J Trop Agric Sci. 2022;45(3):805-11. https://doi.org/10.47836/pjtas.45.3.16
  21. 21. Panse VG, Sukhatme PV. Statistical methods for agricultural workers. New Delhi: Indian Council of Agricultural Research; 2000. p. 157-65.
  22. 22. Sheoran OP, Tonk DS, Kaushik LS, Hasija RC, Pannu RS. Statistical software package for agricultural research workers. In: Hooda DS, Hasija RC, editors. Recent advances in information theory, statistics and computer application. Hisar: Department of Mathematics & Statistics, CCS HAU; 1998. p. 139-43.
  23. 23. Thomas T, Biradar MS, Chimmad VP, Janagoudar BS. Growth and physiology of lettuce (Lactuca sativa L.) cultivars under different growing systems. Plant Physiology Reports. 2021;26:526-34. https://doi.org/10.1007/s40502-021-00591-3
  24. 24. Somen A, Kaushal K, Nisha S, Kumar TV, Chaurasia OP. Yield and quality attributes of lettuce and spinach grown in different hydroponic systems. J Soil Water Conserv. 2021;20:352-9. https://doi.org/10.5958/2455-7145.2021.00043.6
  25. 25. Majid M, Khan JN, Shah QM, Masoodi KZ, Afroza B, Parvaze S. Evaluation of hydroponic systems for the cultivation of lettuce (Lactuca sativa L. var. longifolia) and comparison with protected soil-based cultivation. Agricultural Water Management. 2021;245:106572. https://doi.org/10.1016/j.agwat.2020.106572
  26. 26. Santos CP, Noboa CS, Martinez M, Cardoso JC, Sala FC. Morphological evaluation of lettuce genotypes grown under hydroponic system. Hortic Bras. 2021;39:312-8. https://doi.org/10.1590/s0102-0536-20210311
  27. 27. Thakur S, Garg J, Vikram A, Dogra RK, Thakur R. Genetic variability studies in leaf lettuce under summer season in Solan district of Himachal Pradesh. Pharma Innov J. 2022;11(5):798-801.
  28. 28. Kumar D, Bhardwaj ML, Kumar S, Kaler R, Kumar R, Verma S, et al. Comparative performance of cherry tomato and lettuce genotypes under different protected structures in low hills of Himachal Pradesh. Bull Environ Pharmacol Life Sci. 2018;7(4):14-8.
  29. 29. Kumar P, Pathania NK, Sharma P, Nageswer S. Evaluation of lettuce genotypes for yield and quality under protected conditions of Northwestern Himalayas. Himachal J Agric Res. 2015;41(2):184-8.
  30. 30. Tesi R, Lenzi A, Pardossi A. Vegetable production using hydroponics. Acta Hortic. 2003;609:193-7.

Downloads

Download data is not yet available.