Skip to main navigation menu Skip to main content Skip to site footer

Research Articles

Vol. 12 No. 3 (2025)

Production of industrial hemp (Cannabis sativa) plant added PA66 nanofiber membranes by the electrospinning method: Investigation of water desalting performances

DOI
https://doi.org/10.14719/pst.8204
Submitted
12 March 2025
Published
17-06-2025 — Updated on 01-07-2025
Versions

Abstract

Clean water is a vital resource for humans, animals, agriculture, as well as industrial processes, which are the most widespread activities using the global resource. Desalination of seawater is a promising method to obtain abundant and reliable clean freshwater. It is a new nanotechnology application that attracts attention as a method to improve the performance by improving the surface properties to obtain nanofiber membranes for seawater desalination or desalination applications. Nowadays, polymeric nanofibers are one of the promising materials due to their significantly high permeability flux and selectivity, high porosity, properties. The industrial hemp (Cannabis sativa) plant is one of the important natural green fiber products. So far, there has been no insufficient research on hemp-doped membranes for water desalination and ion retention. This study focused on the fabrication of composite materials from polyamide-66-based nanofibers doped with hemp plant fibers in formic and acetic acid by the electrospinning method. SEM images showed an interconnected structure between PA66 and dissolved hemp plant fibers. Permeability properties and ion retention sensitivity studies of the filtration structure were performed. Contact angle study revealed its hydrophilic structure. This study can be a source of inspiration for researchers who can shed light on future research for hemp-doped nanofiber membranes, emphasizing sustainable development goals.

References

  1. 1. Progress on household drinking water, sanitation and hygiene. World Health Organization; [Accessed 22 February 2025]. https://washdata.org/reports/jmp-2023-wash-households
  2. 2. Sanaeepur H, Amooghin AE, Shirazi MMA, Pishnamazi M, Shirazian S. Water desalination and ion removal using mixed matrix electrospun nanofibrous membranes: A critical review. Desalination. 2022;528(1):115350. https://doi.org/10.1016/j.desal.2021.115350
  3. 3. Eliasson J. The rising pressure of global water shortages. Nature. 2015;517:6. https://doi.org/10.1038/517006a
  4. 4. Pichel N, Vivar M, Fuentes M. The problem of drinking water access: A review of disinfection technologies with an emphasis on solar treatment methods. Chemosphere. 2019;218(1):1014-30. https://doi.org/10.1016/j.chemosphere.2018.11.205
  5. 5. Selatile MK, Ray SS, Ojijo V, Sadiku R. Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. RSC Adv. 2018;8(1):37915-38. https://doi.org/10.1039/C8RA07489E
  6. 6. Ahmad AL, Ooi BS, Mohammad AW, Choudhury JP. Development of a highly hydrophilic nanofiltration membrane for desalination and water treatment. Desalination. 2004;168(1):215-21. https://doi.org/10.1016/j.desal.2004.07.001
  7. 7. Han J, Cho YH, Kong H, Han S, Park HB. Preparation and characterization of novel acetylated cellulose ether (ACE) membranes for desalination applications. J Membr Sci. 2013;428(1):533-45. https://doi.org/10.1016/j.memsci.2012.10.043
  8. 8. Xu F, Chen S, You M, Meng J. Water and salt transport properties of zwitterionic poly (arylene ether ketone) for desalination membrane applications. J Membr Sci. 2023;687(1):122055. https://doi.org/10.1016/j.memsci.2023.122055
  9. 9. Guo Q, Huang Y, Xu M, Huang Q, Cheng J, Yu S, et al. PTFE porous membrane technology: A comprehensive review. J Membr Sci. 2002;664(1):121115. https://doi.org/10.1016/j.memsci.2022.121115
  10. 10. Wang N, Wang X, Ding B, Yu J, Sun G. Tunable fabrication of three-dimensional polyamide-66 nano-fiber/nets for high efficiency fine particulate filtration. J Mater Chem. 2012;22(1):1445-52. https://doi.org/10.1039/C1JM14299B
  11. 11. Hu Y, Cheng Y, Zhang X, Huang D, Chen W, Duan M. In-situ thermal crosslinked PA66/β-cyclodextrin/PA66 nanofibrous membranes with high mechanical strength for removal of heavy metal ions by flow through adsorption. Poly Test. 2020;91(1):106854. https://doi.org/10.1016/j.polymertesting.2020.106854
  12. 12. Gao SL, Qiu JK, Xu ZL, Lian C, Liu HL, Li JH, et al. Comparative analysis of polyamide nanofiltration membranes resistance to different acids: Insights from experiments and density functional theory simulations. J Membr Sci. 2024;694(1):122412. https://doi.org/10.1016/j.memsci.2024.122412
  13. 13. Karche T. The application of hemp (Cannabis sativa L.) for a green economy: A review. Turkish J Botany. 2019;43(1):710-23. https://doi.org/10.3906/bot-1907-15
  14. 14. Krüger M, Van Eeden T, Beswa D. Cannabis sativa cannabinoids as functional ingredients in snack foods—History. Develop Aspec Plants. 2022;1:3330. https://doi.org/10.3390/plants11233330
  15. 15. Andre CM, Hausman JF, Guerrıero G. Cannabis sativa: the plant of the thousand and one molecules. Front Plant Sci. 2016;7(1):174167. https://doi.org/10.3389/fpls.2016.00019
  16. 16. Zımnıewska M. Hemp fibre properties and processing target textile: A review. Materials. 2022;15(1):1901. https://doi.org/10.3390/ma15051901
  17. 17. Zhao J, Xu Y, Wang W, Griffin J, Roozeboom, K. Bioconversion of industrial hemp biomass for bioethanol production: A review. Fuel. 2020;281(1):118725. https://doi.org/10.1016/j.fuel.2020.118725
  18. 18. Ji A, Jia L, Kumar D, Yoo CG. Recent advancements in biological conversion of industrial hemp for biofuel and value-added products. Fermentation. 2021;7(1):6. https://doi.org/10.3390/fermentation7010006
  19. 19. Pakarinen A, Zhang J, Brock T, Maijala P, Viikari L. Enzymatic accessibility of fiber hemp is enhanced by enzymatic or chemical removal of pectin. Bioresour Technol. 2012;107(1):275-81. https://doi.org/10.1016/j.biortech.2011.12.101
  20. 20. Islam MS, Mccutcheon JR, Rahaman MS. A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. J Membr Sci. 2017;537(1):297-309. https://doi.org/10.1016/j.memsci.2017.05.019
  21. 21. Yin J, Zhou J. Novel polyethersulfone hybrid ultrafiltration membrane prepared with SiO2-g-(PDMAEMA-co-PDMAPS) and its antifouling performances in oil-in-water emulsion application. Desalination. 2015;365(1):46-56. https://doi.org/10.1016/j.desal.2015.02.017
  22. 22. He M, Fan X, Yang Z, Zhang R, Liu Y, Fan L, et al. Antifouling high-flux membranes via surface segregation and phase separation controlled by the synergy of hydrophobic and hydrogen bond interactions. J Membr Sci. 2016;520(1):814-22. https://doi.org/10.1016/j.memsci.2016.08.044
  23. 23. Ding C, Zhang M, Lyu B, Guo Z, Xing N, Pang X, et al. Micropore engineering of polyamide loose nanofiltration membrane for efficient dye/salt separation. J Membr Sci. 2024;705:122932. https://doi.org/10.1016/j.memsci.2024.122932
  24. 24. Li B, Qu C, Wang S, Yeo JCC, Surat’man NEB, Loh XJ, et al. Closed-loop recyclable dynamic covalent crosslinked nanofibrous membranes for efficient oil/water separation. J Membr Sci. 2024;693(1):122378. https://doi.org/10.1016/j.memsci.2023.122378
  25. 25. Ma W, Ding Y, Li Y, Gao S, Jiang Z, Cui J, et al. Durable, self-healing superhydrophobic nanofibrous membrane with self-cleaning ability for highly-efficient oily wastewater purification, J Membr Sci. 2021;634(1):119402. https://doi.org/10.1016/j.memsci.2021.119402
  26. 26. Zhang J, Fang W, Zhang F, Gao S, Guo Y, Li J, et al. Ultrathin microporous membrane with high oil intrusion pressure for effective oil/water separation. J Membr Sci. 2020;608(1):118201. https://doi.org/10.1016/j.memsci.2020.118201
  27. 27. Zhang J, Fang W, Zhang F, Gao S, Guo Y, Li J, et al. Zwitterionic cyclodextrin membrane with uniform subnanometre pores for high-efficient heavy metal ions removal. J Membr Sci. 2023;688(1):122123. https://doi.org/10.1016/j.memsci.2023.122123
  28. 28. Emadzadeh D, Lau WJ, Matsuura T, Rahbari-Sisakht M, Ismail AF. A novel thin film composite forward osmosis membrane prepared from PSf–TiO2 nanocomposite substrate for water desalination. Chem Eng J. 2014;237(1):70-80. https://doi.org/10.1016/j.cej.2013.09.081
  29. 29. Mouro C, Gomes AP, Gouveıa IC. From hemp waste to bioactive nanofiber composites: deep eutectic solvents and electrospinning in upcycling endeavors, Gels. 2023;10(1):2023. https://doi.org/10.3390/gels10010001
  30. 30. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26(1):6176-84. https://doi.org/10.1016/j.biomaterials.2005.03.027
  31. 31. Erbastı UY, Candan I, Gündoğdu Y, Gümgüm HB, Kılıç HS. Investigation of PAN: hemp stems nanofibers produced by electrospinning method. Int J Pure Appl Sci. 2022;8(1):331-41. https://doi.org/10.29132/ijpas.1092339
  32. 32. Goroškaıtė S. The formation and analysis of electrospun materials from nano-microfibers with hemp extract. [PhD Thesis]. Kauno Technologijos Universitetas; 2020.
  33. 33. Xia S, Yao L, Zhao Y, Li N, Zheng Y. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal. Chem Eng J. 2015;280(1):720-7. https://doi.org/10.1016/j.cej.2015.06.063
  34. 34. Yang Z, Shen C, Zou Y, Wu D, Zhang H, Chen K. Application of solution blow spinning for rapid fabrication of gelatin/nylon 66 nanofibrous film. Foods. 2021;10(1):2339. https://doi.org/10.3390/foods10102339
  35. 35. Chi E, Tang Y, Wang Z. In situ SAXS and WAXD investigations of polyamide 66/reduced graphene oxide nanocomposites during uniaxial deformation. ACS Omega. 2021;6(1):11762-71. https://doi.org/10.1021/acsomega.1c01365
  36. 36. Zhang H, Li S, White CJB, Ning X, Nie H, Zhu L. Studies on electrospun nylon-6/chitosan complex nanofiber interactions. Electrochim Acta. 2009;54(1):5739-45. https://doi.org/10.1016/j.electacta.2009.05.021
  37. 37. Karam L, Jama C, Mamede AS, Boukla S, Dhulster P, Chihib NE. Nisin-activated hydrophobic and hydrophilic surfaces: assessment of peptide adsorption and antibacterial activity against some food pathogens. Appl. Microbiol Biotechnol. 2013;97(24):10321-8. https://doi.org/10.1007/s00253-013-5259-1
  38. 38. Lin SL, Hsiao WC, Jee SH, Yu HS, Tsai TF, Lai JY, et al. Study on the effects of nylon–chitosan-blended membranes on the spheroid-forming activity of human melanocytes. Biomaterials. 2006;27(1):5079-88. https://doi.org/10.1016/j.biomaterials.2006.05.035
  39. 39. Niu X, Qin M, Xu M, Zhao L, Wei Y, Hu Y, et al. Coated electrospun polyamide-6/chitosan scaffold with hydroxyapatite for bone tissue engineering, Biomed Mater. 2021;16(1):025014. https://doi.org/10.1088/1748-605X/abd68a
  40. 40. Acarer S, Pir I, Tüfekci M, Türkoğlu Demirkol G, Tüfekci N. Manufacturing and characterisation of polymeric membranes for water treatment and numerical investigation of mechanics of nanocomposite membranes. Polymers. 2021;13(1):1661. https://doi.org/10.3390/polym13101661
  41. 41. Rana D, Matsuura T. Surface modifications for antifouling membranes. Chem Rev. 2010;110(1):2448-71. https://doi.org/10.1021/cr800208y
  42. 42. Xu C, Chen W, Gao H, Xie X, Chen Y. Cellulose nanocrystal/silver (CNC/Ag) thin-film nanocomposite nanofiltration membranes with multifunctional properties. Environ Sci Nano. 2020;(7):803-16 https://doi.org/10.1039/C9EN01367A
  43. 43. He G, Kong Y, Zheng H, Ke W, Chen X, Yin Y, et al. Preparation and properties of poly (amidoamine) dendrimer/quaternary ammonium chitosan hydrogels. Journal of Wuhan University of Technology-Mater Sci Ed. 2018;33(3):736-43. https://doi.org/10.1007/s11595-018-1886-9
  44. 44. Mrad H, Alix S, Migneault S, Koubaa A, Perré P. Numerical and experimental assessment of water absorption of wood-polymer composites. Measurement. 2018;115:197-203. https://doi.org/10.1016/j.measurement.2017.10.011
  45. 45. Rajesh G, Prasad AR, Gupta AVSSKS. Mechanical and degradation properties of successive alkali treated completely biodegradable sisal fiber reinforced poly lactic acid composites. J Reinf Plast Compos. 2015;34(12):951-61. https://doi.org/10.1177/0731684415584784

Downloads

Download data is not yet available.